Isotropic Lagrangian Submanifolds in Complex Space Forms

Z. Toeiserkani and S.M.B. Kashani ${ }^{*}$
Department of Pure Math, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box 14115-134, Tehran, Iran

Received: 21 November2011/Revised:22September2012/Accepted: 25 September2012

Abstract

In this paper we study isotropic Lagrangian submanifolds M^{n}, in complex space forms $\tilde{M}^{n}(4 c)$. It is shown that they are either totally geodesic or minimal in the complex projective space $\mathbb{C} \mathrm{P}^{n}$, if $n \geq 3$. When $n=2$, they are either totally geodesic or minimal in $\tilde{M}^{2}(4 c)$. We also give a classification of semiparallel Lagrangian H -umbilical submanifolds.

Keywords: Lagrangian; Isotropic; Semi-parallel submanifold; H-umbilical; Complex space form

Introduction

The notion of an isotropic submanifold of a Riemannian manifold was introduced by B. O'Neill [14]. These submanifolds which can be considered as generalized totally geodesic submanifolds usually have been studied under some additional hypothesis, [12,13]. Here, we assume that these submanifolds are semiparallel.

On the other hand, Lagrangian submanifolds of complex space forms have been deeply studied since the decade 1970's. A survey of the main results about Lagrangian submanifolds can be found in [7]. Since there is no complete classification of Lagrangian submanifolds, it is natural to study these submanifolds with some additional constraint.

Recall that, an n-dimensional Riemannian submanifold M of an m-dimensional Riemannian manifold \tilde{M} is called parallel if its second fundamental form \mathbb{I}, satisfies

$$
\begin{aligned}
& (\bar{\nabla} \mathbb{I})(X, Y, Z)=\nabla_{Z}^{\perp} \mathbb{I}(X, Y) \\
& \quad-\mathbb{I}\left(\nabla_{Z} X, Y\right)-\mathbb{I}\left(X, \nabla_{Z} Y\right)=0
\end{aligned}
$$

for all vectors X, Y, Z, tangent to M where $\bar{\nabla}$ is the Van der Waerden-Bortolotti connection [11]. By their definition, semi-parallel submanifolds are generalized parallel submanifolds. The classification of semiparallel submanifolds in real space forms is still an open problem, although several authors have obtained many important results. We can refer the reader to [10] for a survey. Also a recent good refernce for th whole subject of Lagrangian and symplectic manifolds is [1].

Since 2009, it is known that all isotropic Lagrangian submanifolds are parallel, hence semi-parallel [2]. In [9], semi-parallel isotropic Lagrangian submanifolds have been studied. In this paper we follows [2,12,13] to continue the study of isotropic Lagrangian submanifolds in complex space forms.

Our main results are Proposition 1 and Theorems 2,5.

[^0]
Preliminaries

We recall some prerequisites from $[2,6,12,14]$. Let $\left(\tilde{M}^{m},\langle\rangle,\right)$ be an m-dimensional Riemannian complex manifold and M^{n} be an n-dimensional real submanifold of \tilde{M}. We denote by X, Y, W, Z, \ldots vectors tangent to M and by U, V, \ldots generic vectors tangent to $\tilde{M} . \nabla$ and $\tilde{\nabla}$ denote the Levi-Civita connections of M and \tilde{M}, respectively. \mathbb{I} is the second fundamental form of M, and A_{ξ} is the shape operator of M in the direction of the normal vector field $\xi \in \mathcal{X}^{\perp}(M)$.

The curvature \tilde{R} of $\tilde{\nabla}$ is defined by:

$$
\tilde{R}\left(U_{1}, U_{2}\right) V=\left[\tilde{\nabla}_{U_{1}}, \tilde{\nabla}_{U_{2}} \Psi-\tilde{\nabla}_{\left[U_{1}, U_{2}\right]} V,\right.
$$

and the sectional curvature of a plane spanned by $\{U, V\}$ is given by

$$
\langle R(U, V) U, V\rangle /\left(\|U\|^{2}\|V\|^{2}-\langle U, V\rangle^{2}\right) .
$$

If R denote the Riemannian curvature tensor of ∇, then the Gauss equation is,

$$
\begin{aligned}
& \langle\tilde{R}(X, Y) Z, W\rangle=\langle R(X, Y) Z, W\rangle+\langle\mathbb{I}(X, Z), \\
& \mathbb{I}(Y, W)\rangle-\langle\mathbb{I}(X, W), \mathbb{I}(Y, Z)\rangle
\end{aligned}
$$

