

(//:/:)

 $(Al_2(So_4)_3)$ (Cacl₂)

CO₂ .

E-mail: aarash-jamali@yahoo.com

MERK

...

•

.

· · · () · · · · ()

 CO_2

DIN/EN,

) (634. Part 1,2

.

(mm) kg/cm2 :

:

(DMRT)

.

CO ₂ CO ₂	
CO_2	
CO ₂ CO ₂ CO ₂	
CO ₂	
CO ₂ CO ₂	
CO ₂	
CO ₂	
CO ₂ CO ₂ CO ₂	
CO ₂	

.()

)

	F			
1	1	1		
		1	1	
			1	

 CO_2

.

•

)

(

.(.

)

...

 CO_2

•

.

	F			
/	1	1	1	
		1	1	
			1	

 CO_2

.

....

N/mm²

	F			
1	1	1	1	
			1	

 $\rm CO_2$

•

.

•

 $\rm CO_2$

.()

.

() Souza () Geimer CO₂

.

.

.

.

 CO_2

) (

)

(

6-DIN (DEUTSCHE NORM), DIN/ EN, part 1, 2: 1995. Cement bonded particle board.

7-Eusebio, D.A, 2003. Cement bonded board: Todays alternative. presented at a technical forum in celebration of the 21st PCIERD anniversary, Dost held Shangri-La, pasig city on march 17.

8-Geimer. L. R., Alcides, L, 1994. Property enhancement of wood composites using gas injection.In the proceeding of the 28th Washington state university international particleboard/composite materials symposium. April.

9-Kaushal, A. N, 1995. Utilization of waste in wood cement composites. UHF. Nani-solan.India.

10- Lee, A. C., Hse, C.Y, 1993. Evaluation of cement-excelsior boards made from yellow poplar and sweet gum. Forest product. J. 39(10): 68-70.

11- Ling, F.,and et al, 2000. Relationship between cement hydration and mechanical properties of cement-bonded boards. In the proceeding of wood-cement composites in the Asia-pasific region. Australia, Dec.

12- Moslemi, A. A., Geimer, L. R., Souza, M.R, 1996. Low density cement bonded wood composites made conventionally and with CO2 injection. DRVNA INDUSTRIJA.NO.47(2).

13- Philip, S., Kate, S, 2000. Screeninig inorganic additives for ameliorating the inhibition of hydration of Portland by the heart wood of acacia mangium. In the proceeding of wood-cement composites in the Asia-pasific region. Australia, Dec.

14- Souza, M. R., Geimer, L. R., Moslemi, A. A, 1997. Degradation of conventional and CO2 injected cement bonded particle board by exposure to fungi and termites. Journal of tropical product. 3(1):63-69.

15- Wolfe, W.R. Gjinoll, A, 1998. Cement-bonded wood composites as an engineering material. In the proceeding of inorganic bonded wood and fiber composite material. Forest product research society. Madison, Wis.

Influence of additives & CO₂ injection on practical properties of excelsior cement boards

A. Jamali^{*1}, K. Doosthoseini², M. Faezipoor³ and S. Amiri⁴

¹ Senior expert, Wood & Paper Science & Technology, I.R. Iran

² Professor, Faculty of Natural Resources, University of Tehran, I.R. Iran

³ Professor, Faculty of Natural Resources, University of Tehran, I.R. Iran

⁴ Assistant Prof., Faculty of Natural Resources, University of Tehran, I.R. Iran

(Received 2005 May 29, Accepted 2006 July 9)

Abstract

In order to examine the effect of additives and as well the injection of CO_2 on excelsior cement boards, excelsior produced from poplar (*Poplus sp*) and the Portland cement type 2, and two additives, $CaCl_2$ (calcium chloride) and $Al_2(So_4)_3$ (aluminum sulfate) with 3% & 5% concentrations was used. The results showed that the board containing 5% of $CaCl_2$ have better mechanical properties that may be attributed to effective neutralization of inhibitory agents of cement originated from wood and better cement hydration. CO_2 injection in mat prior the pressing had negative effect on the board properties which is considered as consequence of chemical reaction between cement and CO_2 , significant increase in hydration temperature in this stage and presetting of cement before press that result in improper cement bonding. Analyzing physical & mechanical properties of produced boards showed that excelsior-cement boards treated with $CaCl_2$ have acceptable properties and higher bending strength and internal bonding as compared to ordinary excelsior-cement board. Therefore appropriate condition to manufacture these boards is the application of $CaCl_2$ 5% as an additive without CO_2 injection before pressing the excelsior-cement cake.

Keywords: cement, excelsior cement board, additives, co_2 injection, thickness swilling, internal bonding, bending strength