نفرشی محیط زیست طبیعی، مجله متنای طبیعی ایران. دوره 15، شماره 3، 1391، از صفحه 393 تا 401

گزارش وجود 1906 Artemia franciscana, Kellogg

سیده صفایی ۱،۲،۳ رامین منافر ۴، و آفاق فلاته‌ی ۵

۱ گروه زیست شناسی، دانشکده علوم، دانشگاه ارومیه
۲ پژوهشگاه آرتمیا و جانوران آبی، دانشگاه ارومیه
۳ گروه شیلات، دانشگاه آزاد اسلامی، واحد بندرعاس

(تاریخ دریافت: 1391/10/23 – تاریخ تصویب: 1391/7/13)

چکیده

آرتمیا سخت بوست کوچکی با ارتش اقتصادی بالاست که مدل تحقیقاتی بسیار مناسب برای محققان می‌باشد. این موجود با تحلیل محدوده‌ی متنوع شریائی در استان فارس یکی از زیستگاه‌های طبیعی آرتمیا پارتونوژ در ایران می‌باشد. یک توجه به وجود یک آرتمیا جنگی ناشناخته در این دریاچه، گونه این جمعیت غیر بومی از مورد تحقیق قرار گرفت. به دنبال مشاهده ۴ مارکر مولکولی مختلف شامل دو HSP26 و COI به روش نوین نواحی PCR-RFLP و Na/K ATP-ase فن آتالیژی‌های انگلی سه روش پاتوژنیک و SOS بیولوژی جهت شناسایی یک گونه ناشناخته، این نوع گونه را به عنوان شناسایی نیودوم که از نظر نویسنده مورد پاتوژنیک شناسایی یکی گونه سوزانده نوع زنی کی زیادی با نمونه‌های نیودوم شده در باکتری زنی دارد. A. franciscana

واژه‌های کلیدی: آرتمیا، پارتونوژ، دو جنگی، دریاچه طشک

E-mail: s.shafaie87@yahoo.com

تلفن: ۴۴۴-۳۱۲۶۴۷۶۷۹
فکس: ۴۴۴-۳۱۲۶۴۷۶۷۹
Geddes, 1980; Browne et al. (HSPs) in Artemia franciscana. (Kellogg 1906).

Asaadi et al., (2011) noted that the use of brine shrimp as a source of Courageous yellow orthoforologous is facilitated by the high osmotic pressure and the ability of the shrimp to retain water. In addition, the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. However, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Browne et al. (1987) reported that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Abatzopoulos et al. (2006) and Asem et al. (2009) found that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Van Stappen et al. (2008) and Agh et al. (2009) reported that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Geddes et al. (1980) and Browne et al. (2002) noted that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Asaadi et al. (2011) noted that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Browne et al. (1987) reported that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Abatzopoulos et al. (2006) and Asem et al. (2009) found that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Van Stappen et al. (2008) and Agh et al. (2009) reported that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Geddes et al. (1980) and Browne et al. (2002) noted that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Asaadi et al. (2011) noted that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Browne et al. (1987) reported that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Abatzopoulos et al. (2006) and Asem et al. (2009) found that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.

Van Stappen et al. (2008) and Agh et al. (2009) reported that the use of brine shrimp in the diet of Artemia can significantly increase the survival rate of the shrimp. In addition, the use of brine shrimp in the diet of Artemia can also reduce the growth rate of the shrimp. This is because the shrimp require a high concentration of minerals and vitamins to support their growth. Furthermore, the use of brine shrimp in the diet of Artemia can also increase the risk of contamination.
نقش مهمی در افزایش سازش فیزیولوژیکی موجود زنده
در مواجهه با شرایط ناگوی زمستان دارد (Clegg et al., 2000) و در آرتیمیاها که یک دوره مویقرا را در یک زیستگاه جدید و متغیر تجربه کرده اند بسیار تغییر می‌یابند (Bossier et al., 2009) همچنین این‌ها است که نسبت برونتین‌های این خانواده نقش مهمی در تحمل استرس و همچنین ایجاد سازش مولکولی ایفا می‌کنند (Feder and Hofmann, 1999; Prohaszka and Fust, 2004).

مواد و روش کار

سیستم آرتیمیا در تیر ماه سال ۱۳۹۰ از دریاچه طسک در استان فارس با مختصات N ۵۰°۰۷’ و E ۶۰°۰۹’ برداشت شدند (شکل ۱). این سیستم‌ها پس از ریختن و راه‌حل‌سازی در شرایط استاندارد آزمایشگاهی که شامل آب دریاچه ارومیه رقيق شده با شوری ۳۵ گرم در لیتر، دمای ۲۷°C و pH=۸ مجزه به سیستم هواده و نور کافی تخم گذشته شدند (Lavens and Sorgeloos, 1996) لاروهای این‌ستار ۱ پس از شماره به تعداد ۵۰۰ تاپیوس به درون پتری‌های یک لیتری واجد آب شور ۴۰ گرم در لیتر در ۴ تکار منفصل شده و به مدت ۲۰ روز با ترکیبی از محمر غنی شده با اسید چرب و جلبک تک سولوی برورش یافتند (Coutteau et al., Dunaliella salina, 1992).

