(/ / : // :) NRC NRC Email: harzani@ut.ac.ir

```
(
                                                                                             ( )
                                                                                                              )
                                                                                                         FAO
                        .( )
                                                             Vision
                                                             Stoddart and etal
Ginti & Ratry
                                                             Freer
Vallentine
                                                             Alison
Li and etal
                                                             Society for Range Management
```

```
Salsola rigida
Anabasis , Anabasis anova , Artemisia siberi
           ) Seidlitzia rosmarinus setifera
                                                 .()
                                                 Achillea , Plantago lavendolata
                                                Medicago , Eurotia ceratoides, berbersttini
                                                Salvia
                                                           Agropyron
                                                                          elongatum ,sativa
          .( )
                                                                               ) ,hypoleuca
                                                Agropyron (
                                                               pectiniformis, trichophorum
      = Wm
                                = Wm/Wf
                                                , Agropyron
                       (male
                                                          ) Festuca ovina, Secale montanum
                                 m)
         (female
                                     = Wf
                     f)
      ) NRC
```

Domartan

```
DMD% =
                      *ADF%+ /
                                                                     = ME : ME = / + / W
           1 – 1
                                    *N%
                                                                                   =W
ME = I
          *DMD%-
                                      ME
                                                                                 .( )
                   SAS MINITAB
                )
                                                                    (CP)
                                                  (DMD)
                                                                               (ADF)
                                                                          (ME)
                                                   Maff
                                                   Crude protein
                                                   Acid detergent fiber
                                                   Dry matter digestible
                                                   Metabolizable energy
 Oddy and etal
                                                   Kjeldal
 Standard Committee of Agriculture
                                                   Van Soest
```

	/ ± /	/ ± /		
		/ ± /		
/ ± /		/ ± /		
	/ ± /	/ <u> </u>		
/ ± /	/ ± /			
		/ ± /		
, <u> </u>	/ ± /	/ ± /		
		/ ± /		
/ ± /	/ ± /	/ ± /		
		/ ± /		
	/ ± /	/ ± /		
		/ ± /		
/ ± /	± /	/ ± /		
		/ ± /		
	/ ± /	/ ± /		
		/ ± /		
± /	± /	/ ± /		
		/ ± /		
/ ± /	/ ± / .	/ ± /		
		/ ± /		

) .

.

% .

 \mathbf{F} P 1 1 1 ** ** ** * 1 1 1 ns ns ** 1 × ns × × ns 1 1 × × ns × × ns ** 1 1 1 × × × ns × × × ns 1 1

ns

(CP) (ADF)

(ME) (DMD)

Tukey

ME %DMD %ADF %CP Salsola rigida ± / / ± / b ± / b ± / e ± / ± / ± / Artemisia seiberi ± / d d d a Anabasis anova ± / ± / ± / d ± / c c c± / b / ± / b ± / b,c ± / Anabasis setifera Seidlitzia rosmarinus ± / ± / ± /

Achillea Anabasis

Agropyron berbersttini Seidlitzia rosmarinus setifera

. trichophorum . Artemisia siberi

Agropyron elongatum Anabasis Artemisia siberi

. ADF Eurotia ceratoides Seidlitzia . ADF anova

Achillea berbersttini Salsola rigida rosmarinus

DMD Agropyron elongatum . ME,DMD

Eurotia Achillea berbersttini .

Agropyron elongatum ceratoides Anabasis anova

ME

ME	%DMD	%ADF	%CP	
/ ± / b,c	/ ± / c,d	/ ± / a,b	/ ± / a,b,c	Plantago lavendolata
/ ± / a	/ ± / a	/ ± / d,e	/ ± / a	Achillea berbersttini
/ ± / b,c	/ ± / c,d	/ ±1/ e,f	/ ± / d,e	Secale montanum
/ ± / a	/ ± / a,b	/ ± / f	/ ± / b,c,d	Eurotia ceratoides
/ ± / b,c	/ ± / c,d	/ ±1/ b,c	/ ± / b,c,d	Medicago sativa
/ ± / e	/ ±1/ f	/ ± / a	/ ± / e,f	Agropyron elongatum
/ ± / d,e	/ ± / e,f	/ ± / b,c,d	/ ± / e,f	Festuca ovina
/ ± / a,b	/ ± / b,c	/ ± / b,c,d	/ ± / a,b	Salvia hypoleuca
/ ± / d	/ ± / e,f	/ ± / b,c,d	/ ± / f	Agropyron trichophorum
/ ± / c,d	/ ± / d,e	/ ± / c,d,e	/ ± / c,d,e	Agropyron pectiniformis

NRC

NRC		
1	1	
1	1	
1	1	
1	1	

```
NRC

| (... )

= | * | = |

( )
```

.(

1 1

NRC NRC NRC NRC NRC

NRC

. . .

