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Abstract 

This study shows that ichonology can be used to refine sequence stratigraphy as well as to interpret the depositional environment of the 

Kalat Formation (Upper Maastrichtian) in the Central Kopeh- Dagh Basin (NE Iran), Dareh-Gaz section. Field studies and petrography 

of these deposits led to recognize four lithofacies and nine subfacies that formed in the tidal flat (lithofacies A), lagoon (lithofacies B), 

shoal (lithofacies C), and open marine (lithofacies D) within a carbonate ramp system. Trace fossils in this succession consist of 

Psilonichnus quietis, Thalassinoides suevicus, Diplocraterion parallelum, Rhizocorallium jenense and Ophiomorpha isp. that are 

classified in the Psilonichnus ichnofacies and Thalassinoides suevicus, Diplocraterion parallelum, Rhizocorallium jenense, and 

Ophiomorpha isp. in the Cruziana ichnofacies. Based on lithofacies and ichnofacies analyses, two depositional sequences (DS1 and 

DS2) were identified, that are composed of transgressive and highstand systems tracts. The maximum flooding surface (MFS) in DS1 is 

characterized at the top of the bed containing Rhizocorallium jenense, while this surface in DS2 is recognized by Diplocraterion 

parallelum grading into Ophiomorpha isp. in similar lithofacies. This study is an example where ichnology provides additional support 

for high-resolution sequence stratigraphy in carbonate deposits. Moreover, our study demonstrates that trace fossils could be useful in 

identification of the MFS in similar lithofacies elsewhere.  
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Introduction 

The main applications of ichnology in sequence 

stratigraphic analysis are (1) the enhancement of 

environmental interpretations; and (2) the 

identification of key surfaces and erosional 

discontinuities particularly where there is a 

significant temporal break between the eroding 

event and the deposited strata (Savrda, 1991; 

Pemberton and MacEachern, 1995; Pemberton et 

al., 2001, 2004; Rodriguez-Tovar et al., 2007). 

Integration of ichnological analysis with 

sedimentological data can also be used to determine 

facies and sequence variations depend upon water 

depth and energy conditions (Pemberton and 

MacEachern, 1995). In the eastern Kopeh-Dagh 

Basin, sequence stratigraphic analysis of the Upper 

Maastrichtian Kalat Formation was carried out by 

characterizing the lithofacies (Mahboubi et al., 

2006). However, identifying sequence stratigraphic 

trends within the central part of the basin was more 

difficult due to poor facies expression and scarcity 

of well-differentiated key boundary surfaces. Here, 

we combine ichnological and lithofacies studies 

(based on field observations and the examination of 

100 thin-sections) to infer depositional 

environments, changing environmental conditions, 

and sequence development within the Kalat 

Formation in northeast Iran in the central Kopeh- 

Dagh Basin in the Darh-Gaz region, southeast of 

the Greater Caspian Region (Fig. 1). 

 

Geological setting 

The Kopeh-Dagh Basin was formed after the 

Middle Triassic orogeny as a result of the closure 

of the Hercynian Ocean in northeast Iran 

(Berberian and King, 1981; Şengor, 1987; Şengor 

et al., 1988; Ruttner, 1993; Alavi et al., 1997; 

Golonka, 2004). In this basin, sedimentation was 

nearly continuous from Jurassic through the 

Neogene (Afshar-Harb, 1969, 1979, 1994; 

Kalantary, 1987). Five major transgressive and 

regressive sequences have been identified in the 

eastern part of the Kopeh- Dagh Basin (Moussavi-

Harami and Brenner, 1992). Shallow marine to 

shoreline sediments of the Early Maastrichtian 

Neyzar Formation were deposited during relative 

sea level fall (Moussavi-Harami & Brenner, 1992), 

while during the Late Maastrichtian, relative sea 

level rose again and the Kopeh-Dagh Basin became 

a region of shallow marine environments (Smith et 

al., 1994; Mahboubi et al., 2006). At this time, the 

carbonates of the Kalat Formation were deposited 

in shoreline to inner ramp settings (Mahboubi et 

al., 2006). In the Early Paleocene time, the redbed  
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Figure 1: Location and summarized geologic map of the study area (Modified from Afshar-Harb, 1982). 

