Isotropic Lagrangian Submanifolds in Complex Space Forms

Z. Toeiserkani and S.M.B. Kashani*

Department of Pure Math, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box 14115-134, Tehran, Iran

Received: 21 November 2011/Revised: 22 September 2012/Accepted: 25 September 2012

Abstract

In this paper we study isotropic Lagrangian submanifolds M^n , in complex space forms $\tilde{M}^n(4c)$. It is shown that they are either totally geodesic or minimal in the complex projective space $\mathbb{C}P^n$, if $n \ge 3$. When n = 2, they are either totally geodesic or minimal in $\tilde{M}^2(4c)$. We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

Keywords: Lagrangian; Isotropic; Semi-parallel submanifold; H-umbilical; Complex space form

Introduction

The notion of an isotropic submanifold of a Riemannian manifold was introduced by B. O'Neill [14]. These submanifolds which can be considered as generalized totally geodesic submanifolds usually have been studied under some additional hypothesis, [12,13]. Here, we assume that these submanifolds are semi-parallel.

On the other hand, Lagrangian submanifolds of complex space forms have been deeply studied since the decade 1970's. A survey of the main results about Lagrangian submanifolds can be found in [7]. Since there is no complete classification of Lagrangian submanifolds, it is natural to study these submanifolds with some additional constraint.

Recall that, an *n*-dimensional Riemannian submanifold M of an *m*-dimensional Riemannian manifold \tilde{M} is called parallel if its second fundamental form \mathbb{I} , satisfies

$$(\overline{\nabla}\mathbb{I})(X,Y,Z) = \nabla_{Z}^{\perp}\mathbb{I}(X,Y)$$
$$-\mathbb{I}(\nabla_{Z}X,Y) - \mathbb{I}(X,\nabla_{Z}Y) = 0$$

for all vectors X, Y, Z, tangent to M where $\overline{\nabla}$ is the Van der Waerden–Bortolotti connection [11]. By their definition, semi-parallel submanifolds are generalized parallel submanifolds. The classification of semi-parallel submanifolds in real space forms is still an open problem, although several authors have obtained many important results. We can refer the reader to [10] for a survey. Also a recent good refernce for th whole subject of Lagrangian and symplectic manifolds is [1].

Since 2009, it is known that all isotropic Lagrangian submanifolds are parallel, hence semi-parallel [2]. In [9], semi-parallel isotropic Lagrangian submanifolds have been studied. In this paper we follows [2,12,13] to continue the study of isotropic Lagrangian submanifolds in complex space forms.

Our main results are Proposition 1 and Theorems 2,5.

MSC: 53C40, 53A07.

^{*} Corresponding author, Tel.: +98(21)82883473, Fax: +98(21)82883493, E-mail: kashanim@modares.ac.ir

Preliminaries

We recall some prerequisites from [2,6,12,14]. Let $(\tilde{M}^m, \langle, \rangle)$ be an *m*-dimensional Riemannian complex manifold and M^n be an *n*-dimensional real submanifold of \tilde{M} . We denote by X, Y, W, Z, ... vectors tangent to M and by U, V, ... generic vectors tangent to $\tilde{M} \cdot \nabla$ and $\tilde{\nabla}$ denote the Levi-Civita connections of M and \tilde{M} , respectively. I is the second fundamental form of M, and A_{ξ} is the shape operator of M in the direction of the normal vector field $\xi \in \chi^{\perp}(M)$.

The curvature \tilde{R} of $\tilde{\nabla}$ is defined by:

$$\tilde{R}(U_1, U_2)V = [\tilde{\nabla}_{U_1}, \tilde{\nabla}_{U_2}]V - \tilde{\nabla}_{[U_1, U_2]}V ,$$

and the sectional curvature of a plane spanned by $\{U, V\}$ is given by

 $\langle R(U,V)U,V \rangle / (||U||^2 ||V||^2 - \langle U,V \rangle^2).$

If R denote the Riemannian curvature tensor of ∇ , then the Gauss equation is,

$$\langle \tilde{R}(X,Y)Z,W \rangle = \langle R(X,Y)Z,W \rangle + \langle \mathbb{I}(X,Z),$$