$\bar{\nabla}=\nabla \oplus \nabla^{\perp}$ is the Van der Waerden-Bortolotti connection, where ∇^{\perp} is normal curvature. The curvature operator $\bar{R}(X, Y)$ of $\bar{\nabla}$, can be extended as derivation of tensor fields in the usual way. Its action on \mathbb{I} is as follows,

$$
\begin{align*}
& (\bar{R}(X, Y) \cdot \mathbb{I})(Z, W)=R^{\perp}(X, Y)(\mathbb{I}(Z, W)) \\
& -\mathbb{I}(R(X, Y) Z, W)-\mathbb{I}(Z, R(X, Y) W), \tag{1.1}
\end{align*}
$$

where R^{\perp} denote the Riemannian curvature operator of ∇^{\perp}. The submanifold M of \tilde{M} is called semi-parallel if its second fundamental form \mathbb{I} satisfies

$$
\begin{equation*}
\bar{R}(X, Y) \cdot \mathbb{I}=0 \tag{1.2}
\end{equation*}
$$

An almost complex structure on \tilde{M}^{m} is a tensor field J of type $(1,1)$ on \tilde{M}, such that $J^{2}=-\mathrm{Id}_{T \tilde{M}}$. If J is an isometry, i.e. $\langle U, V\rangle=\langle J U, J V\rangle, \tilde{M}^{m}$ is called an almost Hermitian manifold. The most interesting Hermitian manifolds are, the Kähler manifolds ($\tilde{M}, J,\langle\rangle$,$) defined by the condition \tilde{\nabla} J=0$,
where $(\tilde{\nabla} J)(U, V)=\tilde{\nabla}_{U} J V-J \tilde{\nabla}_{U} V$.
The holomorphic sectional curvature of an almost Hermitian manifold is the restriction of the sectional curvature to holomorphic planes (the planes that are spanned by U and $J U$) in the tangent spaces. The curvature tensor of a space of constant holomorphic sectional curvature $4 c, \tilde{M}(4 c)$, is given by:

$$
\begin{align*}
& \tilde{R}\left(U_{1}, U_{2}\right) V=c\left(\left(U_{1} \wedge U_{2}\right) V\right. \tag{1.3}\\
& \left.+\left(J U_{1} \wedge J U_{2}\right) V+2\left\langle J U_{1} \wedge U_{2}\right\rangle J V\right)
\end{align*}
$$

where $\left(U_{1} \wedge U_{2}\right) V=\left\langle U_{1}, V\right\rangle U_{2}-\left\langle U_{2}, V\right\rangle U_{1}$.
A complex space form is a complete, simply connected, Kähler manifold with constant holomorphic sectional curvature. So, a complex space form is isometric to either the complex projective space $\mathbb{C} P^{n}(4 c)$, if $c>0$, or the complex Euclidean space \mathbb{C}^{n}, if $c=0$, or the complex projective hyperbolic space $\mathbb{H} \mathrm{P}^{n}(4 c)$, if $c<0$.

An n-dimensional submanifold M^{n} of an almost Hermitian complex manifold \tilde{M}^{m} is said to be totally real if $J\left(T_{p} M\right) \subset\left(T_{p} M\right)^{\perp}$ for all $p \in M$. A totally real submanifold M^{n} of \tilde{M}^{m} is said to be Lagrangian when $m=n$. For Lagrangian submanifolds of a Kähler manifold the following relations hold, [2]

$$
\begin{aligned}
& J A_{J X} Y=\mathbb{I}(X, Y)=J A_{J Y} X, \\
& \langle\mathbb{I}(X, Y), J Z\rangle=\langle\mathbb{I}(Y, Z), J X\rangle=\langle\mathbb{I}(Z, X), J Y\rangle, \\
& R^{\perp}(X, Y) J Z=J R(X, Y) Z .
\end{aligned}
$$

Moreover, from the Gauss equation one has

$$
\begin{equation*}
R(X, Y)=\tilde{R}(X, Y)+A_{J X} A_{J Y}-A_{J Y} A_{J X} . \tag{1.5}
\end{equation*}
$$

In [4], it is proved that there exists no totally umbilic Lagrangian submanifold in a complex space form $\tilde{M}^{n}(4 c)$ with $n \geq 2$ except the totally geodesic ones. The Lagrangian H-umbilical submanifolds are the simplest Lagrangian submanifolds next to the totally geodesic submanifolds in a complex space form. A Lagrangian H-umbilical submanifold of a Kähler manifold $\tilde{M}^{n}(4 c)$ is a Lagrangian submanifold whose second fundamental form takes the following simple form, [6].

$$
\begin{align*}
& A_{J e_{1}} e_{1}=\lambda e_{1}, \quad A_{J e_{2}} e_{2}=\ldots=A_{J e_{n}} e_{n}=\mu e_{1}, \tag{1.6}\\
& A_{J e_{1}} e_{j}=\mu e_{j}, A_{J e_{j}} e_{k}=0,2 \leq j \neq k \leq n,
\end{align*}
$$

with respect to some suitable orthonormal local frame field, and for some suitable functions λ and μ.