 

sediments of the Pesteligh Formation were 

deposited during complete regression of the sea 

from the Kopeh-Dagh Basin towards the northwest 

(Moussavi-Harami, 1993). In the central part of the 

basin, the Kalat Formation was deposited in a 

shallow marine carbonate ramp with diagnostic 

ichnofossils. This formation conformably overlies 

calcareous sandstones of the Neyzar Formation, 

and, following a period of erosion, is 

unconformably overlain by red conglomerates and 

sandstones of the Pestehleigh Formation (Fig. 2). 

 

 
Figure 2: Simplified stratigraphic column of the Kalat 

Formation, central and eastern Kopeh-Dagh Basin 

(modified from Moussavi Harami & Brenner, 1992). 

 

Lithofacies and trace fossils analyses 

A combination of lithofacies and ichnofacies 

analyses is useful for interpreting depth and energy 

condition during deposition of different lithofacies 

associations (Pemberton & MacEachern, 1995). 

Detail of facies analysis including lithologic 

features, sedimentary structures and trace fossil 

content, led to the identification of four (A-D) 

lithofacies associations (Table 1, Fig. 3).  

 

Lithofacies association A 

This lithofacies consists of three subfacies: (A1) 

Sandy intraclastic packstone-grainstone (Fig. 4A), 

(A2) sandy intraclastic and bioclastic packstone-

grainstone (Fig. 4B), and (A3) Sandy bioclastic 

packstone-grainstone (Fig. 4C). These lithofacies 

are composed of fine-grained quartz sand (15-20%; 

0.6 mm), bivalve debris (5-10%; 0.4 mm), benthic 

foraminifera (5-20%; 0.2-0.5 mm), echinoderms (5-

15%; 0.3 mm) and intraclasts (5-25%; 0.4 mm). 

Benthic foraminifera consist of Siderolites and 

Rotalia. Intraclasts are composed of bioclasts 

debris (bivalve dominated) associated with micritic 

matrix. Calcite cement in different shapes and some 

mud matrix is present in these lithofacies. Trough-

cross beds of medium thickness dominate in this 

lithofacies and the bioturbation index is low.  

Trace fossils.- Psilonichnus quietis occurs most 

commonly as unlined, vertical, Y-shaped and 

cylindrical tubes. At the studied location (Fig. 6A), 

these traces have near-vertical main shaft, swelling 

and bedding-orientation that document a gravity-

equilibration style of behavior, and characteristic 

features include average tube diameter about 15 

mm and maximum burrow length of 60 to 80 mm 

that present in sandy intraclastic packstone-

grainstone  lithofacies (A1). Psilonichnus quietis is 
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Table 1: Description of lithofacies and ichnofossils recorded in the sections studied. 

 
 

diagnostic trace fossils in studied section. 

Evaluation of occurrence of Psilonichnus in its 

biological, ecological and physical context is 

necessary for accurate paleoenvironmental 

identification (Nesbitt and Campbell, 2006). 

Psilonichnus quietis was originally described from 

shallow marine sediments of the Eocene Joban 

Coal Field in Japan (Myint, 2001), where this 

ichnospecies occurs in strata which is gradually 

shifting from a terrestrial setting to transgressive 

conditions. Psilonichnus can be found in different 

ichnofacies including: (1) Glossifungites 

ichnofacies of intertidal to supratidal flats/banks 

sediments (Gingras et al., 1998, 2002; Nesbitt and 

Campbell, 2006; Pemberton and Frey, 1985) which 

is mainly controlled by substrate, (2) Psilonichnus 

ichnofacies, which characterizes backshore to 

coastal-dune areas (Nesbitt and Campbell, 2006; 

Pemberton et al., 1992b), and (3) Skolithos 

ichnofacies that occurs within sediments of the 

outer-estuarine and bay-mouth setting (Campbell 

and Nesbitt, 2000; Nesbitt and Campbell, 2002).  

