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Abstract 

In this paper, we study a special class of generalized Douglas-Weyl metrics 
whose Douglas curvature is constant along any Finslerian geodesic. We prove that 
for every Landsberg metric in this class of Finsler metrics, Ē = 0 if and only if 
H = 0. Then we show that every Finsler metric of non-zero isotropic flag 
curvature in this class of metrics is a Riemannian if and only if Ē = 0. 
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Introduction 

For a Finsler metric ( , )F F x y=  on a manifold 
,M  its geodesics curves are characterized by the 

system of differential equations 2 ( ) 0i i ic G c+ =  , 
where the local functions ( ),i iG G x y=  are called the 
spray coefficients and given by following 

2 2 2
1: , .
4

i il k
xk l l

F F
G g y y T M

x y x

    ∂ ∂    = − ∈ 
∂ ∂ ∂  

 

Thus F  induced a spray 2G i i
i iy G

x y
∂ ∂

= −
∂ ∂

 

which determines the geodesics [9,15]. 
Two Finsler metrics F  and F  on a manifold M  

are called projectively related if any geodesic of the  
first is also geodesic for the second and the other way 
around. Hereby, there is a scalar function ( , )P P x y=  
defined on 0TM  such that 

i i iG G P y= + , 

where iG  and iG  are the geodesic spray coefficients 

of F  and F , respectively and P  is positively y-
homogeneous of degree one [6,8]. 

Let 

3 1: .
1

m
i i i
j kl j k l m

GD G y
ny y y y

 ∂ ∂
= − +∂ ∂ ∂ ∂ 

 

It is easy to verify that, 
: i j k l

j kl iD D dx dx dx= ⊗∂ ⊗ ⊗  is a well-defined 
tensor on slit tangent bundle 0TM . We call D  the 
Douglas tensor. The Douglas tensor D  is a non-
Riemannian projective invariant, namely, if two Finsler 
metrics F  and F  are projectively equivalent, 

i i iG G Py= + ,  where ( ),P P x y=  is positively y-
homogeneous of degree one, then the Douglas tensor of 
F is same as that of [ ]8 .F  Finsler metrics with 
vanishing Douglas tensor are called Douglas metrics. 
The notion of Douglas curvature was proposed by 
Bácsó-Matsumoto as a generalization of Berwald 
curvature [3]. There is another projective invariant in 
Finsler geometry, namely i m i

jklj kl mD y T y= , that is 

hold for some tensor jklT , where i
j kl mD  denotes the 
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horizontal covariant derivatives of i
j klD  whit respect to 

the Berwald connection of Finsler metric F . This 
equation implies that the rate of change of the Douglas 
curvature along a geodesic  is tangent to the geodesic 
[6]. 

In this paper, we study on aclass of Finsler metrics 
whose Douglas curvature satisfies 

0i s
j kl sD y =  (1) 

The geometric mining of this equation is that on 
these new spaces, the Douglas tensor is constant along a 
geodesics. 

Other than Douglas curvature, there are several 
important non-Riemannian quantities: the Cartan torsoin 
C, the Berwald curvature B, the mean Berwald 
curvature E, and the Landsberg curvature L, etc. [12-
15]. The study show that the above mentioned non-
Riemannian quantities are closely related to the Douglas 
metrics, namely Bácsó-Matsumoto proved that every 
Douglas metric with vanishing Landsberg curvature is a 
Berwald metric [1,2]. Is there any other interesting non-
Riemannian quantity with such property? In [10], Shen 
find a new non-Riemannian quantity for Finsler metrics 
that is closely related to the E-curvature and call it E −
curvature. Recall E  is obtained from the mean Berwald 
curvature by the covariant horizontal differentiation 
along geodesics. 

In this paper, we prove that for every Landsberg 
metric satisfies (1), E 0=  if and only if H 0= . More 
precisely, we prove the following. 
 
Theorem 1. Let ( ),M F  be a Finsler space satisfies 

(1). Suppose that F  is a Landsberg metric. Then E 0=  
if and only if  H 0= . 

For a non-zero vector 0 ,xy T M∈  the Riemann 
curvature :y x xR T M T M→  is defined by 

( ) ( ): ,i k
y k iR u R y u

x
∂

=
∂

 where ( ) 2
i

i
k k

GR y
x
∂

= −
∂

 

2 i
j

j k

G y
x y
∂

∂ ∂

2

2 .
i i j

j
j k j k

G G GG
y y y y
∂ ∂ ∂

+ −
∂ ∂ ∂ ∂

 The family 

{ }
0

: y y TM
R R

∈
=  is called the Riemann curvature [5]. 

