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Abstract 

In this paper, we present a new path-following interior-point algorithm for 
*( )P κ -horizontal linear complementarity problems (HLCPs). The algorithm uses 

only full-Newton steps which has the advantage that no line searchs are needed. 
Moreover, we obtain the currently best known iteration bound for the algorithm 

with small-update method, namely, (1 ) log nO n κ
ε

 + 
 

, which is as good as the 

linear analogue. 
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Introduction 

Given , n nQ R ×∈  and nb ∈ , the horizontal linear 
complementarity problem (HLCP) is to find a pair 

2( , ) nx s ∈  such that 

, ( , ) 0, 0. ( )TQx Rs b x s x s P+ = ≥ =  

The standard (monotone) linear complementarity 
problem (SLCP or simply LCP) corresponds to the case 
where R I= −  and Q  is positive semidefinite. 

We say that ( )P  is a ( )P κ∗ -HLCP if 

0

(1 4 ) 0, , ,n
i i i i

i I i I

Qu Rv

u v u v u vκ
+ −∈ ∈

+ =

⇒ + + ≥ ∀ ∈∑ ∑ 

 (1) 

where κ  is nonnegative constant and I + =
{ : 0}i ii u v >  and { : 0}i iI i u v− = < . If the above 
condition satisfied, then we say that the pair ( , )Q R  is a 

* ( )P κ -pair and write *( , ) ( )Q R P κ∈ . For  0κ = , 

* ( )P κ −HLCP is called the monotone HLCP. 
There exist many approaches for solving the ( )P κ∗ -

HLCPs. Among them, the interior-point methods 
(IPMs) gained more attention than other methods. IPMs 
that were initiated by Karmakar for linear optimization 
(LO) problems, extended by many researchers for 
convex quadratic optimization (CQO) and the standard 
(monotone) linear complementarity problem (SLCP) 
and achieved plentiful and beautiful results [1-4]. 
Theoretically, HLCP can be solved by using any 
algorithm for SLCP [5], but directly solving HLCP is a 
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better choice than using any algorithm for SLCP to 
solve the HLCP. Close connection between LO, CQO, 
SLCP and HLCP cause the extension of some IPMs 
from LO, CQO and SLCP to HLCP. For instance, 
Gonzaga et al. [6, 7] studied the largest step path 
following algorithm for monotone HLCP and showed 
the fast convergence of the simplified path following 
algorithm. Mizuno et al. [8] proposed the (MTY) 
predictor-corrector method that was the first 
polynomial-time and superlinear convergent IPM for 
general LO, with precisely ( )O nL  iteration 

complexity.(cf. [8]). The MTY method generalized to 
SLCP in [9] and the resulting algorithm has ( )O nL  

iterations. Also in [10] the MTY method has been 
generalized to HLCP and a class of corrector-predictor 
IPMs for solving * ( )P κ -HLCP has been proposed 
therein. Huang [11] proposed a high-order feasible 

interior-point method for HLCP with 0logO n
ε
ε

 
 
 

 

iterations. Monteiro et al. [12] studied the limiting 
behavior of  the derivatives of certain trajectories 
associated with the monotone HLCP. Some other 
relevant references can be found in [13, 14]. It should be 
noted that all most known polynomial various of IPMs 
used the so-called central path as a guideline to the 
optimal set, and some various of the Newton method to 
follow the central path approximately.  However there is 
still a gap between the practical behavior of these 
algorithms and the theoretical performance results with 
respect to the update strategies of the duality gap 
parameter in the algorithm. The so-called large-update 
IPMs have superior practical performance but with 
relatively weak theoretical results. While the so-called 
small-update IPMs enjoy the best known worst-case 
iteration bound but their performance in computational 
practice is poor. This gap was reduced by Peng et al. 
[15] who introduced the so-called self-regular barrier 
functions based on IPMs for LO and semidefinite 
optimization (SDO). See also Salahi et al. [16]. Bai et 
al. [17] and  Amini et al. [18] who presented IPMs 
based on a new class of non-self-regular kernel 
functions for LO and * ( )P κ -linear complementarity 
problems and also obtained the same best known 
iteration bounds for the algorithms with large- and 
small-update methods as they are in [15]. In very 
recently, Mansouri et al. [19-21] presented the first full-
Newton step IPM for Linear Complementarity problems 
(LCPs) and ( )P κ∗ -HLCPs, which are an extension of 
the work for linear optimization [22-24]. 