نقش مهمی در افزایش سازش فیزیولوژیکی موجود زنده

در مواجهه با شرایط ناگوی زمستان دارد (Clegg et al., 2000) و در آرتیمیاها که یک دوره مویقرا را در یک زیستگاه جدید و متغیر تجربه کرده اند بسیار تغییر می‌یابند (Bossier et al., 2009) همچنین این‌ها است که نسبت برونتین‌های این خانواده نقش مهمی در تحمل استرس و همچنین ایجاد سازش مولکولی ایفا می‌کنند (Feder and Hofmann, 1999; Prohaszka and Fust, 2004).

مواد و روش کار

سیستم آرتیمیا در تیر ماه سال ۱۳۹۰ از دریاچه طسک در استان فارس با مختصات N ۵۰°۰۷’ و E ۶۰°۰۹’ برداشت شدند (شکل ۱). این سیستم‌ها پس از ریختن و راه‌حل‌سازی در شرایط استاندارد آزمایشگاهی که شامل آب دریاچه ارومیه رقيق شده با شوری ۳۵ گرم در لیتر، دمای ۲۷°C و pH=۸ مجزه به سیستم هواده و نور کافی تخم گذشته شدند (Lavens and Sorgeloos, 1996) لاروهای این‌ستار ۱ پس از شماره به تعداد ۵۰۰ تاپیوس به درون پتری‌های یک لیتری واجد آب شور ۴۰ گرم در لیتر در ۴ تکار منفصل شده و به مدت ۲۰ روز با ترکیبی از محمر غنی شده با اسید چرب و جلبک تک سولوی برورش یافتند (Coutteau et al., Dunaliella salina, 1992).

نقش مهمی در افزایش سازش فیزیولوژیکی موجود زنده

در مواجهه با شرایط ناگوی زمستان دارد (Clegg et al., 2000) و در آرتیمیاها که یک دوره مویقرا را در یک زیستگاه جدید و متغیر تجربه کرده اند بسیار تغییر می‌یابند (Bossier et al., 2009) همچنین این‌ها است که نسبت برونتین‌های این خانواده نقش مهمی در تحمل استرس و همچنین ایجاد سازش مولکولی ایفا می‌کنند (Feder and Hofmann, 1999; Prohaszka and Fust, 2004).

مواد و روش کار

سیستم آرتیمیا در تیر ماه سال ۱۳۹۰ از دریاچه طسک در استان فارس با مختصات N ۵۰°۰۷’ و E ۶۰°۰۹’ برداشت شدند (شکل ۱). این سیستم‌ها پس از ریختن و راه‌حل‌سازی در شرایط استاندارد آزمایشگاهی که شامل آب دریاچه ارومیه رقيق شده با شوری ۳۵ گرم در لیتر، دمای ۲۷°C و pH=۸ مجزه به سیستم هواده و نور کافی تخم گذشته شدند (Lavens and Sorgeloos, 1996) لاروهای این‌ستار ۱ پس از شماره به تعداد ۵۰۰ تاپیوس به درون پتری‌های یک لیتری واجد آب شور ۴۰ گرم در لیتر در ۴ تکار منفصل شده و به مدت ۲۰ روز با ترکیبی از محمر غنی شده با اسید چرب و جلبک تک سولوی برورش یافتند (Coutteau et al., Dunaliella salina, 1992).
در جدول 1 خلاصه شده است. محصول PCR از آزمایش‌ها با استفاده از مولکول‌های الکتروفورز Zl آگازر 2٪ و دستگاه GeneFlash برای دریافت زنده مورد بررسی قرار گرفت. بر اساس نتایج محصول Na/K ATP-ase رFLP، قطعه ازون Zl 1169 آزمایی TrulII و قطعه Zn 1246 توسط آزمایی Na/K ATP-ase براساس دستورالعمل کارخانه به داده شده و بر روی زنده آزمایی 2٪ بررسی شدند. به منظور تعیین توالی زنده‌ای COI و HSP26، 4 نمونه از هر دو از آزمایی با کیفیت بالا داشتهند جهت تعیین سکانس به شرکت Folmer et al., 1994; Qui et al., 2006 سینانژ-ایران ارسال شدند (Jafar et al., 2011).