A Lagrangian submanifold M of \tilde{M} is said to be λ-isotropic if there exists an smooth function $\lambda: M \rightarrow \mathbb{R}$ such that $\|\mathbb{I}(X, X)\|^{2}=\lambda^{2}(p)$, for any unit vector $X \in T_{p} M$ and for all $p \in M$, [14]. In particular, if λ is constant then M is called constant isotropic.

From [12], it is known that, if $M^{n}(n \geq 3)$ is a minimal totally real and isotropic submanifold of a Kähler manifold, then either M is totally geodesic or $n=5,8,14,26$. Also, if M^{n} is a complete, constant isotropic totally real submanifold of $\mathbb{C P}^{n}(4 c)$, then either M is totally geodesic or M is locally isometric to $S^{1} \times S^{n-1}(n \geq 2) ; S U(3) / S O(3), n=5 ; S U(3)$, $n=8 ; S U(6) / S p(3), n=14 ; E_{6}, n=26$.

Results

In [2], P. M Chacon and G. A. Lobos give some properties of semi-parallel Lagrangian H-umbilical submanifold. Here, we give the classification of such submanifolds, by using their result.

Proposition 1: If $n \geq 3$ and M^{n} is a semi-parallel Lagrangian H-umbilical submanifold of $\tilde{M}^{n}(4 c)$, then M^{n} is one of the following submanifolds.
a) A totally geodesic one,
b) A flat submanifold of \mathbb{C}^{n},
c) A non-flat and non-totally geodesic minimal submanifold of $\mathbb{C P}^{n}(4 c)$.

Proof: suppose that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a suitable orthonormal local frame field, such that with respect to it the shape operators of M have the form (1.6). From the Gauss equation for $i, j=2, \ldots, n$ and $i \neq j$ we have,

$$
\begin{align*}
& R\left(e_{i}, e_{j}\right) e_{i}=\left(c-\mu^{2}\right) e_{j} \tag{2.1}\\
& R\left(e_{i}, e_{1}\right) e_{i}=\left(c+\mu^{2}-\mu \lambda\right) e_{1}
\end{align*}
$$

From (1.6), for Lagrangian H-umbilical submanifolds, $H=J \frac{1}{n} \sum_{i=1}^{n} A_{J_{i}} e_{i}=\frac{\lambda+(n-1) \mu}{n} J e_{1}$. If $\mu \neq 0$ from [2], we have $\lambda=(1-n) \mu$ and $c=n \mu^{2}>0$, so $H=0$, i.e. M is minimal. Also, from (2.1) we have $\left\langle R\left(e_{i}, e_{j}\right) e_{i}, e_{j}\right\rangle=(n-1) \mu^{2}>0,0$ so M is a non-flat, non-totally geodesic minimal submanifold of $\mathbb{C} \mathrm{P}^{n}(4 c)$.

A semi-parallel Lagrangian submanifold M^{n} of constant sectional curvature c_{1} in $\tilde{M}^{n}(4 c)$ is flat or totally geodesic [2]. If $\mu=0$, from (2.1) we get that $R\left(e_{i}, e_{j}\right) e_{i}=c e_{j}$, and $R\left(e_{i}, e_{1}\right) e_{i}=c e_{1}$. So M has constant sectional curvature c, Hence, M is either totally geodesic or flat. If M is flat, we get that $c=0$, i.e. M^{n} is a flat submanifold of \mathbb{C}^{n}.

One should see [3] for new results about Lagrangian H-umbilical submanifolds of para-Kahler manifolds.

It is known that for $n \geq 3$ any λ-isotropic Lagrangian submanifold M^{n} of $\tilde{M}^{n}(4 c)$ is constant isotropic and M^{n} is parallel in $\tilde{M}^{n}(4 c)$, [2]. So, any isotropic Lagrangian submanifold of $\tilde{M}^{n}(4 c)$ is semiparallel. In [12] minimal isotropic Lagrangian submanifolds have been studied. Now, we use the fact that isotropic Lagrangian submanifolds are semiparallel, and give the classification of such submanifolds.

Theorem 2: Let $M^{n}(n \geq 3)$ be a λ-isotropic Lagrangian submanifold of $\tilde{M}^{n}(4 c)$. Then M is either totally geodesic or minimal in $\mathbb{C} \mathrm{P}^{n}(4 c)$.

Proof: From [9], a semi-parallel isotropic Lagrangian submanifold of dimension $n \geq 3$ is either totally geodesic or $c=2 \lambda^{2}>0$. So, every isotropic Lagrangian submanifold of $\tilde{M}^{n}(4 c)$ with $c \leq 0$ is totally geodesic. It follows that non-totally geodesic isotropic Lagrangian submanifolds can only exist in $\mathbb{C} \mathrm{P}^{n}(4 c)$.