In this paper we present a new feasible primal-dual 

IPM with full-Newton steps for HLCP problems. We 
prove that the complexity of our algorithm is 

(1 ) log nO n κ
ε

 + 
 

 iteration, which coincides with the 

best known iteration bound for feasible IPMs . 
The notations used throughout the paper is rather 

standard: capital  letters denote matrices, lower case 
letters denote vectors, script capital  letters denote sets, 
and Greek letters denote scalars. All vectors are 
considered to be column vectors. The components of a 
vector nu ∈  will be denoted by , 1, ,iu i n=  . The 
relation 0u >  is equivalent to 0, 1, ,iu i n> =  , while 

0u ≥  means 0, 1, ,iu i n≥ =  . We denote 
{ : 0}n nu u+ = ∈ ≥   and { : 0}n nu u++ = ∈ >  . If 
nu ∈ , then ( )U diag u=  denotes the diagonal matrix 

having the components of u  as its diagonal entries. If  
, nx s ∈ , then  xs  denotes the componentwise 

(Hadamard) product of the vectors x  and s . 
Furthermore, e  denotes the all-one vector of length n . 
The  2 -norm and the infinity norm for vectors are 
denoted by   and 

∞
 , respectively. We denote the set 

of feasible points of the HLCP by 
2{( , ) : },nF x s Qx Rs b+= ∈ + =  (2) 

and the set of strictly feasible (or interior) points by 
0 2{( , ) : },nF x s Qx Rs b++= ∈ + =  (3) 

and the solution set of HLCP by 
* * * * *{( , ) : 0}.F x s F x s= ∈ =  (4) 

Throughout this paper it is assumed that *F  is not 
empty, i.e. ( )P  has at least one solution. 

Materials and Methods 

1. Feasible Full Newton Step IPMs and Central Path 

Solving HLCP is equivalent with finding a solution 
of the following system of equations: 

, 0,

0, 0,

Qx Rs b x

xs s

+ = ≥

= ≥
 (5) 

where the first constraint represents feasibility and the 
second is the so-called complementarity condition. 

The basic idea of IPMs is to relax the 
complementarity condition by the so-called centering 
condition xs eµ= , where µ  may be any positive 
number. This yields the following parameterized 
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system: 

, 0,

, 0,

Qx Rs b x

xs e sµ

+ = ≥

= ≥
 (6) 

In [25] it has been shown that if HLCP satisfies the 
interior-point condition i.e. there exists ( , ) 0x s >  such 
that Qx Rs b+ = , then the above system has a unique 
solution for each 0µ > . Denote this unique solution by 
( ( ), ( ))x sµ µ , for every 0µ > . Then we call 
( ( ), ( ))x sµ µ  the µ −center of HLCP. The set of µ
−centers (with µ  running through all positive real 
numbers) gives a homotype path, which is called the 
central path of HLCP. If 0µ → , then the limit of the 
central path exists [25] and it yields the optimal solution 
for HLCP. 

2. Definition and Properties of the Newton Step 

IPMs follow the central path approximately. Let us 
describe how this proceeds. A direct application of 
Newton’s method to solve the system (6)  with fixed μ, 
and assuming ( , ) 0x s > , produces the following 
system for the displacement x∆  and s∆ : 

( ) ( ) ,

( )( ) .

Q x x R s s b

x x s s eµ

+ ∆ + + ∆ =

+ ∆ + ∆ =
 

By omitting the quadratic term x s∆ ∆  in the second 
equation, we have the following linear system of 
equations: 

( ),

.

Q x R s b Qx Rs

s x x s e xsµ

∆ + ∆ = − +

∆ + ∆ = −
 

Note that if ( , )x s  is a feasible solution of  HLCP, 
then Qx Rs b+ = . Hence, the above system reduces to 

0,

.

