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Abstract 
In this paper, we give connection between the order of the generalized Baer-

invariant of a pair of finite groups and its factor groups, when ν is considered to 
be the specific variety. Moreover, we give a necessary and sufficient condition in 
which the generalized Baer-invariant of a pair of groups can be embedded into the 
generalized Baer-invariant of pair of its factor groups. 
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Introduction 
We assume that the reader is familiar with the 

notions of the verbal subgroup V(G), and the marginal 
subgroup V*(G) , associated with a variety of groups   
and a group G; see [11] for more information on 
varieties of groups. Let  and   be two varieties of 
groups defined by the sets of laws V and W, 
respectively. Let N be a normal subgroup of a group G, 
then we define *NV G      to be the subgroup of G 

generated by the elements of the following set: 

( ) ( ){ 1
1 2 i r 1 2 rv g  ,  g  , ,g n, ,g v g  ,  g , ,g −… … …  

 }1 r1 i r,  v V ,g  ,  ,g G,  n N .≤ ≤ ∈ … ∈ ∈  

It is easily checked that *NV G    is the least normal 

subgroup T of G such that N/T is contained in V*(G/T); 
see [2]. In 1976, Leedham-Green and McKay [5] 
introduced the following generalized version of the 

Baer-invariant of a group whit respect to two varieties 
 and  . Let G be an arbitrary group in   with a 
free presentation 1 R F G 1,  → → → →  in which F is a 
free group. Clearly, 1=W(G) = W(F)R/R and hence 
W(F) ⊆  R, therefore, 

( ) ( )1 R / W F F / W F G 1,→ → → →  

is a  -free presentation of the group G, then 

( ) ( )
( )

( ) ( )

*

*

R / W F  V(F / W(F))
M G

R / W F V (F / W(F))

W F (R V F )
W(F) RV F

=
  

=
  







 

is generalized Baer-invariant of the group G in   with 
respect to the variety   (see [6]). Now if N is a normal 
subgroup of  the group G for a suitable normal subgroup 
S of the free group F, we have N  ≅  S/R. Then we can 
define the generalized  Baer-invariant of the pair of 
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groups with respect to  two varieties and   as 
follows: 

( )

( )

*

*

*

*

R / W(F) S / W(F)V (F / W(F))
M G, N

R / W(F)V (F / W(F))

W F (R SV F )
.

W(F) RV F

  =
  

  =
  







 

One may check that M(G,  N)  is always abelian 
and independent of the free presentation of G. In 
particular, if   is the variety of all group, then 

( )M G, N M(G, N)=   which is Baer-invariant of 
the pair of groups (G,N), see [9]. Also, if   is the 
variety of abelian group and N be a complement in G, 
then the Baer-invariant of the pair (G,N) will be  

( ) [ ]
[ ] ( )

R S,F
M G, N M G, N ,

R,F
= =



  

which is the Schur multiplier of a pair of groups; see 
[7]. 

The following lemma gives the basic properties of 
the verbal and marginal subgroups of a group G with 
respect to the variety   which is useful in our 
investigation, so you may see [2]. 
Lemma 0.1. Let   be a variety of groups defined by a 
set of laws V and N be a normal subgroup of a given 
group G. Then 

(i) ( ) ( )
                              

*G V G 1 V G G;∈ ⇔ = ⇔ =  

(ii) ( )V(G/N) V G N/N  =  and ( )* *V (G/N) V G N/N;⊇  

(iii) ( )
               

* *N V G NV G 1; ⊆ ⇔ =   

(iv) ( ) ( )*V N  NV G N V G .  ⊆ ⊆    In particular, 
*V(G) GV G ; =    

(v) ( )( )*V V G 1 =  and *V (G / V(G)) G / V(G).=  

Variety  is called a Schur-Baer variety if for any 
group G in which the marginal factor group G/ * V (G) 
is finite, then the verbal subgroup V(G) is also finite. In 
2002, Moghaddam et al. [8] proved that for finite group 
G, M(G)  is finite with respect to a Schur-Baer variety 
 . In the following lemma we prove similar result for 
the M(G, N)  and M(G).  
Lemma 0.2. Let   be a Schur-Baer variety and G be a 
finite group in   with a normal subgroup N. Then 
there exists a group H with a normal subgroup K such 
that 

( )* *NV G M G, N KV H .   = < ∞     

In particular, ( ) V(G) M G V(H) .= < ∞  

Proof. Let G F / R=  be a free presentation for the 
group G and S be a normal subgroup of the free group F 
such that N S / R≅ . Lemma 0.1 implies that 

( )
*

* *

R FV .
W(F) RV F W F RV F

 
 ⊆
        

 

Let *H F/W(F) RV F =    and *K S / W(F) RV F =   , 

then *

H G
V (H)

< < ∞  and *KV H V(H)  ≤ < ∞  . 