 $\mathbb{I}(Y,W)\rangle-\langle\mathbb{I}(X,W),\mathbb{I}(Y,Z)\rangle.$

 $\overline{\nabla} = \nabla \oplus \nabla^{\perp}$ is the Van der Waerden–Bortolotti connection, where ∇^{\perp} is normal curvature. The curvature operator $\overline{R}(X,Y)$ of $\overline{\nabla}$, can be extended as derivation of tensor fields in the usual way. Its action on \mathbb{I} is as follows,

$$(\overline{R}(X,Y) \cdot \mathbb{I})(Z,W) = R^{\perp}(X,Y)(\mathbb{I}(Z,W))$$

- $\mathbb{I}(R(X,Y)Z,W) - \mathbb{I}(Z,R(X,Y)W),$ (1.1)

where R^{\perp} denote the Riemannian curvature operator of ∇^{\perp} . The submanifold M of \tilde{M} is called semi-parallel if its second fundamental form \mathbb{I} satisfies

$$\overline{R}(X,Y) \cdot \mathbb{I} = 0 \tag{1.2}$$

An almost complex structure on \tilde{M}^m is a tensor field J of type (1,1) on \tilde{M} , such that $J^2 = -\text{Id}_{T\tilde{M}}$. If J is an isometry, i.e. $\langle U, V \rangle = \langle JU, JV \rangle$, \tilde{M}^m is called an almost Hermitian manifold. The most interesting Hermitian manifolds are, the Kähler manifolds $(\tilde{M}, J, \langle , \rangle)$ defined by the condition $\tilde{\nabla}J = 0$, where $(\tilde{\nabla}J)(U,V) = \tilde{\nabla}_U J V - J \tilde{\nabla}_U V$.

The holomorphic sectional curvature of an almost Hermitian manifold is the restriction of the sectional curvature to holomorphic planes (the planes that are spanned by U and JU) in the tangent spaces. The curvature tensor of a space of constant holomorphic sectional curvature 4c, $\tilde{M}(4c)$, is given by:

$$\tilde{R}(U_1, U_2)V = c((U_1 \wedge U_2)V) + (JU_1 \wedge JU_2)V + 2\langle JU_1 \wedge U_2 \rangle JV)$$
(1.3)

where $(U_1 \wedge U_2)V = \langle U_1, V \rangle U_2 - \langle U_2, V \rangle U_1$.

A complex space form is a complete, simply connected, Kähler manifold with constant holomorphic sectional curvature. So, a complex space form is isometric to either the complex projective space $\mathbb{C}P^{n}(4c)$, if c > 0, or the complex Euclidean space \mathbb{C}^{n} , if c = 0, or the complex projective hyperbolic space $\mathbb{H}P^{n}(4c)$, if c < 0.

An *n*-dimensional submanifold M^n of an almost Hermitian complex manifold \tilde{M}^m is said to be totally real if $J(T_pM) \subset (T_pM)^{\perp}$ for all $p \in M$. A totally real submanifold M^n of \tilde{M}^m is said to be Lagrangian when m = n. For Lagrangian submanifolds of a Kähler manifold the following relations hold, [2]

$$JA_{JX}Y = \mathbb{I}(X,Y) = JA_{JY}X,$$

$$\langle \mathbb{I}(X,Y), JZ \rangle = \langle \mathbb{I}(Y,Z), JX \rangle = \langle \mathbb{I}(Z,X), JY \rangle, (1.4)$$

$$R^{\perp}(X,Y)JZ = JR(X,Y)Z.$$

Moreover, from the Gauss equation one has

$$R(X,Y) = \tilde{R}(X,Y) + A_{JX}A_{JY} - A_{JY}A_{JX}.$$
 (1.5)

In [4], it is proved that there exists no totally umbilic Lagrangian submanifold in a complex space form $\tilde{M}^{n}(4c)$ with $n \ge 2$ except the totally geodesic ones. The Lagrangian H -umbilical submanifolds are the simplest Lagrangian submanifolds next to the totally geodesic submanifolds in a complex space form. A Lagrangian H -umbilical submanifold of a Kähler manifold $\tilde{M}^{n}(4c)$ is a Lagrangian submanifold whose second fundamental form takes the following simple form, [6].

$$A_{Je_{1}}e_{1} = \lambda e_{1}, \quad A_{Je_{2}}e_{2} = \dots = A_{Je_{n}}e_{n} = \mu e_{1},$$

$$A_{Je_{1}}e_{j} = \mu e_{j}, \quad A_{Je_{j}}e_{k} = 0, \quad 2 \le j \ne k \le n,$$
(1.6)

with respect to some suitable orthonormal local frame field, and for some suitable functions λ and μ .

A Lagrangian submanifold M of \tilde{M} is said to be λ -isotropic if there exists an smooth function $\lambda: M \to \mathbb{R}$ such that $\|\mathbb{I}(X, X)\|^2 = \lambda^2(p)$, for any unit vector $X \in T_p M$ and for all $p \in M$, [14]. In particular, if λ is constant then M is called constant isotropic.