- 10- Arzani. H, 1994, Some aspect of estimating short-term and long-term range land carrying capacity in the Western Division of New South Wales, Ph-D Thesis, University of New South Wales, Australia. P:308
- 11- Arzani. H, M. Zohdi, E. Fish, G.H. Zahedi Amiri, A. Nikkhah and D.Wester, 2004, Phenological effect on forage quality of five grass species, Journal of Range Management. 57(6).pp.624-629.
- 12- Alison, C.D, 1985, Factors affecting forage intake by range ruminants: A review Journal of Range Management. 38:4:305-311.
- 13- Animal Husbandry Research Institute, 1971. Feed Resources for Livestock in Iran. Technical report. No: 8.
- 14-Bittman et.al, 1999, Long-term effects of fertilizer on Soil Nutrient concentration, yield, forage quality and floristic composition of Hay meadow the Eiffel Mountain, Germany, Journal of Grass and Forage Science, 54(3): 195-207.
- 15- Cook, C.W, Stoddart, L.A.L.E, Harris, L.E, 1952, Determining the digestibility and metabolisable energy of winter range plant by sheep, Journal of Animal Science, Vol.11,578-590.
- 16- Ensminger.M.E and R.O.Parker, Sheep and Goat Science, 1986, by the interstate printers and publishers.Inc.p.83.
- 17- Freer, M, 1981, The control of food intake by grazing animals In: F.H.W. Morally (ed) Grazing Animals. Elsevier, Amsterdam, 105-120.
- 18- Ginti, K.G, Ratry, P.V, 1987, Livestock feeding on pasture NewZealand Society of Animal Production No.10.
- 19- Li,X,R.C.Kellaway, R.L.Ison, And G.Annision, 1992, Chemical composition and nutritive value of mature annual legumes for sheep. Anim. Feed Sci.Technol.37:221-223.
- 20- Maff, 1984, Energy allowances and feeding systems for ruminants. ADAS reference book.HMSO,London, 433.
- 21- Oddy, V.H., Robards, G.E. and Low, S.G., 1983, Prediction of invivo Matter Digestibility from the Fiber Nitrogen Content of a Feed, In Feed information and animal production, eds. G.E. Robards, and R.G. Pakham Commonwealth Agricultural Brueaux, Australia, pp. 395-398.
- 22- Scarnechia.D.L, C.T.Gaskins, 1987, Developing animal-unit-equivalents for beef cattle. Society for Range Management. Abstracts paper40:218.

- 23- Society for Range Management, 1974, Glassary of terms used in range management,3th edition. Compiled by P.W Jacoby.Denver,Colorado,USA.
- 24- Standard Committee Agriculture, 1990, Feeding standards for Australian livestock ruminants, CSIRO.Australia, p:532
- 25- Stoddart, L.A, Smith, A.D and Box, Th.W, 1975, Range Management, 3th dei, MCG raw Hill Book Company, USA.p:433
- 26- Vallentine J.F,2001, Grazing management, 2thdei, Academic Press, New York, p.657.
- 27- Vallentine J.F, 2001, Grazing Management, San Diago, Academic Press.p.550.
- 28- Van Soest, P.J, 1982, Nutritional ecology of The ruminant books, Ins. Corvallis, p.336.
- 29- Vision, A, 1959, Grass productivity. Philosophical Library, New York, pp.338-349.
- 30- Yong, B.A, J.L.Corbett, 1972, Maintenance energy requirement of grazing sheep in relation to herbage availability, Icaloria metric estimates. Australian Journal of Agricultural Res,23, p: 23-57.

Determination of animal unit and daily animal requirement for Sangsary sheep breed

H. Arzani*1, A. Nikkhah², H. Azarnivand³, Z. Jafarian Jelodar⁴ and M. Ghorbani⁴

Professor, Faculty of Natural Resources, University of Tehran, I. R. Iran

Professor, Faculty of Agriculture, University of Tehran, I. R. Iran

Associate Prof, Faculty of Natural Resources, University of Tehran, I. R. Iran

Ph.D. student, Faculty of Natural Resources, University of Tehran, I. R. Iran

(Received 2005 August 09, Accepted 2008 March 09)

Abstract

More than 27 sheep breeds graze on Iran's rangelands. For estimation of grazing capacity in each region it is necessary to determine animal requirement based on forage quality and animal unit weight of dominant sheep breed. In present study animal unit weight of Sangsary breed was investigated. Two herds were selected. Fourty head animals including 15 three and 15 four years' old ewes, 5 three and 5 four years old rams were weighed in lowlands. Weight of animal unit was 36.98 kg and animal unit equivalent for rams, 6 and 3 month old lambs obtained 1.31, 0.64, 0.42 respectively. Two season winter and summer, sex of animals (ewes and rams) and two herds were significantly differed (p<0.05). For determination of forage quality 5 samples that each was made from 5 individual plants collected. Crude protein, acid detergent fiber, dry matter digestibility and metabolisable energy were estimated for 6 species from highland and 12 species from lowlands. According Tukey test forage quality significantly differed between species (p<0.05). This showes that animal requirement should be determined based on forage quality of available forage to animals. Requirement of animal grazing on rangeland is more than house keeping animals. So in this research considering environmental conditions and distances that animal had to walk everyday %50 was added to animal requirement calculated using either NRC tables or MAFF equation. The result showed that animal requirement in highland and lowland based on NRC tables were 1.00 and 1,04 kg and according to MAFF eqution were 0.90 and 0.92 kg dry matter respectively.

Keywords: Range, Animal unit, Animal unit requirement, Forage quality

. E-mail: harzani@ut.ac.ir