Suppose xP T M⊂  (flag) is an arbitrary plane  and 
y P∈  (flag pole). The flag curvature ( , )K P y  is 

defined by  

( ( ), )
( , )

( , ) ( , ) ( , ) ( , )
y y

y y y y

g R u v
K P y

g y y g v v g v y g v y
=

−
 

where v is an arbitrary vector in P  such that 
{ , }P span y v= . A Finsler metric F  is said to be of 

isotopic flag curvature if ( )K K x= . In this paper,  we 
show that every metrics in this class of Finsler metrics 
with non-zero isotropic flag curvature is a Riemannian 
metric if and only if  E 0= . 
 
Theorem 2. Let F  be a Finsler metric satisfies (1) of 
non-zero isotropic flag curvature K = K(x). Then F is a 
Riemannian metric if and only if  E 0= . 

There are many connections in Finsler geometry  
[11].  In this paper we set the Berwald connection on 
Finsler manifolds. The h- and v- covariant derivatives of 
a Finsler tensor field are denoted by “ | ” and “, ”  
respectively. 

Preliminaries 

Let M be a n-dimensional C ∞  manifold. Dnote by 

xT M  the tangent space at x M∈  by x
x M

TM T M
∈

=


 

the tangent bundle of M, and by { }0 \ 0TM TM=  the 
slit tangent bundle on M. A Finsler metric on M is a 
function ): 0,F TM → ∞  which has the following 

properties:  
(i) F  is C ∞  on 0TM ; (ii) F  is positively 1-

homogeneous on the fibers of tangent bundle TM, (iii) 
for each xy T M∈ , the following quadratic form yg  
on xT M  is positive-definite, 

( ) ( )
2

2
, 0

1, : , , .
2y s t xg u v F y su tv u v T M

s t =

∂  = + + ∈ ∂ ∂
 

Let x M∈  and : .
xx T MF F=  To measure the non-

Euclidean feature of xF  define :y x xC T M T M⊗

xT M⊗ by→   

( ) ( ) 0
1, , : g , , , , .
2

Cy y tw t x
du v w u v u v w T M
dt + = = ∈   

The family { }
0

C : Cy y TM∈
=  is called the Cartan 

torsion. It is well known that 0C =  if and only if  F  is 
Riemannian. 

For 0 ,xy T M∈  define :y x x xL T M T M T M⊗ ⊗

→   by ( ) ( ), , : ,i j k
y ijkL u v w L y u v w=  where ijkL

: .s
ijk sC y=  The family { }

0
: y y TM

L L
∈

=  is called the 
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Landsberg curvature. A Finsler metric F  is called a 
Landsberg metric if L=0 [4]. 

Given a Finsler manifold ( ),M F , then a global 
vector field G is induced by F  on 0TM , which in a 

standard coordinate ( ),i ix y  for 0TM  is given by 

( )2 , ,i i
i iG y G x y

x y
∂ ∂

= −
∂ ∂

 where iG  are local 

function on TM  given by  

2 2 2
1: ,
4

i il k
xk l l

F F
G g y y T M

x y x

    ∂ ∂    = − ∈ 
∂ ∂ ∂  

 

G is called the associated spray to ( ),M F . The 
projection of an integral curve of G is called a geodesic 
in M. In local coordinates, a curve ( )c t  is a geodesic if 

and only if its coordinates ( )( )ic t  satisfy  

( )2 0.i ic G c+ =   
For a non-zero vector 0 ,xy T M∈  we can define 

B :y x x x xT M T M T M T M⊗ ⊗ →  and E :y xT M

xT M⊗ →   by 

( ) ( )B , , : i j k l
y j kl xiu v w B y u v w

x
∂

=
∂

 and 

( ) ( )E , : j k
y jku v E y u v=  where  

3 1: , :
2

i
i m
j kl jk j kmj k l

GB E B
y y y
∂

= =
∂ ∂ ∂

 

, and .i i i
x x xi i iu u v v w w

x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

 The 

B and E are called the Berwald curvature and mean 
Berwald curvature respectively. A Finsler metric is 
called a Berwald metric and weakly Berwald metric if 
B 0=  and E 0= , respectively [11]. 