Interpretation- The cross-bedded strata, grain 

supported texture and siliciclastic influx 

characterize high-energy environments (e.g., Nader 

et al., 2006; Olivier et al., 2008). Psilonichnus 

quietis have been found in tidal flat sediments, 

which consist of shifting substrate to high energy 

conditions during transgression (Fürsich, 1981; 

Pemberton and MacEachern, 1995; Myint, 2001; 

Nesbitt & Campbell, 2006). Presence of 

Psilonichnus in A1 could be assigned to formation 

of this subfacies closed to marine condition in 

contrast to other subfacies in the lithofacies A. 
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Figure 3: Idealized shallowing-upward sequence with lithofacies properties that show complete lithofacies associations in 

unique shallowing stage. (Abbreviaations: Bival=Bivalve, Bryoz=Bryozoa, Foram=Foraminifera, Ech=Echinoides, 

Qtz=Quartz, In=Intraclast, Freq=Frequency). 

 

Lithofacies association B 

 Two subfacies were identified in this association: 

(B1) Peloidal intraclastic packstone (Fig. 4D) and 

(B2) Peloidal benthic foraminiferal packstone-

grainstone (Fig. 4E). This association consists of 

peloids (10%; 0.1 mm in diameter), benthic 

foraminifera (10-20%; 1.5 mm) and intraclasts (5-

25%; 0.3 mm) and has a higher matrix/cement ratio 

than lithofacies A. Orbitoides, Lepidorbitoides, 

Siderolites, Miliolide and Rotalia are dominant 

foraminifera in this association. Bioclastic debris 

(bivalve shell) with micritic matrix is components 

in intraclasts. Bioturbation index is medium. 

Trace fossils.- Two trace fossils were found in 

lithofacies B. Thalassinoides suevicus occurs as 

isolated and Y-shaped branching cylindrical 

burrows (e.g., Pemberton and MacEachern, 1995; 

Fig. 6B). The average diameter of the tubes is 2 cm 

and the maximum observed burrow length ranges 

from 10 to 30 cm. This trace fossil is a typical 

component of three ichnofacies: the Glossifungites, 

Teredolites or Cruziana (Pemberton and 

MacEachern, 1995; and Seilacher, 2007). 

Ophiomorpha isp. Is another traces that consists of 

irregularly inclined cylindrical burrows with a 

pelleted wall structure (Fig. 6C). The diameter of 
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the cylindrical tubes is approximately 1 cm and 

maximum burrowing depth is 10 cm. Both of trace 

fossils present in peloidal intraclastic packstone 

(B1). 

 

 
Figure 4: Microscopic images from lithofacies (XPL), A) Sandy intraclastic packstone-grainstone; B) Sandy intraclastic 

bioclastic packstone-grainstone; C) Sandy bioclastic packstone-grainstone; D) Peloidal intraclastic packstone; E) Peloidal 

bentic foraminifera packstone-grainstone ; F) Sandy peloidal intraclastic grainstone (Q- quartz, Br- bryozoans, Pl- 

plagioclase, In- intraclast, P- peloid, F- foraminifera , RA- red algal, Bi- bivalve, P- peloid). 

 

Interpretation.- Presence of peloids (e.g., 

Cadjenovic et al., 2008), large benthic foraminifera 

(e.g., Flügel, 2004) and mud-supported fabric (e.g., 

Wilson, 1975) indicate deposition within shallow 

low-energy environmental condition (e.g., lagoon). 

Thalassinoides (Malpas et al., 2005; Wanke & 

Wanke, 2007) and Ophiomorpha isp. (Monaco et 

al., 2007) also can form under low energy 

environmental conditions, which supports this 

interpretation. Presence of both trace fossils in B1 

subfacies show that B1 formed in deeper water with 

respect to B2. The presence of both Ophiomorpha 

and Thalassinoides in lower part and only 

Ophiomorpha in the middle part within subfacies 

B1 (Fig 7), show that the lower part was deposited 

in deeper condition than middle part of succession.  
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Lithofacies association C 

 This lithofacies consists of three subfacies: (C1) 

Sandy, peloidal and intraclastic grainstone (Fig. 

4F); (C2) Bioclastic and intraclastic grainstone (Fig. 

5A), and (C3) Bioclastic grainstone (Fig. 5B). 