But  

( )
( )

*
*

*

* *

* *

W(F) SV F
KV H

W(F) RV F

W(F) SV F W F (R SV F )
.

W F (R SV F ) W(F) RV F

    =    

      =
      





 

Also, 

( )

* *
*

*

*

SV F R W(F) SV F R
NV G  

R R

W(F) SV F
.

W F (R RV F )

        = = 

  ≅
  

 

Thus the result holds. 
It is interesting to know the connection between the 

generalized Baer-invariant of a pair of finite groups 
(G, N)  and its factor groups. Jones [3] gave some 
inequalities for the Schur multiplier of a finite groups G 
and its factor group.  Moghaddam et al. [10] generalized 
these inequalities to two varieties of groups.  In the next 
section, we give generalized version of these 
inequalities for the generalized Baer-invariant of a pair 
of groups and its factor groups (Theorem 1.2). Finally, a 
necessary and sufficient condition will be given in 
which the Baer-invariant of a pair of group may be 
embedded into the generalized Baer-invariant of a pair 
of its factor groups (Theorem 2.4). 

Results 

1. Some Exact Sequences 

In the following lemma we present some exact 
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sequences for the Baer-invariant of a pair of groups and 
its factor groups. 
Lemma 1.1. Let G be a group with a free presentation 
1 R F G 1  and  S,T→ → → →  be normal subgroups of 
the free group F such that T S,⊆  S / R N≅  and 
T / R K≅ . then the following sequences are exact: 

(i) 
( )

( )
*

                    

* *

R TV F
1    M G, N

W F RV F TV F

  → →
      





  

 

*
                              

*

K NV G
M(G / K, N / K) 1 ;

KV G

  → → →
  



  

(ii) ( ) ( )
                    

1 M G,K M G,N→ →   

 
          

M(G/K,N/K)→  

 

                                        

* * *

K N N 1 ;
KV G NV G NV G K

→ → → →
          

 

(iii) Moreover, if K is contained in *V (G) , then the 
following sequence is exact: 

( )

*
                    

* *

R SV F
1  M(G/K, N/K)

W F TV F SV F

  → →
      





  

 

                                        

* *

N NK 1 .
NV G NV G K

→ → → →
      

 

Proof. By considering the definition which has been 
mentioned before, we have: 

( )
( ) *

*

W F (R TV F )
M G,K ,

W(F) RV F

  =
  



 

 

 
( )

( ) *

*

W F (R SV F )
M G, N

W(F) RV F

  =
  



  

( ) *

*

W F (T SV F )
M(G / K, N / K) ,

W(F) TV F

  =
  





 

 
* *

* *

K NV G (T SV F )R

NV G TV F R

      =
      

 

 

Now one can easily check that the sequences (i) and 
(ii) are exact. 

(iii) Using the assumption and Lemma 0.1, we have 
( ) *W F TV F R.  ⊆   Therefore, one can easily check 

that the following sequence is exact: 

( )
( )( )

( )

**
                    

* * *

W F T SV FR SV F
1

W F TV F SV F W F TV F

     → →
          







 

 

                                        

* *

S ST / R 1.
SV F R SV F T

→ → → →
      

 

The extension e: 
                                        

1 A G H 1→ → → →  is said to 
be the  -marginal extension of the group A by H with 
respect to the variety  , if ( )*A V G .⊆  Moreover, if 
we take  and    to be the varieties of all groups and 
abelian groups, respectively, then from (i) we conclude 
the following exact sequence, which is [7] 

[ ]
[ ] ( )

                    R T,F
1 M G, N

R,F
→ →



 

 

[ ]
[ ]

                              K N,G
M(G / K  ,  N / K) 1.

K,G
→ → →



 

By assuming K to be the central subgroup of G and 
considering the epimorphism 

[ ]
[ ]

          T ,  FT F
R RF' R ,  F
⊗ →  

[ ][ ]xR  yF'  x, y R,F ,⊗   

one obtains the following exact sequences which are 
generalizations of those considered by Ganea [1] and 
Stallings’ [13] when N=G. 

                    
K G M(G, N) M(G / K , N / K)⊗ → →  

 

[ ]
[ ]

                    K N,G
1,

K,G
→ →



 

( ) ( )
                              

1 M G,K M G, N M(G / K , N / K)→ → →  

 
[ ] [ ]

                                        N NK 1.
N,G N,G K

→ → → →  

Let (G,N) be a pair of finite groups and   be a 
Schur-Baer variety then by Lemma 0.2, we have 

M(G, N)  and M(G)  as finite groups. 
Therefore, throughout the rest of this section we always 
assume that   is a variety of groups which enjoys 
Schur-Baer property. 