The quantity H i j
y ijH dx dx= ⊗  is defined as the 

covariant derivative of E along geodesics [7]. More 
precisely : m

ij ij mH E y= .  

For a flag { }, xP span y u T M= ⊂  flagpole y , the 

flag curvature ( ),K K P y=  is defined by  

( )
( )( )

( ) ( ) ( )2

,
, : ,

, , ,
y y

y y y

g u R u
K P y

g y y g u u g y u
=

−
 

We say that a Finsler metric F  is of scalar curvature 
if for any ,xy T M∈  the flag curvature ( ),K K x y=  
is a scaler function on the slit tangent bundle 0TM . 

By means of  E-curvature, we can define 
:y x x xE T M T M T M by⊗ ⊗ →   

( ) ( ), , : ,i j k
y jklE u v w E y u v w=  

where : .ijk ij kE E=  We call it E -curvature. From a 

Bianchi identity, we have 

,
i i i

j kl mj ml k j km lB B R− =  

where i
jklR  is the Riemannian curvature of Berwald 

connection [11]. This implies that 
,2 .m

jlk jkl j kl mE E R− =  Then ijkE  is not totally 
symmetric in all three of its indices. 

Results and Discusion 

Sakaguchi Theorem 

In this section, we are going to prove the well-known 
theorem of Sakaguchi. Our method is different from the 
Sakaguchi. 
 
Theorem 3. Every Finsler metric of scalar flag 
curvature is a generalized Douglas-Weyl metric. 
 
Proof. Let F  be a Finsler metric of scalar flag 
curvature K. The following holds 

2
| . .

2 2
. . . .

. . .

. . .

. . .

12
3

1 1
3 3

1 { 2 }
3

1 { 2 }
3

1 { 2 }
3

i k i i
jml k jlm j m l

i i
j l m l m j

i i i
l j m m j jm

i i i
m j m l j jl

i i i
j l m m l lm

B y K C y K F h

K F h K F h

K F F F F g y

K F F F F g y

K F F F F g y

δ δ

δ δ

δ δ

= −

− −

− + −

− + −

− + −

 (2) 

It follows from (2) that 

{ }2
. . . .

1 .
6jl l j j l j l

nH y K y K K F+
= − + +  (3) 

We obtain  
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| .

. .

. . . . . .

. |

22 {
3

}

1{ }
3

2
1

i m i
jkl m jkl j kl

i
l jk k jl

i
j l k j k l k l j

m i
jk l m

D y K C y K g

K g K g y

K y K y K y y

E y y
n

= −

+ +

− + +

−
+

 (4) 

Thus, we can conclude that every Finsler metric of 
scalar flag curvature a generalized Douglas-Weyl 
metric.  □ 
 
Proof of Theorem 1 

To prove the Theorem 1,  we need the following. 
 
Lemma 2. Let ( ),M F  be a Finsler manifold. Then the 
following holds 

{

},

2
1

.

i m i i
jk l kl jj kl m

i i i
lj k jk l jkl

B y H H
n

H H y E y

δ δ

δ

= +
+

+ + −

 (5) 

Proof. By definition, we have 

{ },
2 .

1
i i i i i i
jkl jkl jk l kl j lj k jk lD B E E E E y

n
δ δ δ= − + + +

+
 (6) 

Thus 

{ }

,

2
1

2 .
1

i m i m
j kl m j kl m

m i m i m i
l j kjk m kl m lj m

m i
jk l m

D y B y

E y E y E y
n

E y y
n

δ δ δ

=

− + +
+

−
+

 (7) 

On the other hand, the following Ricci identity for 
ijE  hold 

, , .p p
pj i kl ip j kljk l k ij k lE E E B E B− = +  (8) 

It follows from (5) that 

, , ,
,m m m

jkljk l m jk m l jk m l
E y E y E y E = = −   (9) 

This yields that  

,, , .m m
jk l jkljk l m jk l mE y E y H E= = −  (10) 

By (7) and (10), we get (5). □ 
 
Lemma 2. Let (M,F) be a Finsler manifold. Then the 

following hold 
i i i i u

j ku lmj kl m j lm k j mk l

i u i u
j lu mk j mu kl

R R R B R

B R B R

+ + =

+ +
 (11) 

,
i i i

j ml kj kl m j ml kB B R− =  (12) 

, ,
i i
j kl m j km lB B=  (13) 