Q x R s

s x x s e xsµ

∆ + ∆ =

∆ + ∆ = −
 (7) 

The new iterates are given by 

,

.

x x x

s s s

+

+

= + ∆

= + ∆
 

3. Proximity Measure 

In the case of a feasible method we call the ( , )x s  

an ε −solution of HLCP if Tx s ε≤ . To measure the 
quality of any approximation ( , )x s  of ( ( ), ( ))x sµ µ , 
we introduce ( , ; )x sδ µ  that vanishes if 
( , ) ( ( ), ( ))x s x sµ µ=  and is positive otherwise. To this 
end we introduce the variance vector of ( , )x s  with 
respect to µ  as follows  

,xsv
µ

=  

where all operations are componentwise. Note that  
.xs e v eµ= ⇔ =  

The proximity meature ( , ; )x sδ µ  is now defined 
by  

11( , ; ) ,
2

x s v vδ µ −= −  (8) 

Note that if ( , ) ( ( ), ( )),x s x sµ µ=  then v e=  and 
hence ( , ; ) 0x sδ µ =  and otherwise ( , ; ) 0x sδ µ > . 

Results 

1. Feasibility and Quadratic Convergence of the 
Feasible Full-Newton Step 

In this section we find a condition for feasibility of 
full Newton steps. We also prove that the value of Tx s  
after one step is less than or equal to ( )2n δ µ+ . We 

also prove that  the full Newton steps are quadratically 
convergent to the target point ( ( ), ( ))x sµ µ . Define 

1 1, , , ,x s
v x v sd d Q QV X R RV S

x s
− −∆ ∆

= = = =  (9) 

where ( ), ( )X diag x S diag s= =  and ( )V diag v= . 
Now we can easily check that the system (7) , which 
defines the search directions x∆  and s∆ , can be 
expressed in terms of the scaled search directions xd  
and sd  as follows: 

1

0,

.

x s

x s

Qd Rd

d d v v−

+ =

+ = −
 (10) 

Now, using (9) and the second equation in (7), we 
have 

( )( )x s x x s s+ + = + ∆ + ∆  
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2

( )

( ).x s x s

xs x s s x x s e x s

xse d d e d d
v

µ

µ µ

= + ∆ + ∆ + ∆ ∆ = + ∆ ∆

= + = +
 

Lemma 1.1 (Cf. Lemma II.45 in [1]) The new iterates 
( , )x s+ + are strictly feasible if and only if x se d d+ > 0. 

Proof: Note that if x +  and s +  are positive, then the 
above equality makes clear that x se d d+ > 0, proving 
the ’only if ’ part of the statement in the lemma. For the 
proof of the converse implication, we introduce a step 
length [0,1]α ∈ , and we define 

, .x x x s s sα αα α= + ∆ = + ∆  

We then have 0 1,x x x x += =  and similar relations 

for .s  Hence we have 0 0 0x s xs= > . We may write 

2

( )( )

( )

x s x x s s

xs s x x s x s

α α α α

α α

= + ∆ + ∆

= + ∆ + ∆ + ∆ ∆
. 

Using s x x s e xsµ∆ + ∆ = −  gives 

2( )x s xs e xs x sα α α µ α= + − + ∆ ∆ . 

Now suppose that 0x se d d+ > . From the 
definitions of xd  and sd  in (9)  we deduce that x sd dµ  
= x s∆ ∆ . Hence 0e x sµ + ∆ ∆ > , or, equivalently, 

x s eµ∆ ∆ > − . Substitution gives 

2( ) (1 )( )x s xs e xs e xs eα α α µ α µ α α µ> + − − = − + , 
[0,1]α ∈ . 

Since (1 )( ) 0xs eα α µ− + ≥ , it follows that 

0x sα α > , for all 0 1α≤ ≤ . Hence, none of the entries 
of x α  and s α  vanishes for 0 1α≤ ≤ . Since 0x  and 0s  
are positive, and x α  and s α  depend linearly on α , this 
implies that 0x α >  and 0s α > , for all 0 1α≤ ≤ . 

Hence, 1x  and 1s  must be positive which proves that 
x +  and s +  are positive. □ 
Corollary 1.2 The iterates ( , )x s+ +  are strictly feasible 

if 1x sd d
∞
< . 

Proof: By Lemma 1.1, x +  and s +  are strictly feasible 
if and only if 0x se d d+ > . Since the last inequality 
holds if 1x sd d

∞
< , then the corollary follows. □ 

The following lemma gives some bounds for the 
solution of a linear system of the form: 

,
0.