If $X=\sin \theta e_{i}+\cos \theta e_{j}$, we have,

$$
\begin{align*}
& \lambda^{2}=\|\mathbb{I}(X, X)\|^{2}=\lambda^{2} \cos ^{4} \theta+\lambda^{2} \sin ^{4} \theta \\
& +\left(\left\|\mathbb{I}\left(e_{i}, e_{j}\right)\right\|^{2}+\frac{1}{2}\left\langle\mathbb{I}\left(e_{i}, e_{i}\right), \mathbb{I}\left(e_{j}, e_{j}\right)\right\rangle\right) \sin ^{2} 2 \theta \tag{2.2}\\
& +4\left\langle\mathbb{I}\left(e_{j}, e_{j}\right), \mathbb{I}\left(e_{i}, e_{j}\right)\right\rangle \sin ^{3} \theta \cos \theta \\
& +4\left\langle\mathbb{I}\left(e_{i}, e_{i}\right), \mathbb{I}\left(e_{i}, e_{j}\right)\right\rangle \sin \theta \cos ^{3} \theta
\end{align*}
$$

Since λ is independent of θ, we obtain from (2.2) that,

$$
\begin{align*}
& 0=\frac{d}{d \theta} \lambda^{2}=-2 \lambda^{2} \sin 2 \theta \cos 2 \theta+2\left(\left\|\mathbb{I}\left(e_{i}, e_{j}\right)\right\|^{2}\right. \\
& \left.+\frac{1}{2}\left\langle\mathbb{I}\left(e_{i}, e_{i}\right), \mathbb{I}\left(e_{j}, e_{j}\right)\right\rangle\right) \sin 4 \theta \tag{2.3}\\
& +4\left\langle\mathbb{I}\left(e_{j}, e_{j}\right), \mathbb{I}\left(e_{i}, e_{j}\right)\right\rangle\left(3 \sin ^{2} \theta \cos ^{2} \theta-\sin ^{4} \theta\right) \\
& +4\left\langle\mathbb{I}\left(e_{i}, e_{i}\right), \mathbb{I}\left(e_{i}, e_{j}\right)\right\rangle\left(\cos ^{4} \theta-3 \sin ^{2} \theta \cos ^{2} \theta\right),
\end{align*}
$$

Choose $\theta=0$ in (2.3) to get

$$
\begin{equation*}
\left\langle\mathbb{I}\left(e_{i}, e_{i}\right), \mathbb{I}\left(e_{i}, e_{j}\right)\right\rangle=0 \tag{2.4}
\end{equation*}
$$

Choose $\theta=\frac{\pi}{8}$ to obtain

$$
\begin{equation*}
2\left\|\mathbb{I}\left(e_{i}, e_{j}\right)\right\|^{2}+\left\langle\mathbb{I}\left(e_{i}, e_{i}\right), \mathbb{I}\left(e_{j}, e_{j}\right)\right\rangle=\lambda^{2} \tag{2.5}
\end{equation*}
$$

From [12], $\forall p \in M$ there exists an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$ satisfying $A_{J e_{1}} e_{i}=\lambda_{i} e_{i}$, and $\lambda_{1}=\lambda$, and $i=2, \ldots, n, \lambda_{i}$ is either $-\lambda$ or $\frac{1}{2} \lambda$. Let V_{1} and V_{2} be the eigenspaces of $A_{J_{e_{1}}}$ corresponding to the eigenvalues $-\lambda$ and $\frac{1}{2} \lambda$ respectively. Then, $\mathbb{I}(x, y)=-\langle x, y\rangle \lambda J e_{1}, \quad \forall x, y \in V_{1}, \quad$ and $\quad\langle\mathbb{I}(v, w)$, $J z\rangle=0$ for $v, w, z \in V_{2}$, hence $A_{J v} w$ belongs to $V_{1} \cup \operatorname{span}_{\mathbb{R}}\left\{e_{1}\right\}$. So, $\quad \sum_{k=1}^{n} A_{J_{k}} e_{k} \quad$ belongs to $V_{1} \cup \operatorname{span}_{\mathbb{R}}\left\{e_{1}\right\}$.

Now we consider four possible cases for V_{1} and V_{2}.
case i: If $V_{1}=\varnothing$, we have $\mathbb{I}\left(e_{i}, e_{i}\right)=\frac{1}{2} \lambda J e_{1}$ for $e_{i} \in V_{2}$, so $\left\|\mathbb{I}\left(e_{i}, e_{i}\right)\right\|^{2}=\frac{1}{4} \lambda^{2}$. Since M is λ-isotropic, hence $\frac{1}{4} \lambda^{2}=\lambda^{2}$, so $\lambda=0$.
case ii : If $V_{2}=\varnothing$, since M is an H-umbilical Lagrangian submanifold. From Proposition 2, M is either totally geodesic or minimal. We have $H=\left(1-\operatorname{dim} V_{1}\right) \lambda J e_{1}$ and $\operatorname{dim} V_{1}>1$, so if M is minimal, hence $\lambda=0$ and M is totally geodesic.
case iii: If $\operatorname{dim} V_{1}=1$ and $\operatorname{dim} V_{2}=n-2$, from (2.4) and (2.5) we obtain that,