Intraclasts (5-15%; 0.4 mm in diameter), peloids (2-

10%; 0.1 mm), benthic foraminifera (10-25%; 0.2-

1.6 mm), and detrital quartz grains (5-20%; 0.4 

mm) are dominant particles. Siderolites are the 

dominant large benthic foraminifera. Intraclasts 

contain bioclastic debris in a micritic matrix. The 

ratio of calcite cement to matrix is relatively high in 

this lithofacies. Bioturbation index is medium.  

Trace fossils.- Diplocraterion parallelum is a 

vertical U-shaped burrow with spreiten (e.g., 

Pemberton & MacEachern, 1995; Fig. 6D). The 

size is variable, but the average horizontal distance 

between the corresponding vertical shafts is 25-35 

mm. The burrow diameter is between 2 and 3 mm 

and the maximum burrow depth is between 40-55 

mm. This trace fossil present in subfacies C2 and 

C3. 

 

 
Figure 5: Microscopic images from lithofacies (XPL), A) Bioclastic intraclastic grainstone (In- intraclast, F- foraminifer); 

B) Bioclastic grainstone (Bi- bivalve, F- foraminifera, E- echinoderm, RA- red algal); C) Peloidal red algal packstone 

(RA- red algal, P- peloid, F- foraminifera). 

 

Interpretation.- Grain-supported texture (e.g., 

Masse et al., 2003), subangular quartz grains (e.g., 

Coffey & Read, 2004) and subangular intraclasts 

(e.g., Cadjenovic et al., 2008) indicate a high 

energy environment such as bar which was affected 

by wave action. Diplocraterion parallelum is 

characteristic of high-energy unstable environments 

(Fürsich, 1974; Oloriz & Rodriguez-Tovar, 2000). 

This trace fossil is interpreted as the dwelling 

structure of a filter-feeder animal (e.g., Cornish, 

1986) and occurs in the Glossifungites, Skolithos 

and Cruziana ichnofacies (Pemberton et al., 2001; 

Seilacher, 2007). Presence of this trace fossil in 

subfacies C1 and C2 may show deeper condition for 

deposition of these subfacies than subfcaies C1. 

 

Lithofacies D 

This lithofacies consists of peloidal red algal 

packstone (Fig. 5C). Red algal remains (35%; 

0.3mm in diameter), peloids (15%; 0.1 mm) and 

sponge spicules (2%; 0.2 mm) are dominant 

particles in this lithofacies. Siderolites, Orbitoides 

and Rotalia are dominant foraminifera. The micritic 

matrix cement ratio is high. Bioturbation index is 

high. 
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Figure 6: Trace fossils from the study area (arrow shows top of the bed): (A) Psilonichnus quietis (vertical), (B) 

Thalassinoides suevicus (vertical), (C) Ophiomorpha isp. (oblique), (D) Diplocraterion parallelum (vertical), (E) 

Rhizocorallium jenense (oblique).  

 

Trace fossils.- Rhizocorallium jenense consists of 

short straight to slightly sinuous horizontal U-

shaped spreiten burrow with distinct scratch mark 

(Fig. 6E). Tube diameter is 3 mm and the width of 

the spreiten burrow is 20-25 mm. Maximum 

observed length of the burrow is 75 mm. 

Ophiomorpha isp. and Diplocraterion parallelum 

are also present in this lithofacies.  

Interpretation.- The presence of micrite (e.g., 

Adachi et al., 2004), red algae (Thomas et al., 

2008) and sponge spicules (Flügel, 2004) suggest a 

low energy open marine environment. Also, 

Rhizocorallium jenense is a characteristic trace 

fossil of soft substrate Cruziana and firm substrate 

Glossifungites ichnofacies (Pemberton et al., 

1992b). Rhizocorallium could be formed in low-

energy regimes (R. irregulare; Fürsich, 1974, 1981) 

with soft substrate or in high-energy regimes 
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(Fürsich, 1981; Worsley & Mørk, 2001) with soft 

or firm substrates. Ophiomorpha isp. is also 

recorded from low-energy environments (Monaco 

et al., 2007) and occurrences of Diplocraterion 

parallelum depend upon numerous factors such as 

unconsolidated substrate, preservation potential and 

different energy conditions (Fürsich, 1975). In 

lower part of the succession, only Rhizocorallium 

present in lithofacies D and in the upper part, 

Diplocraterion with Ophiomorpha present and in 

the uppermost part, Ophiomorpha present in 

lithofacies D, therefore, the lower part can be 

deposited in deeper water. 