+ =
+ =

su xv a
Qu Rv  (11) 

Using the notations 
1 1 1

2 2 2, ( ) ,D X S a xs a
− −

= =  

where ( )X diag x=  and ( )S diag s= , we have the 
following  result. 
Lemma 1.3 Let ( , )Q R  in the HLCP be a ( )P κ∗ -pair. 
Then for any 2( , ) nx s ++∈  and na∈ , the linear 
system (11)  has a unique solution ( , )u v , for which the 
following estimates hold 

2 2 21 1, .
4 8

Ta u v a uv aκ κ 
− ≤ ≤ ≤ + 

 
    

Proof: We consider the index sets: 

{ : 0}, { : 0}.i i i iI i u v I i u v+ −= > = <  

Using the relations 
1 2 20 4 ( ) , ,i i i iu v Du D v a i I− +< ≤ − = ∀ ∈  

21(1 4 ) ,
4i i i i

i I i I

u v u v aκ κ
− +∈ ∈

 ≤ + ≤ + 
 

∑ ∑   

where we use this fact that ( , )Q R  is a ( )P κ∗ -pair, we 
deduce that 

21 .
4

T
i i i i i i

i I i I i I

u v u v u v u v a
+ − +∈ ∈ ∈

= + ≤ ≤∑ ∑ ∑   

Also we have 

2

(1 4 ) 4

4 .

T
i i i i

i I i I

i i i i i i
i I i I i I

i i
i I

u v u v u v

u v u v u v

u v a

κ κ

κ κ

+ −

+ − +

+

∈ ∈

∈ ∈ ∈

∈

= +

= + + −

≥ − ≥ −

∑ ∑

∑ ∑ ∑

∑ 

 

This proves the first inequality in the lemma. For the 
second inequality we have 

2 2 2 2 2 4

2 2
4 4

1
16

1 1
16 4

i i i i i
i I i I i I

i i
i I

uv u v u v a

u v a aκ

+ − +

−

∈ ∈ ∈

∈

= + ≤

   + ≤ + +   
  

∑ ∑ ∑

∑



 

 

2
4 421 1 .

8 2 8
a aκ κ κ  = + + ≤ +  

   
   

See [26] for the uniqueness of the solution. □ 
Corollary 1.4 Let ( , )Q R  in the HLCP be a ( )P κ∗ -
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pair. Then the unique solution ( , )x s∆ ∆  of the system 
(7)  satisfies the following inequalities: 

2
22 ( ) ,

2
Tx s µδµκδ− ≤ ∆ ∆ ≤  (12) 

212 .
8

x s κ µδ 
∆ ∆ ≤ + 

 
 (13) 

Proof: It suffices that we apply Lemma 1.3 with 
a e xsµ= −  and ( , )x s∆ ∆  instead of ( , )u v  and note 
that 

1

1 ( )

( ),

ea e xs xs
xs xs

xs v v
xs

µµ

µµ µ
µ

−

= − = −

 
= − = −  

 



 

which implies 
22 1 22 ,a v vµ µδ−= − =  

that completes the proof. □ 
Lemma 1.5 After a Newton step one has 

2( ) ( )Tx s n δ µ+ + ≤ + . 

Proof: By using x x x+ = + ∆  and s s s+ = + ∆ , after a 
Newton step one has 

2 2

( ) ( ) (( )( ))

( )

( ) ( ) ,

T T T

T

T

x s e x s e x x s s

e xs x s s x x s

e e x s n nµ µ µδ δ µ

+ + + += = + ∆ + ∆

= + ∆ + ∆ + ∆ ∆

= + ∆ ∆ ≤ + = +

 

where the inequality follows because of (12) . This 
completes the proof. □ 
Lemma 1.6 Let ( , ; )x sδ δ µ+ + += . Then 

2

2

1 2 2
2

.
1 2 21

2

κ δ
δ

κ δ

+

 +
  
 ≤
 +

−   
 

 

Proof: Let v +  be the variance vector of ( , )x s+ +  with 

respect to µ , i.e. x sv
µ

+ +
+ = , then we have 

( )1 1 22 ( ) ( ) ( ) .v v v e vδ + + − + + − += − = −  

Since x s e x sµ+ + = +∆ ∆ , we obtain 2( ) x sv e
µ

+ ∆ ∆
= + . 

Then 

2 .

1

x sx s

x s x se

µµδ

µ µ

+

∞

∆ ∆∆ ∆
−

= ≤
∆ ∆ ∆ ∆+ −

 

Using (13)  and the fact that x s x s
∞

∆ ∆ ≤ ∆ ∆ , we 
have 

2

2

12
82 ,

11 2
8

κ δ
δ

κ δ

+

 
+ 

 ≤
 

− + 
 

 

which completes the proof. □ 

Corollary 1.7 If 
( )

1( , ; )
2 1 2 2

x sδ δ µ
κ

= ≤
+

 then 

we have 

( )2

( , ; ) 1 2 2 ,x sδ δ µ κ δ+ + += ≤ +  

i.e. quadratic convergence to the µ -center is obtained. 