$$
\begin{align*}
& A_{J e_{1}} e_{1}=\lambda e_{1}, \quad A_{J e_{2}} e_{2}=-\lambda e_{1}, \\
& A_{J e_{1}} e_{2}=-\lambda e_{2}, \quad A_{J e_{1}} e_{i}=\frac{1}{2} \lambda e_{i}, \\
& A_{J e_{i}} e_{i}=\frac{1}{2} \lambda e_{1}+\varepsilon_{i} \frac{\sqrt{3}}{2} \lambda e_{2}, \tag{2.6}\\
& A_{J e_{2}} e_{i}=\varepsilon_{i} \frac{\sqrt{3}}{2} \lambda e_{i}, \quad A_{J e_{i}} e_{j}=0,
\end{align*}
$$

where $e_{2} \in V_{1}$ and $e_{i}, e_{j} \in V_{2}$, and $\varepsilon_{i}= \pm 1$. We have from Gauss equation and (2.6) that,

$$
\begin{aligned}
& R\left(e_{1}, e_{i}\right) e_{1}=c\left(e_{1} \wedge e_{i}\right) e_{1}+A_{J e_{1}} A_{J e_{i}} e_{1}-A_{J e_{i}} A_{J e_{1}} e_{1} \\
& \quad=c e_{i}+\frac{1}{2} \lambda A_{J e_{1}} e_{i}-\lambda A_{J e_{i}} e_{1} \\
& \quad=c e_{i}+\frac{1}{4} \lambda^{2} e_{i}-\frac{1}{2} \lambda^{2} e_{i}=\left(c-\frac{1}{4} \lambda^{2}\right) e_{i} \\
& R\left(e_{1}, e_{i}\right) e_{2}=c\left(e_{1} \wedge e_{i}\right) e_{2}+A_{J e_{1}} A_{J e_{i}} e_{2}-A_{J e_{i}} A_{J e_{1}} e_{2}
\end{aligned}
$$

$$
\begin{align*}
& \quad=\varepsilon_{i} \frac{\sqrt{3}}{2} \lambda A_{J e_{1}} e_{i}+\lambda A_{J e_{i}} e_{2} \\
& \quad=\varepsilon_{i} \frac{\sqrt{3}}{4} \lambda^{2} e_{i}+\varepsilon_{i} \frac{\sqrt{3}}{2} \lambda^{2} e_{i}=\frac{3 \sqrt{3}}{4} \varepsilon_{i} \lambda^{2} e_{i}, \\
& R\left(e_{2}, e_{i}\right) e_{1}=c\left(e_{2} \wedge e_{i}\right) e_{1}+A_{J e_{2}} A_{J e_{i}} e_{1}-A_{J e_{i}} A_{J e_{2}} e_{1} \\
& \quad=\frac{1}{2} \lambda A_{J e_{2}} e_{i}+\lambda A_{J e_{i}} e_{2}=\varepsilon_{i} \frac{3 \sqrt{3}}{4} \lambda^{2} e_{i}, \tag{2.7}\\
& R\left(e_{2}, e_{i}\right) e_{2}=c\left(e_{2} \wedge e_{i}\right) e_{2}+A_{J e_{2}} A_{J e_{i}} e_{2}-A_{J e_{i}} A_{J e_{2}} e_{2} \\
& \quad=c e_{i}+\varepsilon_{i} \frac{\sqrt{3}}{2} \lambda A_{J e_{2}} e_{i}+\lambda A_{J e_{i}} e_{1} \\
& \quad=c e_{i}+\frac{3}{4} \lambda^{2} e_{i}+\frac{1}{2} \lambda^{2} e_{i}=\left(c+\lambda^{2}\right) e_{i} .
\end{align*}
$$

From (2.6) we obtain that

$$
\begin{equation*}
\sum_{k=1}^{n} A_{J_{e}} e_{k}=\frac{n-2}{2} \lambda e_{1}+\frac{\sqrt{3}}{2} \lambda \sum_{k=3}^{n} \varepsilon_{k} e_{2} . \tag{2.8}
\end{equation*}
$$

For semi-parallel Lagrangian submanifold M^{n} of $\tilde{M}^{n}(4 c)$ we have, [2]

$$
\begin{equation*}
R(X, Y) \sum_{k=1}^{n} A_{J_{k}} e_{k}=0 \tag{2.9}
\end{equation*}
$$