 

Environmental interpretation 

Based on lithofacies analysis, the Kalat Formation 

in the eastern Kopeh-Dagh Basin was interpreted to 

be deposited in a shallow marine carbonate ramp 

(Mahboubi et al., 2006). However, lithofacies in 

the central part of the basin are different from the 

eastern parts, where trace fossils and ichnofacies 

were studied for the first time. Lithofacies A and B 

were deposited in the shallowest parts of a 

carbonate ramp (under tidal flat and lagoonal 

conditions). Lithofacies C is a grain-supported and 

contains coarse bioclasts that was deposited in 

high-energy environmental conditions. Lithofacies 

D with abundant algal particles was deposited in a 

low-energy open-marine environment.  

The four identified lithofacies show a characteristic 

ichnofaunas that are distributed with respect to 

depth and energy conditions. Lithofacies A is 

characterized by Psilonichnus and shifting 

substrate, that was formed in tidal flats and similar 

transitional environments, while lithofacies B with 

Thalassinoides suevicus and Ophiomorpha isp. is 

indicative of  lagoonal and low-energy 

environments. Lithofacies C consists of 

Diplocraterion (high energy) that is probably 

related to shifting sediment type on bar forms, 

whereas lithofacies D contains Rhizocorallium 

jenence and near bar forms Ophiomorpha and 

Diplocraterion. Psilonichnus, reported from 

marginal marine environment (Psilonichnus 

ichnofacies, Pemberton et al., 2001). In the studied 

section, Thalassinoides suevicus (common), 

Ophiomorpha isp. (abundant), Diplocraterion 

parallelum (rare) and  Rhizocorallium jenense 

(rare) were probably formed on the inner shelf 

(e.g., Pemberton et al., 2001) in a shallow Cruziana 

ichnofacies (e.g., Obon-Ikuenobe et al., 2005).  

 

Ichnological approach and sequence 

stratigraphic interpretation 

The two potential fold applications of ichnology to 

sequence stratigraphy are ground soft-related 

ichnofacies and other substrate-controlled 

ichnofacies (Pemberton & MacEachern, 1995; 

Catuneanu, 2006). Ground soft-related ichnofacies 

can be used for interpretation of paleodepositional 

environments and changes of depth and energy 

conditions through time. Therefore, regression and 

transgression of paleo-shorelines can be determined 

with ichnofossil approach. Other substrate-

controlled ichnofacies can be used for the 

identification of unconformities in the rock record 

and thus has important application in sequence 

stratigraphy (Catuneanu, 2006). The ichnological 

approach was used here to characterize soft ground-

related ichnofacies as well as interpretation of 

system tracts and sequence boundaries similar to 

what have been used in Triassic successions of 

southern Spain where ichnoloical approach used for 

determining Glossifungites ichnofacies as start of 

transgressive stage (Rodriguez-Tavor et al., 2007). 

In the past, sequence stratigraphic analyses of the 

Upper Maastrichtian successions in the eastern 

Kopeh- Dagh were mainly done on the basis of 

sedimentological data, while in this study a 

combination of sedimentological and ichnological 

data have been used for sequence stratigraphic 

analysis in the central parts of the basin. Based on 

trace fossils, different lithofacies were used to 

identify the system tracts and maximum flooding 

surfaces, as they are thought to reflect variations in 

depth and energy conditions. Two depositional 

sequences (DS1 and DS2) were identified. 

Lithofacies A (tidal flat) in lower part of strata is 

divided into A1 and A2. Lithofacies A1 occurs in the 

basal Kalat Formation and is represented by sandy 

limestone without any trace fossils. It follows the 

high stand system tracts (HST) stage, interpreted as 

a shelf margin wedge (SMW) (e.g., Robaszynski et 

al., 1994; Zagrarni et al., 2008). Continuous with 

lithofacies A2, it has cross bedding and toward the 

top consists of the Psilonichnus ichnofacies 

(transition substrate) that shows further seaward at 

the base of transgressive system tracts (TST). At 

this stage, lithofacies A2 changes to lagoonal 

lithofacies B with Ophiomorpha isp. in proximal 

and Thalassinoides in distal lagoon facies. This 

lithofacies also changes gradually to lithofacies C 
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(shoal) and D (deep marine), which are 