2. Updating the Barrier Parameter μ 

In this section, we obtain a simple relation for our 
proximity measure just before and after a µ -update. 
Lemma 2.1 Let ( , )x s  be a positive pair and 0µ >  is 
such that 2( )Tx s n δ µ≤ + . Moreover, let 

( , ; )x sδ δ µ=  and (1 )µ θ µ+ = − . Then, one has 

2 2
2 2( , ; ) (1 ) .

2(1 ) 2(1 )
nx s θ δδ µ θ δ

θ θ
+ ≤ − + +

− −
 

Proof: Assume that ( , ; )x sδ δ µ+ += , then we have 

2
2 1

2
1

2( ) 1
1

1 ( )
1

vv

vv v

δ θ
θ

θθ
θ

+ −

−

= − −
−

= − − −
−

 

   

22 21 1(1 ) 2 ( ).
1

Tv v v v v vθθ θ
θ

− −= − − + − −
−

 

Since 2( )Tx s n δ µ≤ +  we obtain that 2 2v n δ≤ + . 
This implies 
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( ) ( )
2

2 2 2 22( ) 2(1 ) 2 2
1

n n nθδ θ δ δ θ θ δ
θ

+ ≤ − + + − + +
−

 

     

2 2
2 22(1 ) 2

1 1
nθ θθ δ θ δ
θ θ

 
= − + + + − − 

 

     

2 2
2 222(1 )

1 1
nθ θ θθ δ δ
θ θ

 −
= − + +  − − 

 

     

2 2
2 21 ( 1)2(1 )

1 1
nθ θθ δ δ
θ θ

 − −
= − + +  − − 

 

     

2
2 212(1 ) .

1 1
nθθ δ δ
θ θ

≤ − + +
− −

 

It completes the proof. □ 

3. Complexity Analysis 

In this subsection we present a lemma that gives the 
complexity of the algorithm. At the start of the 
algorithm, we have a point ( , )x s  that is strictly 
feasible for ( )P  and a 0µ >  such that 

( )
1( , ; )

2 1 2 2
x sδ µ τ

κ
≤ =

+
. Then, after the barrier 

parameter is updated to (1 ) ,µ θ µ+ = −  with 

( )
1 ,

1 2 2 8n
θ

κ
=

+
 Lemma 2.1, yields the following 

upper bound for ( , ; )x sδ µ+ : 

( )

( )

( )

( ) ( )

( )

2
2

2

2

2 2

2

1( , ; )
4 1 2 2

1

16(1 ) 1 2 2

1

8(1 ) 1 2 2

1 3

4 1 2 2 16(1 ) 1 2 2

1 .
2 1 2 2

x s θδ µ
κ

θ κ

θ κ

θ

κ θ κ

κ

+ −
≤

+

+
− +

+
− +

−
= +

+ − +

≤
+

 

Assuming 2,n ≥  The last inequality follows since 
its left hand side is a convex function of ,θ  whose value 

is 
( )2

7

16 1 2 2κ+
 both in 0θ =  and 

( )
1

4 1 2 2
θ

κ
=

+
. 

Since 
( )

10, ,
4 1 2 2

θ
κ

 
 ∈
 + 

 the left hand side does not 

exceed 

( )2

7

16 1 2 2κ+
. Since 

( ) ( )2 2

7 1

16 1 2 2 2 1 2 2κ κ
<

+ +
, 

it follows that after the µ −update we have 

( )
2 2

2

1( , ; )
2 1 2 2

x sδ δ µ
κ

+= ≤
+

. Thus, by Corollary 

1.7,  after performing the Newton step we certainly have 

( )

( )
( ) ( )

2

2

( , ; ) 1 2 2

1 11 2 2 ,
2 1 2 22 1 2 2

x sδ µ κ δ

κ τ
κκ

+ + + ≤ +

≤ + ≤ =
++

 

therefore the algorithm is well defined. The above 
explanation implies the following result which 
establishes the polynomial iteration complexity of the 
algorithm. 

