اثر زمان و میزان مصرف علفکش گلیفیسویت

\textit{Sorghum halepense}

در کنترل رشد رویشی و زایشی فیقان

زهرا فرخی، حسن علیزادهِ۴ و حمید رحیمیان مهندی۵

۱ و ۲ دانش آموخته کارشناسی ارشد، دانشگاه تهران (کرج) انگلیسی و فارسی، پردیس گیاه‌شناسی و

منابع طبیعی کروبی دانشگاه تهران

(تاریخ دریافت: ۲۱/۸/۲۰۱۲ - تاریخ تصویب: ۹/۷/۲۰۱۳)

چکیده

به منظور بررسی تأثیر زمان و میزان مصرف علفکش گلیفیسویت در کنترل رشد فیقان، سه

آزمایش طی سال‌های ۱۳۸۸ و ۱۳۸۹ در گلخانه، مزرعه و آزمایشگاه گروه زراعت و اصلاح

نیایشات، دانشگاه تهران (کرج) انجام گرفت. آزمایش‌ها به صورت فاکتوریال و در قالب طرح

کامل تصادفی (گلخانه و آزمایشگاه) و بلوک‌های کامل تصادفی (مزرعه) اجرا گردیدند. عوامل

آزمایش شامل مراحل مسمایی (۲ تا ۵ برگ)، گهی‌های خوشه، گل‌های، خوراکی، بذری، شری

دانه و درجه‌های مختلف علفکش گلیفیسویت (بیش از ۲۰۰۵ و ۲۰۰۶) در هكتار در

گلخانه و آزمایشگاه (۱، ۲، ۳، ۴ و ۵) لیتر در هكتار) در

مزرعه بود. میزان خسارت گلیفیسویت بر روی فیقان در گلخانه و مزرعه به وسیله نموده‌

چشمی و تعیین درصد کاهش وزن خشک اندام هواپیمای برهنگی بعد از تیمار، تعیین و رشد مجدد شاخه‌ها از ۱۰ روز بعد از بردشایان‌ها به‌رهشیت شد.

در آزمایشگاه، اثر درجه‌ای اثرانگی شده گلیفیسویت بر روی خصوصیات جوان‌زنی بذری فیقان

بدست آمد. از آزمایش‌های گلخانه‌ای در دو مراحل گلدی و شری دانه بررسی شد. نتایج

نشان داد که در گلخانه، تیمار علفکش کیش در مراحل ۳، ۴ و ۵ برگی یا در ۲۰۲۴ لیتر در هکتار

بهترین کنترل اندام هواپیمای قبیل را فراهم می‌کرد. در مزرعه، نتایج تا حدی مشابه گلخانه بوده

و مراحل ۳، ۴ و ۵ برگی از نظر کنترل چشمی مناسب‌ترین مراحل کاربرد علفکش گلیفیسویت اما

از نظر کاهش وزن خشک اندام هواپیمای مراحل گلدی‌های مباس‌تر بود. مراحل گلدی از نظر

کنترل رشد مجدد بزرگ‌ترهای در هر دو مکان مناسب‌تر بوده و در مراحل شکسته‌گلیفیسویت از این

نظر نسبت به دهواپیمای کامل بهتر عمل نمودند. در آزمایشگاه، نیز مراحل گلدی‌های از نظر کنترل

رشد رایشی قبیل بهترین مراحل محسوب شده و در ۲ لیتر در هکتار گلیفیسویت در هی در مراحل

بیشترین کاهش را در خصوصیات جوان‌زنی پذیر باعث شد. نمود کلی در آزمایش‌های انجام

شد. مراحل گلدی از نظر کنترل روش‌های زایشی بهترین مراحل برای کنترل قبیل به شمار

رفته و خسارتهای قابل توجهی نسبت به مراحل دیگر فراهم می‌کند.

واژه‌های کلیدی: اثر زمان، میزان مصرف علفکش، گلیفیسویت، قبیل، رشد مجدد، بزرگ‌تر، گلدی، شکسته‌گلیفیسویت.