Now using Lemma 1.1, we are able to prove the 
following theorem of this section which is a 
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generalization of Theorem 2.1 of [3]. 
Theorem 1.2. Let G be a finite group with a free 
presentation 1 R F G 1→ → → → . 

Let S and T be normal subgroups of the free group F 
such that T S ,  S / R N⊆ ≅  and T / R K≅ , then 

(i) *K NV G M(G, N))     

 
*

*

W(F) TV F
M(G / K,  N / K)) ,

W(F) RV F

  =
  

  

(ii) ( )( )d M G, N  

 
( )
( )

*

*

W F TV F
d( M(G / K, N / K)) d ,

W F RV F

    ≤ +
    

  

(iii) ( )e( M G, N )   

 
( )
( )

*

*

W F TV F
e( M(G / K, N / K)) e .

W F RV F

    ≤ +
    

  

Proof. By Lemma 1.1(i), we have 

( )
*

* *

R TV F
M G, N L

W(F) RV F TV F

  =
      





  

and 
*

*

K NV GM(G / K, N / K) ,
L KV G

  ≅
  

  

where 

( ) ( )
          

 L Im M G, N M G / K, N / K , = → 
 
   

as in Lemma 1.1 (i). So it is easily seen that 

( )*K NV G M G, N     

    
*

*
* *

R TV F
K NV G L

W(F) RV F TV F

   =         







 

    

*KV G M(G / K, N / K) =     

 
*

* *

R TV F
.

W(F) RV F TV F

  
      





 

But 

*
*

*

TV F
KV G

R TV F

    ≅    

 

and 
* *

* * * *

TV F R TV F
/

W(F) RV F TV F W(F) RV F TV F

      
              



 

 

 
*

*

TV F
.

R TV F

  ≅
  

 

Hence, we get 

( )*K NV G M G, N     

    
*

* *

TV F
M(G / K, N / K)

W(F) RV F TV F

  =
      

  

    

*

*

W(F) TV F
M(G / K, N / K) ,

W(F) RV F

  =
  

  

which implies (i)  Similarly, we can prove (ii) and (iii). 
By Lemma 1.1 and Theorem 1.2, we have the 

following corollaries. 
Corollary 1.3. Let G be a finite group with two normal 
subgroups K and N such that K N.⊆  Then the 
following conditions are equivalent: 

(i) sequence1 
          

M(G / K, N / K)→   
          

*

K
KV G

→
  

 

          

*

N
NV G

→
  

 
                    

*

N 1 
KV G K

→ →
  

 is exact; 

(ii) ( ) ( )M G,K M G, N ;=   

(iii) ( )
*

*

K NV G
M G / K, N / K .

KV G

  ≅
  



  

Proof. By the definition of the generalized Baer-
invariant of the pair of groups and Lemma 1.1(i), we 
have the following exact sequence: 

( ) ( )
                    

1 M G, K M G, N→ →   

 
*

                              

*

K NV G
M(G / K, N / K) 1.

KV G

  → → →
  



  

It is easily check that (ii) and (iii) are equivalent. 
Also, by Lemma 1.1(ii), (i) and (ii) are equivalent. 
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Corollary 1.4. Let G be a finite group with a free 

presentation 
                                        

1 R F G 1.→ → → →  Let S and T be 
normal subgroups of the free group F such that 
T S,  S / R N ⊆ ≅  and T / R K≅ . If K is contained in 

*V (G),  then 

*KV G M(G / K, N / K)     

 
*

*
*

W(F) SV F
K NV G .

W(F) TV F

   =     
  

2. Subgroup (WV*)*(G) 

In this section, a necessary and sufficient condition 
will be given in which the generalized Baer-invariant of 
a pair of groups may be embedded into the generalized 
Baer-invariant of a pair of its factor groups with respect 
to two varieties of groups. 

Let   and   be two varieties of groups defined 
by sets of laws V and W, respectively. Let E be an 

arbitrary group and G a group in  . Let 
          

ψ : E G→  
be an epimorphism such that * Kreψ V (E)⊆ . We 
denoted by * *(WV ) (G)  the intersection of all 
subgroups of the from *ψ(V (E)) . Clearly, * *)(WV (G)  
is a characteristic subgroup of G and contained in 

*V (G) . In particular, if   is the variety of all groups 
and   is the variety of abelian groups then this 
subgroup is denoted by ( )*Z G  as in [ ] 4 .  The 
following lemma whose proof  is straightforward plays 
an essential role in proving the main theorem of this 
section. 
Lemma 2.1. Let G be a group in the variety   with a 

free presentation 
π

1 R F G 1→ → → →  and 
1 A B G 1→ → → →  be a  -marginal extension of A 
by G. Then there exists a homomorphism 

*

Fβ : B
W(F) RV F

→
  

 such that the following diagram 

is commutative: 

( ) ( )
                    π             

* *

R F1 G 1 
W F RV F W F RV F

→ → → →
      

 

1 G           β                        β           1       ↓ ↓ ↓  

                                     
1              A                    B          G 1,→ → → →  

where 1β   is the restriction of β  and π  is the induced 

homomorphism of π . 
We keep the notations of the above lemma in the rest 

of this section. We also denote the factor group 
( ) *F /  W F RV F    by F.  