Theorem 3.1 If 
( )

1
1 2 2 8n

θ
κ

=
+

, the number of 

iterations of the feasible primal-dual path-following 
algorithm with full-Newton steps does not exceed 

( )
0

8 1 2 2 log .nn µκ
ε

+  

4. Numerical Results 

In this section we present some numerical results. We 
solve the following * (0)P  (monotone) linear 
complementarity problems, so R = -I , using the 
algorithm in Figure 1. The initialization parameters are 
assumed as described in Section 3, and the accuracy 
parameter ε  is set to 410−  and 0.5τ = . Tables 1-4 
show the number of iterations to obtain ε -solutions of 
the problems with the algorithm. 
Problem 4.1 

2 1 1 1

1 2 0 1

1 0 1 2

1 1 2 0

Q

 
 
 
 =
 
 
 − − − 

 ,         

8

6

4

3

b

 
 
 
 =
 
 
 − 

. 
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Problem 4.2 

1 0 0.5 0 1 3 0

0 0.5 0 0 2 1 1

0.5 0 1 0.5 1 2 4

0 0 0.5 0.5 1 1 0

1 2 1 1 0 0 0

3 1 2 1 0 0 0

0 1 4 0 0 0 0

Q

− 
 
 −
 
 − −
 
 = −
 
 − − − −
 
 − − − 
 
 

 ,     

1

3

1

1

5

4

1.5

b

 
 
 
 
 −
 
 =
 
 −
 
 − 
 
 

 . 

Problem 4.3 

1 2 2 2

0 1 2 2

0 0 1 2

0 0 0 1

Q

 
 
 
 
 =
 
 
 
  







    



 ,          

1

1

1

1

b

 
 
 
 
 =
 
 
 
  



. 

Problem 4.4 

1 0 0 0

2 1 0 0

2 2 1 0

2 2 2 1

Q

 
 
 
 
 =
 
 
 
  







    



 ,          2
n

i
i

j i
b

=

= ∑ . 

Problems 4.3 and 4.4 are all known to have 
exponential complexity for pivoting methods, but our 
results show slow growth as n  increases, which is 
precisely what is hoped for interior-point methods. 

5. Concluding Remarks and Further Research 

We have presented an interior-point algorithm for 
HLCPs. At each iteration, we use only full-Newton 
steps. The favorable polynomial complexity bound for 
the algorithm with the small-update method is deserved, 

namely, (1 ) log nO n κ
ε

 + 
 

. Moreover, the resulting 

analysis is relatively simple and straightforward to the 
LO analogue. It may be clear that this full-Newton step 
method, may not be efficient in practice, Just as almost 
all feasible IPMs with the best theoretical performance. 
But this gap between the practical and theoretical 
performance can be reduced with changing the search 

direction by using methods that are based on kernel 
functions, as presented in [3, 16, 18, 27]. We leave it to 
the future to analyze a full-Newton step method based 
on kernel functions. 

 
Feasible IPM for * ( )P κ -HLCP 

Input: 
      Accuracy parameter 0;ε >  
      threshold parameter 1;τ <  
      barrier update parameter θ , 0 1;θ< <  
      feasible pair 0 0( , )x s  with 0 0 0( )Tx s nµ=  and 

0 0µ >  such that 0 0 0( , ; )x sδ µ τ≤ . 
begin 
            0 0 0: ; : ; : ;x x s s µ µ= = =  
            while nµ ε≥  do 
      begin 
            update of µ : 
            : (1 ) ;µ θ µ= −  
            ( , ) : ( , ) ( , );x s x s x s= + ∆ ∆  
      end 
end 

Figure 1. Feasible full-Newton-step algorithm. 

 
Table 1. The number of iterations for problem 4.1 

θ Iterations (x*)T 
0.17 56 [0.09,0.99,1.72,0.38] 

 
Table 2. The number of iterations for problem 4.2 

θ Iterations (x*)T 
0.13 79 [0.1,0,0.3,0,0.7,0.16,0.33] 

 
Table 3. The number of iterations for problem 4.3 

n θ Iterations (S*)T 
10 0.11 99 [0,0,…,0.09]

 

20 0.08 150 [0,0,…,0.05] 
30 0.06 191 [0,0,…,0.03] 

 
Table 4. The number of iterations for problem 4.4 

n θ Iterations (S*)T 
10 0.11 89 [0,0,…,0.23]

 

20 0.08 136 [0,0,…,0.23] 
30 0.06 170 [0,0,…,0.23] 
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