Then from (2.7), (2.8) and (2.9) one obtains that,

$$
\begin{gather*}
0=R\left(e_{2}, e_{i}\right) \sum_{k=1}^{n} A_{J_{e_{k}}} e_{k}=\frac{n-2}{2} \lambda R\left(e_{2}, e_{i}\right) e_{1} \\
+\frac{\sqrt{3}}{2} \lambda \sum_{k=3}^{n} \varepsilon_{k} R\left(e_{2}, e_{i}\right) e_{2} \tag{2.10}\\
=\varepsilon_{i} \frac{3 \sqrt{3}}{8}(n-2) \lambda^{3} e_{i}+\frac{3 \sqrt{3}}{2} \lambda^{3} \sum_{k=3}^{n} \varepsilon_{k} e_{i},
\end{gather*}
$$

and

$$
\begin{gather*}
0=R\left(e_{1}, e_{i}\right) \sum_{k=1}^{n} A_{J_{e}} e_{k}=\frac{n-2}{2} \lambda R\left(e_{1}, e_{i}\right) e_{1} \\
+\frac{\sqrt{3}}{2} \lambda \sum_{i=3}^{n} \varepsilon_{i} R\left(e_{1}, e_{i}\right) e_{2} \tag{2.11}\\
=\frac{n-2}{2} \lambda\left(c-\frac{1}{4} \lambda^{2}\right) e_{i}+\frac{9}{8} \varepsilon_{i} \lambda^{3} \sum_{k=3}^{n} \varepsilon_{k} e_{i},
\end{gather*}
$$

If $\lambda \neq 0$, from (2.10), $\sum_{k=3}^{n} \varepsilon_{k}=-\varepsilon_{i} \frac{1}{4}(n-2)$, then from (2.11), $n=2$, this is in contrast with the assumption $n \geq 3$. So, $\lambda=0$.
case iv : If $V_{2} \neq \varnothing$ and $\operatorname{dim} V_{1} \geq 2$, from Gauss equation we have,

$$
\begin{align*}
& R\left(e_{i}, e_{j}\right) e_{k}=c\left(e_{i} \wedge e_{j}\right) e_{k} \\
& \quad+A_{J e_{j}} A_{J e_{i}} e_{k}-A_{J e_{i}} A_{J e_{j}} e_{k}=0, \\
& R\left(e_{i}, e_{j}\right) e_{1}=c\left(e_{i} \wedge e_{j}\right) e_{1} \\
& \quad+A_{J e_{j}} A_{J e_{i}} e_{1}-A_{J e_{i}} A_{J_{j}} e_{1} \tag{2.12}\\
& \quad=-\lambda A_{J e_{j}} e_{i}+\lambda A_{J e_{i}} e_{j}=0, \\
& R\left(e_{i}, e_{j}\right) e_{i}=c\left(e_{i} \wedge e_{j}\right) e_{i}+A_{J e_{j}} A_{J e_{i}} e_{i} \\
& \quad-A_{J e_{i}} A_{J e_{j}} e_{i}=c e_{j}+\lambda^{2} e_{j},
\end{align*}
$$

for $e_{i}, e_{j}, e_{k} \in V_{1}$. Then, the restriction of $R\left(e_{i}, e_{j}\right)$ to $V_{1} \cup \operatorname{span}_{\mathbb{R}}\left\{e_{1}\right\}$ is equal to $R\left(e_{i}, e_{j}\right)=\left(c+\lambda^{2}\right)\left(e_{i} \wedge e_{j}\right)$. Using (2.9) gives,

$$
\begin{aligned}
0 & =R\left(e_{i}, e_{j}\right) \sum_{k=1}^{n} A_{J_{k}} e_{k}=\sum_{k=1}^{n} R\left(e_{i}, e_{j}\right) A_{J e_{k}} e_{k} \\
& =\left(c+\lambda^{2}\right) \sum_{k=1}^{n}\left(e_{i} \wedge e_{j}\right) A_{J e_{k}} e_{k} \\
& =\left(c+\lambda^{2}\right)\left(\sum_{k=1}^{n}\left\langle e_{i}, A_{J e_{k}} e_{k}\right\rangle e_{j}-\sum_{k=1}^{n}\left\langle e_{j}, A_{J e_{k}} e_{k}\right\rangle e_{i}\right) \\
& =\left(c+\lambda^{2}\right)\left(\left\langle e_{i}, \sum_{k=1}^{n} A_{J e_{k}} e_{k}\right\rangle e_{j}-\left\langle e_{j}, \sum_{k=1}^{n} A_{J_{e}} e_{k}\right\rangle e_{i}\right),
\end{aligned}
$$

If M is not totally geodesic, $c+\lambda^{2}=3 \lambda^{2} \neq 0$, so for each $\quad e_{k} \in V_{1}, \quad\left\langle e_{i}, \sum_{k=1}^{n} A_{J e_{k}} e_{k}\right\rangle=0$, therefore $\sum_{k=1}^{n} A_{J_{e_{k}}} e_{k}$ is in the direction of e_{1}. Then,

$$
\begin{align*}
\sum_{k=1}^{n} A_{J_{k}} e_{k} & =\sum_{k=1}^{n}\left\langle A_{J e_{k}} e_{k}, e_{1}\right\rangle e_{1} \tag{2.13}\\
& =\lambda\left(1-\operatorname{dim} V_{1}+\frac{1}{2} \operatorname{dim} V_{2}\right) e_{1}
\end{align*}
$$