مقدمه

بیانگی، علت، وکی‌ای‌کی از ده

ـ مصرف علفکش در گیاه‌های زراعی در ۳۰ کیلوی زراعی در ۵۰ کشور مختلف

جهان بیانگی. در ایران نیز گونه علف‌های دارای

E-mail: malizade@ut.ac.ir

Tel: ۹۱۳۲۶۶۱٥۵۰

نویسنده: مسعود حسن علیزاده *
آزمایش پرتوهای بیش از حد از مولکول‌های کربن دی‌اکسید، اکسیژن، و هیدروژن در گازهای ترکیبی که شامل کربنها و هیدروژن‌ها می‌باشند می‌تواند به پرداخته‌برداری و تغییرات در محیط زیست در پی آمده باشد. این پرداخته‌برداری باعث کاهش میزان هیدروژن در اکسیداتور‌های کربنی می‌شود که باعث کاهش می‌
زیرزمینی توسعه می‌باند، بنابراین در این آزمایش‌ها بر خورداری به منظور تعیین نقش تیمارها در کاهش رشد مجدد موردنی رسته گرو‌ورزندی، توانایی رشد مجدد ساقه از ریزبوم با تعیین وزن اندازه‌ای جدید تولید شده در ژو (روز بعد از برداشت اندازه‌های نهایی) مورد بررسی قرار گرفت. بنابراین این آزمایش، به منظور تعیین بهترین زمان و میزان مصرف گلیفسیت بر روی قیاک شهید آزمایشی در سال‌های 1387 و 1388 در کلنخانه، آزمایشگاه و مزرعه تحقیقاتی پردیس کشاورزی و منابع طبیعی کرگ انجم داد.

در این آزمایش، به صورت فاکتوریل در قالب طرح کامل تصادفی در چهار تکرار در گلخانه گرو زراعت و اصلاح پنانات پردیس کشاورزی و منابع طبیعی دانشگاه تهران به صورت گلخانه‌ای انجم شد. فاکتور اول، مرحله رشدی قیاک در 5 سطح (3تا 6 گرمی) آنستی. خوشه، گلخانه، شیری دانه و فاکتور دوم در علل گلیفسیت بر روی سطح 2 ساله (0.1/0.05/0.15 < 64) الی 4.3/6.2/10/10.5 در هر طبقه. این آزمایش با ارزیابی دامنه مصرف گردد. بنابراین منظور قیاک در خرداد ماه 1387/1388 از منابع حیاتی پرده کشاورزی و منابع طبیعی کرگ جمع‌آوری و به طبقات با طول (1 سانتی‌مری) و تعداد گره یکسان (2گره) تقسیم و در کلنخانه‌های 7 لیتری حاوی ترکیب 13:12 شن، ماسه و کود دامی کاشته شدند و آب‌بار گیاهان بر حسب نیاز انجام شد. زمانی که حداکثر 50٪ گیاهان به مرحله سپاسایشی مورد نظر رسیدند تیمار سپسایشی اعمال شد. مرحله نهایی به کمک دستگاه فاکتور گلیفسیت در افزونی سولفات‌آمونیوم به میزان 20 گرم در بو سطح‌های زیر سوپریشی ب و روش استفاده شد. میزان خشکت جنسی وارد قیاک به 4 هفته پس از سپاسایشی به صورت فصلی و با روش استاندارد اروپایی (EWRC) به عنوان شدید درصد کاهش وزن خشک گلخانه این گیاهان نسبت به شاهد محاسبه شد. بنابراین منظور از سطح خاک گلدان، کم‌تر در سنگه ریز در گردن در اون 40/70 درجه سانتی‌گراد با مدت 24 ساعت، توزیع شدند. ریزومی نیز از خاک خارج و به دقت شسته شدند، سپس دو ماه با شرایطی مرطب خشک شدند و وزن خشک شد.

در نتیجه این آزمایش، کنترل عفونت‌های هرز چندساله، بدون اندام‌های هوایی مورد توجه قرار می‌گیرد در حالی که این گونه عفونت‌های هرز از طریق اندام‌های
رشد مجدد) بیانگر تفاوت معنی دار بین تیمارها بود.