From [12], it is known that, if M^n $(n \ge 3)$ is a minimal totally real and isotropic submanifold of a Kähler manifold, then either M is totally geodesic or n = 5, 8, 14, 26. Also, if M^n is a complete, constant isotropic totally real submanifold of $\mathbb{C}P^n(4c)$, then either M is totally geodesic or M is locally isometric to $S^1 \times S^{n-1}$ $(n \ge 2)$; SU(3)/SO(3), n = 5; SU(3), n = 8; SU(6)/Sp(3), n = 14; E_6 , n = 26.

Results

In [2], P. M Chacon and G. A. Lobos give some properties of semi-parallel Lagrangian H -umbilical submanifold. Here, we give the classification of such submanifolds, by using their result.

Proposition 1: If $n \ge 3$ and M^n is a semi-parallel Lagrangian H -umbilical submanifold of $\tilde{M}^n(4c)$,

then M^n is one of the following submanifolds.

a) A totally geodesic one,

b) A flat submanifold of \mathbb{C}^n ,

c) A non-flat and non-totally geodesic minimal submanifold of $\mathbb{C} \mathbb{P}^n(4c)$.

Proof: suppose that $\{e_1,...,e_n\}$ is a suitable orthonormal local frame field, such that with respect to it the shape operators of M have the form (1.6). From the Gauss equation for i, j = 2,...,n and $i \neq j$ we have,

$$R(e_{i}, e_{j})e_{i} = (c - \mu^{2})e_{j},$$

$$R(e_{i}, e_{1})e_{i} = (c + \mu^{2} - \mu\lambda)e_{1}.$$
(2.1)

From (1.6), for Lagrangian H-umbilical submanifolds, $H = J \frac{1}{n} \sum_{i=1}^{n} A_{Je_i} e_i = \frac{\lambda + (n-1)\mu}{n} Je_1$. If $\mu \neq 0$ from [2], we have $\lambda = (1-n)\mu$ and $c = n\mu^2 > 0$, so H = 0, i.e. M is minimal. Also, from (2.1) we have $\langle R(e_i, e_j)e_i, e_j \rangle = (n-1)\mu^2 > 0$, 0 so M is a non-flat, non-totally geodesic minimal submanifold of $\mathbb{C} P^n(4c)$. A semi-parallel Lagrangian submanifold M^n of constant sectional curvature c_1 in $\tilde{M}^n(4c)$ is flat or totally geodesic [2]. If $\mu = 0$, from (2.1) we get that $R(e_i, e_j)e_i = ce_j$, and $R(e_i, e_1)e_i = ce_1$. So M has constant sectional curvature c, Hence, M is either totally geodesic or flat. If M is flat, we get that c = 0, i.e. M^n is a flat submanifold of \mathbb{C}^n .

One should see [3] for new results about Lagrangian H-umbilical submanifolds of para-Kahler manifolds.

It is known that for $n \ge 3$ any λ -isotropic Lagrangian submanifold M^n of $\tilde{M}^n(4c)$ is constant isotropic and M^n is parallel in $\tilde{M}^n(4c)$, [2]. So, any isotropic Lagrangian submanifold of $\tilde{M}^n(4c)$ is semiparallel. In [12] minimal isotropic Lagrangian submanifolds have been studied. Now, we use the fact that isotropic Lagrangian submanifolds are semiparallel, and give the classification of such submanifolds.

Theorem 2: Let M^n $(n \ge 3)$ be a λ -isotropic Lagrangian submanifold of $\tilde{M}^n(4c)$. Then M is either totally geodesic or minimal in $\mathbb{C}P^n(4c)$.

Proof: From [9], a semi-parallel isotropic Lagrangian submanifold of dimension $n \ge 3$ is either totally geodesic or $c = 2\lambda^2 > 0$. So, every isotropic Lagrangian submanifold of $\tilde{M}^n(4c)$ with $c \le 0$ is totally geodesic. It follows that non-totally geodesic isotropic Lagrangian submanifolds can only exist in $\mathbb{C}P^n(4c)$.