Let $e_{k} \in V_{1}$ and $e_{l} \in V_{2}$, from Gauss equation it is seen that

$$
\begin{align*}
R\left(e_{k}, e_{l}\right) e_{1} & =\left(e_{k} \wedge e_{l}\right) e_{1}+A_{J e_{l}} A_{J e_{k}} e_{1}-A_{J e_{k}} A_{J e_{l}} e_{1} \\
& =-\lambda A_{J e_{l}} e_{k}-\frac{1}{2} \lambda A_{J e_{k}} e_{l}=-\frac{3}{2} \lambda A_{J e_{l}} e_{k} \tag{2.14}
\end{align*}
$$

If $A_{J_{l}} e_{k}=0$, (2.5) yields $\left\langle\mathbb{I}_{l l}, \mathbb{I}_{k k}\right\rangle=\lambda^{2}$, but since $\left\langle\mathbb{I}_{l l}, \mathbb{I}_{k k}\right\rangle=\frac{1}{2} \lambda^{2}$, so $\lambda=0$. From (2.9), (2.13) and (2.14) we have

$$
\begin{align*}
0 & =R\left(e_{k}, e_{l}\right) \sum_{m=1}^{n} A_{J_{e_{m}}} e_{m} \\
& =\lambda\left(1-\operatorname{dim} V_{1}+\frac{1}{2} \operatorname{dim} V_{2}\right) R\left(e_{k}, e_{l}\right) e_{1} \tag{2.15}\\
& =-\frac{3}{2}\left(1-\operatorname{dim} V_{1}+\frac{1}{2} \operatorname{dim} V_{2}\right) \lambda^{2} A_{J_{l}} e_{k},
\end{align*}
$$

If $A_{J e_{l}} e_{k} \neq 0$ from (2.15) we get that either $\lambda=0$ or $\left(1-\operatorname{dim} V_{1}+\frac{1}{2} \operatorname{dim} V_{2}\right)=0$. Then from (2.13), $H=0$.

So, isotropic Lagrangian submanifolds of $\tilde{M}^{n}(4 c)$ are either totally geodesic or minimal in $\mathbb{C} \mathrm{P}^{n}(4 c)$.

From the classification of minimal isotropic Lagrangian submanifolds of $\tilde{M}^{n}(4 c)$ and constant isotropic Lagrangian submanifolds of $\tilde{M}^{n}(4 c)$ given in [12], we obtain the following corollaries:

Corollary 3: Let $n \geq 3$, non-totally geodesic isotropic Lagrangian submanifolds M^{n} in complex space form $\tilde{M}^{n}(4 c)$ are minimal and $n=5,8,14$ or 26.

Corollary 4: Let M^{n} ($n \geq 3$) be a complete isotropic Lagrangian submanifold of $\tilde{M}^{n}(4 c)$. Then M^{n} is a totally geodesic or minimal submanifold in $\mathbb{C P}^{n}(4 c)$, and locally isometric to one of the following spaces:
a) $n=5$; $S U(3) / S O(3)$,
b) $n=8 ; S U(3)$,
c) $n=14 ; S U(6) / S p(3)$,
d) $n=26 ; E_{6} / F_{4}$, where E_{6}, F_{4} are exceptional Lie groups.

From [7], we know that all submanifolds in Corollary 4, are minimal.

We also know that isotropic Lagrangian submanifolds, are semi-parallel, for $n \geq 3$, [2]. In Theorem 2, we proved that, for $n \geq 3$, isotropic Lagrangian submanifolds are either totally geodesic or minimal. To prove the theorem we used the condition that M is semi-parallel. Now we prove the same result for isotropic Lagrangian surfaces.

Theorem 5: If M^{2} is a λ-isotropic Lagrangian surface in the complex space form $\tilde{M}^{2}(4 c)$, then M is either totally geodesic or minimal. Moreover, all constant isotropic Lagrangian surfaces in $\tilde{M}^{2}(4 c)$, are either totally geodesic or flat and minimal surfaces in $\mathbb{C} \mathrm{P}^{2}(4 c)$.