خسارت چشمی
میزان خسارت وارده به قیفی بین مراحل سپاسی
در بیشترین در ۴ لیتر در هکتار (۴۸٪) از ۱۰۰ درصد و در کمترین در ۱ لیتر در هکتار) از ۲۵٪ از ۱۰۰ درصد معیاره. بیا افزایش دهی گلیفوسيت، تفاوت بین
مراحل زدنی از ۵ رفته به طوری که در این لیتر در هکتار میزان خسارت وارد به قیفی در ۳ مراحل رشدی
۳ تا ۵ گری (۹ تا ۹ گری، گلیفه، با یکدیگر برای و
به پیمان ۷ درصد بود (شکل ۱-ف). همچنین په‌رمحز گلیفو و
تخم‌های ایجاد خسارت به قیف، مرحله گلیفه و سپس ۷ تا ۹ گری
بود. مطالعه دبیری نیز مناسبترین زمان برای سپاسی
با گلیفوست مرحله گلیفه و درست پس از آن زمان
داده ول میزان قابل قبولی از گلیفه با
کاردوب علفکشی در اولی فصل به دست آوردهاند
(Diyant et al., 2007).

وزن خشک ریزوم
در مرحله ۳ تا ۵ گری در تمامی دزهای خسارت
نسبت به مراحل دیگر بیشتر و حداکثر ضرر مربوط
به ۵۱ لیتر در هکتار (۹۸٪) بود (شکل ۲). این
مطالعه اختلافات در این لیتر با استفاده از
دزهای بالاتر گلیفوست هم اضافه گردید. علاوه بر
این، به دلیل شرایط مورد، امکان خروج کامل ریزوم و
اندازه‌گیری وزن آن ممکن نبود.

تجزیه آماری
کلیه صفات اندازه‌گیری شده به صورت درصد از
شاده (تیمار نشده) محاسبه و سپس مورد تجزیه و
تخلیل قرار گرفتند. تجزیه واریانس داده‌ها با نرم‌افزار
SAS نسخه 9/1 انجام شد، قبل از تجزیه واریانس، نرمال
سنجش Minitab
بودن توزیع داده‌ها با استفاده از نرم‌افزار
Minitab

۱۴ بررسی شد.

مقایسه میانگین‌ها با آزمون Duncan
در سطح

۱۰۰/۱، ۵۰/۱ و ممکنها با استفاده از نرم‌افزار Excel

نتیجه‌گیری به

آزمایش اول

نتایج تجزیه واریانس بر صفات اندازه‌گیری شده

خسارت چشمشی. وزن خشک اندازه‌گیری شده و

وزن خشک اندازه‌گیری
مقایسه میانگین‌ها نشان داد که حداکثر خسارت
مربوط به در ۲ لیتر در هکتار در مرحله ۳ تا ۵ گری
بوده (۹۸٪) که البته در ۴ لیتر در هکتار (۹۶٪)
مربوط به همین مرحله تعیین شده است

(شکل ۱-ج).
در بررسی دیگری نیز کنتل علی قیاق را با استفاده از دزهای کاهش یافته علفکش در مراحل ۳ تا ۵ بردی توصیه کرده‌اند (Rosales-Robles et al., 1999).

\[h = 6 + 9 \]

شکل ۱ دیدار رشد مشابه و زنخش شکاری (ب) درصد کاهش وزن و شکار اندام هواپی نسبت به شاهد (ج) قیاق در مراحل مختلف سپیاشی با دزهای ۲.۱ و ۴ لیتر در هکتار کلیفوستی ۴ هنگام بعد از تبیان در شرایط گلخانه.

خطوط عمودی نشان دهنده خطای استاندارد تیانگی می باشند (۴).}

رشد مجدد مقایسه میانگین‌ها. کمترین میزان رشد مجدد را در مرحله گلدهی و در ۱۰۲ لیتر در هکتار (۱/۰۹ گرم) به ازای هر گلدان) نشان داده و بین دزهای مختلف کلیفوستی در این مرحله تفاوت معنی‌داری مشاهده نشد (شکل ۲). همچنین نتایج نشان داد که در دزهای
آزمایش دوم
در این آزمایش جوانانی بودت به دست آمده از گیاهان تیمار
شده در مراحل گلدیه و نیز تخیری دانه در گلخانه، مورد
آزمایش های پیش از نظر تعداد، وزن، درصد جوانئی و
قارن گرفته و نتایج زیر بدست آمد. تعداد و وزن به
سالم و درصد جوانئی: میزان این صفات در بندور
گیاهانی که در مراحل گلدیه سپرایش شده بودند کمتر
از مراحل شیری بوده ولی از نظر آماری تفاوت معنی‌دار
در بین آن‌ها مشاهده نشده است. جوانئی: مقایسه
میانگین‌ها نشان داد کمترین سرعت جوانئی بندور
مربوط به 1 لیتر در هکتار در مرحله گلدیه بوده که
اولین به داشت در مراحل تغییر معنی‌داری نداشت. پیش‌تر
سرعت جوانئی هم مربوط به 1/5 لیتر در هکتار در مرحله
شیری دانه می‌باشد (شکل 3-الف). حصارت در بندور
می‌باشد که علت ایجاد سمیت پیشرفت در گیاه
خسارت بیشتری را وارد آورده است.