Proof. The curvature form of Berwald connection is 

11 .
2

i i k i
j j j k

i k l h k n
jkl jkl

d

R B

ω ω ω

ω ω ω ω +

Ω = − ∧

= ∧ − ∧
 (14) 

For the Berwald connection, we have the following 
structure equation 

12 2 .k k k n
ij jk i ik j ijk ijkdg g g L Cω ω +− Ω − Ω = − +  (15) 

Differentiating (15) yields the following Ricci 
identity 

1 1

1
,

2

2 2

2 2 .

p p k l
pj i pi j ijk

k n k n
ijk ijl k

n k n p l
ijl k ijp l

g g L

L C

C C y

ω ω

ω ω ω ω

ω ω

+ +

+ +

Ω − Ω = − ∧

− ∧ − ∧

− ∧ − Ω

 (16) 

Differentiating of (14) yields 

0.j k k j k
i i j k id ω ωΩ − ∧Ω + ∧Ω =  (17) 

Define i
jkl mB  and  ,

i
jkl mB  by 

, .

i i m i m i m i i
jkl mkl i jml k jkm l jkl m

i m i n m
jkl mjkl m

dB B B B B

B B

ω ω ω ω

ω ω +

− − − +

= +
(18) 

Similary, we define i
jkl mR  and ,

i
jkl mR  by 

, .

i i m i m i m i i
jkl mkl i jml k jkm l jkl m

i m i n m
jkl mjkl m

dR R B R R

R R

ω ω ω ω

ω ω +

− − − +

= +
(19) 

From (16), (17), (18) and (19), we get the proof.   □ 
 
Proof of Theorem 1: From (16), it follows that 
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| .
1 1
2 2

p p
ijl k ijk l pj ikl ip jklC L g B g B− = +  (20) 

Contracting (20) with jy  and using .
i i

j jy δ=  and 

. 0i jy =  yields 

1 .
2

m i
jkl im jklL g y B= −  (21) 

By assumption,  we have 

{ },
2 .

1

i m
j kl m

i i i i i
jk l kl j lj k jk l jkl

B y

H H H H y E y
n

δ δ δ

=

+ + + −
+

 (22) 

Multiplying (22) with iy  and using (21),  we get 

{ } 2
. .jkl jk l kl j lj k jk lE H y H y H y F H−= + + +  (23) 

By (23), we get the proof. □ 
 
Proof of Theorem 2: Let :i j i

kl j klR y R= . Then we 
have 

2 21 .
3

i i
i k l
j kl j l j k

R RR
y y y y

 ∂ ∂
= − 

∂ ∂ ∂ ∂ 
 (24) 

Here, we assume that a Finsler metric F  is of scalar 
curvature ( , )K K x y= . In local coordinates, 

2 .i i
k kR K F h=  (25) 

Plugging (25) into (24) gives 

. . . .2 2

. . .

. . .

. . .

3 3

{ }

1 {2 }
3

{ }

1 {2 }
3

j l j ki i i
j kl k l

i i
j l k k l

i i i
k j l jl l j

i i
jl k jk l

i i i
l j k jk k j

K K
R F h F h

K FF h FF h

K F F g y F F

K g g

K F F g y F F

δ δ

δ δ

δ δ

= −

+ −

+ − −

+ −

+ − −

 (26) 

Differentiating (26) with respect to my  gives a 

formula for .
i
j kl mR  expressed in terms of K and its 

derivatives. Contracting (12) with ky , we obtain 

2
| . .

2 2
. . . .

. . .

. . .

. . .

12
3

1 1
3 3

1 { 2 }
3

1 { 2 }
3

1 { 2 }
3

i k i i
jml k jlm j m l

i i
j l m l m j

i i i
l j m m j jm

i i i
m j m l j jl

i i i
j l m m l lm

B y K C y K F h

K F h K F h

K F F F F g y

K F F F F g y

K F F F F g y

δ δ

δ δ

δ δ

= −

− −

− + −

− + −

− + −

 (27) 

Since ( )K K x= , then by (27) we get 

| 2i k i
j ml k jlmB y KC y=  (28) 

Since  F  be a weakly Douglas Finsler metric, then 
we have 

{ },
2 .

1

i m
j kl m

i i i i i
jk l kl j lj k jk l jkl

B y

H H H H y E y
n

δ δ δ

=

+ + + −
+

 (29) 

From the assumptions, one can obtains 

0i m
j kl mB y = . 

By (28), we can conclude that 0ijkC =  and then F is 
Riemannian. □ 
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