Lemma 2.2. Let   and   be two varieties of groups 
and G be a group in the variety  . For any free 

presentation 
π

1 R F G 1→ → → → , we have * *)(WV (G)
*π(V (F))= . 

Proof. Let 
φ

1 A E G 1→ → → →  be a  -marginal 
extension. By Lemma 2.1, there exists a homomorphism 
β : F E→  such that the corresponding diagram with the 
above  -marginal extension in Lemma 2.1 is 
commutative. It is easy to check that ( )E Aβ F= . 

Assume that *f V (F)∈  and 1 2 nν ν(x , x , , x ) V= … ∈ . If 

1 2 ne ,e , , e E… ∈ , then for each i (1 i n)≤ ≤ , there exist 

elements 1 2 na ,a , , a…  in A and 1 2 nf , f , , f…  in F  such 

that i i ie aβ(f )= . So 

( )( )1 i nν e , ,e β f , ,e… …
 

    ( ) ( )1 1 i i n nν(a β f , ,a β f f , , a β(f ))= … …  

    
( ) ( ) ( )( )1 i nν β f , ,β f f , ,β f= … …  

    
( )( ) ( ) ( )( )1 n 1 nβ ν f , , f ν β f , ,β f= … = …  

    1 nν(e , ,e )= … . 

Therefore, * *β(V (F)) V (E)⊆ . Now, one can deduce 

that ( )( ) ( ) ( )* * *π V F φ(β(V F )) φ(V E )= ⊆ . Hence 

( ) ( )** * WV Gπ(V (F))= . 

Now, we note to the property  of  the natural map 

( )
          

M G, N M(G / K, N / K)→   as in Lemma 1.1. 
The following theorem generalizes Theorem 5.1 of [12]. 
Theorem 2.3. Let  and    be two varieties of groups 
and G be a finite group in the variety  . Let N and K 
be normal subgroups of G such that K N⊆  and K 

( )*V G .⊆  If 

( ) *M G,N M(G/K,N/K)/(K NV G ), ≅     

then the natural map ( )
          

M G, N →

M(G / K, N / K)  is monomorphism. 
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Now we are able to prove the following theorem of 
this section which generalizes Theorem 3.2 of [10]. 

 
Theorem 2.4. Let  and    be two varieties of groups 
and G be a group in the variety  . Let N and K be 
normal subgroups of G such that *K N V (G).⊆   Then 

* *K N (WV ) (G)⊆   if and only if the natural map 

( )
          

M G,N M(G/K,N/K) →   is monomorphism. 
Proof. Let F/R   ≅  G be a free presentation of G, and 
K T / R≅  for a suitable normal subgroup T of  F.  By 
construction, the kernel of the natural map 

( )
          

M G, N M(G / K, N / K) →   is equal to 

( ) ( )* *W F TV F / W F RV F       . Therefore, we only 

need to verify that ( ) ( )* * W F TV F W F RV F   =     if 

and only if ( )* *K N (WV .) G⊆   Set R R /=  

( ) *W F RV F    and ( ) *T T / W F RV F =   . Then 

( ) ( )* *W F TV F W F RV F     =     if and only if 
*T V (F)⊆ . Also, by Lemma 2.2, * *WV )( (G) =

*π(V (F)) . Consequently, we obtain that π(T) ⊆
* *WV )( (G)  if and only if *T V (F)⊆ . Now the result 

follows since π(T) K.=  
The following two corollaries follow from Theorem 

2.4 and Lemma 1.1(i). 
 

Corollary 2.5. let G be a finite group in the variety  
with two normal subgroups K and N. Then 

* *K N (WV ) )G(⊆   if and only if 

*K NV G M(G, N) M(G / K, N / K)  =   
. 

Corollary 2.6. Let G be a finite group in the variety  
with a normal subgroup N such that *V (G) N.⊆  Then 

* *(WV  is tri) (G) vial  if and only if the natural map 

M(G, N) M(G / x, N / x)→   has a non-trivial 
kernel for all non-zero elements x in *V (G) . 
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