شکل 3: درصد سرعت جوانئی (الف) و درصد گلدیه (ب) به داشت گیاهان تیمار شده در مراحل مختلف سپرایش نسبت به شاهد با
قیامی در هکتار گلخانه. خطوط عمودی نشان دهنده خطای استاندارد میانگین می‌باشند (P=0.01).
آزمایش سوم
به منظور بررسی تیمارهای اعمال شده در گلخانه و در شرایط طبیعی، آزمایش‌های فوق در شرایط مزرعه نیز انجام گرفت.

خسارت چشمی
بیشترین درصد خسارت مربوط به دز ۸ لیتر در هکتار و در مراحل ۳ تا ۵ تا ۹ گرم و گل‌های بود (شکل ۴-الف). در ۲ لیتر در هکتار در مراحل ۲ تا ۵ لیتر نیز خسارت مشابه و بدون اختلاف معنی‌داری را ایجاد کرد. در ۵ لیتر در هکتار به دلیل کاهش مصرف علف‌کش از نظر کاربردی برای کنترل این

![شکل ۴ درصد خسارت چشمی (الف)، درصد کاهش وزن خشک اندام هوایی (ب)، وزن خشک اندام هوایی تولید شده بعد از تیمار (ج) قابل نسبت به شاهد در مراحل مختلف سپری‌می با دزهای ۶ و ۸ لیتر در هکتار کابوسیت ۴ هفته بعد از تیمار در شرایط مزرعه است. خطوط عمودی نشان دهنده خطای استاندارد میانگین متغیر باشد (۳-۸۰۰).](image)
وزن خشک اندام هوایی

بیشترین درصد کاهش وزن خشک مربوط به در 4 لیتر هکتار در مرحله گلدهی (1987/78) بود. در مرحله گلدهی، میزان خسارت وارده در تمامی دردها نسبت به سایر مراحل سپشاتی بیشتر بود و بین دردها مختلف از این نظر تفاوت معنی‌داری مشاهده نشد (شکل 4-ب).

این مرحله در چندسالها به دلیل حشره بروزه به سمت اندام‌های ذخیره‌ای در کنار سپیمیایی با علی‌گفت‌های سیستمیک تکنیک گلیفکسیست از اهمیت بزاید برخوردار است. در تحقیق دیگری نیز، تائید مشاهده از تأثیر کاربرد گلیفکسیست بر روی علی‌گفت‌های جناد سالنگ در مرحله گلدهی گزارش شده است (et al., 2007).

رشد مجدد در تمامی ده‌ها، سپشاتی در مرحله گلدهی موثرتر بوده و کمترین میزان رشد مجدد ساقه‌ها مربوط به این مرحله بود (شکل 4-ج). کاربرد دردهای شکسته گلیفکسی، تائید بهتر نسبت به دردهای کامل داشت و رشد مجدد از گیاهان تیماره بیشتر کاهش داد.

چون کاربرد در شکسته، علاوه بر افزایش سرمایه در گیاه باعث از بین بردن چندانه و در شمال گیره نشده‌ای حتی در نتیجه کاربرد علی‌گفتی در گیاهان گشته، شکسته، از نظر قابلیت و جدایی از همدیگر، این سیستم می‌تواند باعث رشد مجدد در زیست‌سنجی ریزومه در گلیفکسیست و مرزه مرحله گلدهی را در تمامی ده‌ها نسبت به مراحل دیگر در کاهش رشد مجدد ساقه‌ها از ریزوم شکسته و از این دیدگاه باعث افزایش کاهش نسبت به دردهای کامل داشت.

Granelli et al., 1992

References