Proof: If $\lambda=0$ from (2.5) M is totally geodesic. If
$\lambda \neq 0$, for Lagrangian surfaces, from [12], we have that $\forall p \in M$ there exist an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} M$ satisfying $A_{J e_{1}} e_{1}=\lambda_{1} e_{1}$ and $A_{J e_{1}} e_{2}=\lambda_{2} e_{2}$, $\lambda_{1} \geq 2 \lambda_{2}$. Since, M is λ-isotropic, $\lambda_{1}^{2}=\lambda^{2}$. From (1.4) we get that $\left\langle A_{J e_{1}} e_{2}, e_{2}\right\rangle=\left\langle A_{J e_{2}} e_{2}, e_{1}\right\rangle=\lambda_{2}$, and from (2.4),

$$
0=\left\langle A_{J e_{2}} e_{2}, A_{J e_{1}} e_{2}\right\rangle=\lambda_{2}\left\langle A_{J e_{2}} e_{2}, e_{2}\right\rangle,
$$

so, $A_{J_{2}} e_{2}=\lambda_{2} e_{1}$. Using the fact that M is λ-isotropic gives, $\lambda_{2}^{2}=\lambda^{2}$. Also, from $\lambda_{1} \geq 2 \lambda_{2}$, one gets that $\lambda_{1}=\lambda$ and $\lambda_{2}=-\lambda$. So, $H=J A_{J_{1}} e_{1}+J A_{J_{2}} e_{2}=0$, i.e. M is minimal.

Now, suppose that M^{2} is a constant isotropic Lagrangian surface, so M^{2} is either totally geodesic or minimal. From Gauss equation, we obtain that M has constant Gaussian curvature $c-2 \lambda^{2}$.

In [8], it has been shown that, minimal Lagrangian submanifolds of constant sectional curvature in complex space forms are either totally geodesic or flat. So, if M^{2} is not totally geodesic, we have $c-2 \lambda^{2}=0$, so $c=2 \lambda^{2}>0$, i.e. M^{2} is a flat, minimal Lagrangian surface in $\mathbb{C} \mathrm{P}^{2}(4 c)$.

From [12], we know that every minimal Lagrangian surface M^{2} in $\tilde{M}^{2}(4 c)$ is isotropic. From Gauss equation we know that the Gaussian curvature of each λ-isotropic Lagrangian surface is $c-2 \lambda^{2}$. So, from Theorem 5 we obtain the following corollary.

Corollary 6: A minimal Lagrangian surface M^{2} of constant Gaussian curvature c_{1} in $\tilde{M}^{2}(4 c)$ is either totally geodesic or flat, constant λ-isotropic surface in $\mathbb{C} \mathrm{P}^{2}(4 c)$.

Acknowledgment

The author would like to thank gratefully Mr. M.J. Vanaei for his help in the prepration of the final corrected version of the paper.

References

1. Blair, D.E, Riemannian Geometry of Contact and Symplectic Manifolds. $2^{\text {nd }}$ ed. Progress in Math., 203, Birkhauser, (2010).
2. Chacón, P. M. and Lobos, G. A. Pseudo-parallel Lagrangian submanifolds in complex space forms. Diff Geo. Appl. 27: 137-145 (2009).
3. Chen, B. Y. Lagrangian H-umbilical submanifolds of para-Kahler manifolds. Taiwanse J. Math. Vol. 15, No. 6: 2483-2502 (2011).
4. Chen, B.Y. and Oguie, K. Two theorems on Kähler manifolds. Michigan Math. J. 21: 225-229 (1974).
5. Chen, B.Y. Classification of Lagrangian surfaces of constant curvature in complex projective plane. J. Geo. Physics, 53: 428-460 (2005).
6. Chen, B.Y. Interaction of Legendre Curves and Lagrangian submanifolds. Israel J. Math. CS 99: 69-108 (1997).
7. Chen, B.Y. Riemanian Geometry of Lagrangian submanifolds. Taiwanse J. Math. Vol. 5, No. 4: 681-723 (2001).
8. Ejiri, N. Totally Real Minimal Immersions of $n-$ dimensional Real Space Forms into n-dimensional Complex Space Forms. Proc. of American Math. Society Vol. 84 No. 2: 243-246 (1982).
9. Kasabov, O. Totally Real Semiparallel Isotropic Submanifold of Complex Space forms. Tensor (N.S) 56 12-18 (1995).
10. Lumiste, Ü. Semiparallel Submanifold in Space Form. Springer (2009).
11. Lumiste, Ü. Submanifold with Parallel Fundamental Form. Handbook of Differential Geometry, NorthHolland, Amsterdam, vol. I: 777-864 (2000)
12. Montiel, S. and Urbano, F. Isotropic Totally Real Submanifolds. Math. Z. 199: 55-60 (1988).
13. Naitoh, H. Isotropic submanifolds with parallel second fundamental form $P^{n}(c)$. Osaka J.Math. 18 no. 2: 427464 (1981).
14. O'Neill, B. Isotropic and Kähler Immersions. Canad. J. Math. 17: 907-915 (1965).

[^0]: MSC: 53C40, 53A07.
 ${ }^{*}$ Corresponding author, Tel.: +98(21)82883473, Fax: +98(21)82883493, E-mail: kashanim@modares.ac.ir