characterized by Diplocraterion parallelum (high 

energy) and Rhizocorallium jenense (low energy), 

respectively. Therefore these variations indicate 

that Psilonichnus ichnofacies gradually changed 

into the Cruziana ichnofacies. Lithofacies D with 

red algal packstone and the associated 

Rhizocorallium is interpreted as deeper facies and 

its top surface in Ds1 is interpreted as the maximum 

flooding surface (e.g., Pemberton and MacEachern, 

1995; Zonneveld et al., 2001) 

The HST consists of two shallowing upward 

parasequences. The first parasequence is composed 

of lagoonal lithofacies with Ophiomorpha isp., and 

lithofacies C (shoal) with Diplocraterion  

parallelum. The second parasequence is formed by 

lithofacies B with Ophiomorpha isp. and lithofacies 

A with Psilonichnus. Therefore the changes from 

the Cruziana ichnofacies to the Psilonichnus 

ichnofacies demonstrate shallowing in depth at the 

end of the HST (e.g., Pemberton et al., 1992a; 

Pemberton & MacEachern, 1995). 

In DS2, the TST begins with lithofacies D (red algal 

packstone) and Diplocraterion that shows this 

lithofacies was deposited under near shoal 

condition in a high energy regime. Diplocraterion 

was gradually replaced by Ophiomorpha isp. in 

lithofacies D. Although Ophiomorpha  isp. is 

common in shallow water (Pollard et al., 1993), it 

is also present in deeper facies too  

(Tchoumatchenco and Uchman, 2001; Uchman, 

2007). Diplocraterion parallelum also has similar 

condition, because it could have formed in high 

energy shoal (Fürsich et al., 2006) and deeper 

facies (Seilacher, 2007). Nonetheless 

Diplocraterion dominated in deeper part rather than 

Ophiomorpha (Seilacher, 2007). Thus, the change 

in abundance from Diplocraterion to Ophiomorpha 

within the deep red algal packstone lithofacies 

could be interpreted as depth variations during the 

deposition of lithofacies D. The top surface of 

Diplocraterion parallelum bed is interpreted as the 

maximum flooding surface (MFS). Five shallowing 

upward parasequences including lithofacies D, C, 

and B represent the HST stage. Finally after this 

period, regression occurred in this area and the red 

beds of the Pestehleigh Formation were deposited 
in a fluvial depositional system (Moussavi-Harami, 

1993). This fluctuation of sea level in the study 

area during the Late Maastrichtian time closely 

correlates with the global sea level curve published 

by Haq et al. (1987) (Fig. 7). 

 
Figure 7: Stratigraphic column and sequence stratigraphy of the Kalat Formation in the central Kopeh- Dagh Basin. 
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Conclusions  

This study shows that the combination of 

ichnofacies and lithofacies analysis is a useful tool 

in high-resolution sequence stratigraphy and 

reconstruction of depositional environments.  

Four lithofacies of a ramp-type carbonate platform 

were identified in the Upper Maastrichtian deposits 

of the central Kopeh- Dagh Basin (NE Iran), 

including tidal flat (A), lagoon (B), bar (C) and 

open marine (D) environments, comprising the 

Psilonichnus and Cruziana ichnofacies. Two 

depositional sequences (DS1 and DS2) were 

recognized in this stratigraphic interval. DS1 is 

composed of shelf margin wedge with no trace 

fossils, while TST contains various trace fossils 

and the MFS with pelloidal algal packstone as well 

as Rhizocorallium jenense. The HST is 

characterized by shallowing-upward lithofacies 

with elements of the Cruziana ichnofacies and 

subordinate of the Psilonichnus ichnofacies at the 

top. The second depositional sequence (DS2) begun 

with deeper water lithofacies of pelloidal red algal 

packstone containing Diplocraterion parallelum.  

The MFS was recognized by the occurrence of a 

Diplocraterion bed, and an early HST was 

interpreted by the occurrence of a Ophiomorpha 

isp. in a similar lithofacies.  
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