3. RFLP: Restriction Fragment Length Polymorphism

<table>
<thead>
<tr>
<th>آزمایش‌های مورد استفاده در این تحقیق</th>
<th>برنامه PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na/K ATP-ase</td>
<td>94°C 2 Min</td>
</tr>
<tr>
<td>COI</td>
<td>95°C 3 Min</td>
</tr>
<tr>
<td>12S-16S</td>
<td>95°C 2 Min</td>
</tr>
<tr>
<td>HSP 26</td>
<td>94°C 2 Min</td>
</tr>
</tbody>
</table>

نتایج

بررسی پانده‌های الکتروفورز محصول PCR بررسی باندهای الکتروفورز محصول PCR رابطه بازی از Zn سیتوکروم اسیداز و نیز قطعه 717 جفت بایز مربوط به Zn شوک حرارتی نشان داد. مطلوبی کاملاً بین سایز باندهای تولید HSP26 از شده گزارش‌های موجود برای تفسیر نتایج است. PCR براساس نتایج از Blast نشان داد که از GenBank نمود که آزمایی دو جنسی فوق متعلق به گونه آزمایی 2٪ خاصیت در از A. franciscana می‌باشد لیکن بیش از A. franciscana دو جنسی آمریکا می‌باشد لیکن بیش از 2٪ خاصیت در از A. franciscana می‌باشد.
پیشینهی گوهاهای تمايز زنتیکی و گسترش تنوع در جنین موجود با خطای ناجی می‌بدارد استفاده شود (Chow et al., 2006).

بحث

مطالعه حاضر اولین گزارش مماثلی به لحاظ نویشنده و عنوان یک گونه دو جنسی جدید در دریاچه طنکازی از استان فارس محسوب می‌شود. پیش از این بررسی‌های علمی دقیقی وجود R. franciscana و R. sinica در مناطق ایران (زیستگاه‌های طبیعی آزمایشگاهی) مورد تایید قرار داده بودند (Manaffar et al., 2008). در طی این تحقیق، سه ش، از نتایج‌های جدیدی که در طول سال‌های اخیر به
اختلاف همان‌طور که قبل از نیز توصیح داده شد، می‌تواند در اثر حضور موفق آرتمیای دو جنسی در داخل دریاچه طبیعی حاصل شده باشد. این تاثیر بی‌پدیده‌باور و تغییر رانش زنگی نیز تأثیر بیانده (founder effect) و گرفتاری راه‌های زنگی را به‌طور نامناسب تبدیل می‌نماید (генریک دریاچه). این سازش مولکولی ایجاد شده به‌طور صحیحی که باشد باعث شده‌باشد نه که این جمعیت جدید نتیجه‌ای مقیاسی خود را در دریاچه طبیعی سازگار نماید.

اما در حضور شیوع احتمالی انتقال این گونه آرتمیای به دریاچه طبیعی باعث اشکال نموده و وجود یابد تخم آرتمیای عملی تاست. اینه انتقال می‌ایست (Persoonse and Sorgeloos, 1980) میلادی. تاکنون اسناد عموماً مسئول پراکنش آرتمیای این واحده به‌طور لازم به ذکر است که این آرتمیای بارترین سطح انطباع‌برداری فتوتیپ و زنگی‌کی را نشان داده و با سرعت زاد و ولد بسیار بالا، سطح سریع به‌ویژه سخت و تناقض موجود در می‌باشد. انتقال مولکولی به‌طور موفقی در آسیا، اروپا و آمریکا توزیع شده و اغلب موجب نتیجه‌ای منفی است (Amat et al., 1992; Camara et al., 2001). پگج، 2002; Mura et al., 1998)

سپاسگزاری
از مسئول‌های خالی راضیه یک ترمین کارشناس محتوم آزمایشگاه زنگی پژوهشکده آرتمیا صمیمانه تشکر و قدردانی می‌گردد.
References

Report for the Occurrence of \textit{Artemia franciscana} Kellogg 1906 in Tashk Lake, Iran

S. Shafaie1,2*, S. Zare1, R. Manaffar2 and A. Falahati3

1 Department of Biology, Faculty of Science, Urmia University, Iran
2 Artemia and Aquatic Animals Research Institute, Urmia University, Iran
3 Fisheries Branch, Islamic Azad University, Bandar abass, Iran

(Received: 25-02-2012 – Accepted: 22-09-2012)

Abstract

\textit{Artemia}, a small crustacean, with high commercial value is a valuable model organism for researchers. This creature by tolerating extreme range of different environmental conditions is dispersed to more than 600 and 18 sites over the world and Iran, respectively. Tashk Lake is one the natural parthenogenetic \textit{Artemia} habitat in Iran. Due to occurrence of an unknown bisexual \textit{Artemia} in Tashk Lake, the species of this un-endemic \textit{Artemia} was researched. In this regard, four different molecular markers as Na/K ATP-ase, 12S-16S by PCR-RFLP technique and COI and HSP26 by sequencing and subsequent Genbank data were studied. The conducted analyses as long as emphasizing to ability of molecular techniques for identifying unknown species characterized the new population as \textit{A. franciscana}. These analyses also revealed a molecular diversity between the sequenced genes with the data found in the Genbank.

Keywords: \textit{Artemia}, parthenogenetic, Bisexual, Tashk Lake