If $X = \sin \theta e_i + \cos \theta e_j$, we have,

$$\lambda^{2} = \|\mathbb{I}(X, X)\|^{2} = \lambda^{2} \cos^{4} \theta + \lambda^{2} \sin^{4} \theta$$

$$+ (\|\mathbb{I}(e_{i}, e_{j})\|^{2} + \frac{1}{2} \langle \mathbb{I}(e_{i}, e_{i}), \mathbb{I}(e_{j}, e_{j}) \rangle) \sin^{2} 2\theta$$

$$+ 4 \langle \mathbb{I}(e_{j}, e_{j}), \mathbb{I}(e_{i}, e_{j}) \rangle \sin^{3} \theta \cos \theta$$

$$+ 4 \langle \mathbb{I}(e_{i}, e_{i}), \mathbb{I}(e_{i}, e_{j}) \rangle \sin \theta \cos^{3} \theta,$$

$$(2.2)$$

Since λ is independent of θ , we obtain from (2.2) that,

$$0 = \frac{d}{d\theta}\lambda^{2} = -2\lambda^{2}\sin 2\theta\cos 2\theta + 2(\left\|\mathbb{I}(e_{i}, e_{j})\right\|^{2} + \frac{1}{2}\langle\mathbb{I}(e_{i}, e_{i}), \mathbb{I}(e_{j}, e_{j})\rangle)\sin 4\theta$$

$$+4\langle\mathbb{I}(e_{j}, e_{j}), \mathbb{I}(e_{i}, e_{j})\rangle(3\sin^{2}\theta\cos^{2}\theta - \sin^{4}\theta)$$

$$+4\langle\mathbb{I}(e_{i}, e_{i}), \mathbb{I}(e_{i}, e_{j})\rangle(\cos^{4}\theta - 3\sin^{2}\theta\cos^{2}\theta),$$

$$(2.3)$$

Choose
$$\theta = 0$$
 in (2.3) to get
 $\langle \mathbb{I}(e_i, e_i), \mathbb{I}(e_i, e_j) \rangle = 0$ (2.4)

Choose $\theta = \frac{\pi}{8}$ to obtain

$$2\left\|\mathbb{I}(\boldsymbol{e}_{i},\boldsymbol{e}_{j})\right\|^{2} + \langle\mathbb{I}(\boldsymbol{e}_{i},\boldsymbol{e}_{i}),\mathbb{I}(\boldsymbol{e}_{j},\boldsymbol{e}_{j})\rangle = \lambda^{2}$$
(2.5)

From [12], $\forall p \in M$ there exists an orthonormal basis $\{e_1,...,e_n\}$ of T_pM satisfying $A_{Je_1}e_i = \lambda_i e_i$, and $\lambda_1 = \lambda$, and i = 2,...,n, λ_i is either $-\lambda$ or $\frac{1}{2}\lambda$. Let V_1 and V_2 be the eigenspaces of A_{Je_1} corresponding to the eigenvalues $-\lambda$ and $\frac{1}{2}\lambda$ respectively. Then, $\mathbb{I}(x,y) = -\langle x, y \rangle \lambda Je_1$, $\forall x, y \in V_1$, and $\langle \mathbb{I}(v,w), Jz \rangle = 0$ for $v, w, z \in V_2$, hence $A_{Jv}w$ belongs to $V_1 \cup \operatorname{span}_{\mathbb{R}}\{e_1\}$. So, $\sum_{k=1}^n A_{Je_k}e_k$ belongs to $V_1 \cup \operatorname{span}_{\mathbb{R}}\{e_1\}$.

Now we consider four possible cases for V_1 and V_2 . **case i** : If $V_1 = \emptyset$, we have $\mathbb{I}(e_i, e_i) = \frac{1}{2}\lambda J e_1$ for $e_i \in V_2$, so $\|\mathbb{I}(e_i, e_i)\|^2 = \frac{1}{4}\lambda^2$. Since M is λ -isotropic, hence $\frac{1}{4}\lambda^2 = \lambda^2$, so $\lambda = 0$.

case ii : If $V_2 = \emptyset$, since M is an H-umbilical Lagrangian submanifold. From Proposition 2, M is either totally geodesic or minimal. We have $H = (1 - \dim V_1)\lambda Je_1$ and $\dim V_1 > 1$, so if M is minimal, hence $\lambda = 0$ and M is totally geodesic. **case iii** : If $\dim V_1 = 1$ and $\dim V_2 = n - 2$, from (2.4) and (2.5) we obtain that,

$$A_{Je_{1}}e_{1} = \lambda e_{1}, \quad A_{Je_{2}}e_{2} = -\lambda e_{1},$$

$$A_{Je_{1}}e_{2} = -\lambda e_{2}, \quad A_{Je_{1}}e_{i} = \frac{1}{2}\lambda e_{i},$$

$$A_{Je_{i}}e_{i} = \frac{1}{2}\lambda e_{1} + \varepsilon_{i}\frac{\sqrt{3}}{2}\lambda e_{2},$$

$$A_{Je_{2}}e_{i} = \varepsilon_{i}\frac{\sqrt{3}}{2}\lambda e_{i}, \quad A_{Je_{i}}e_{j} = 0,$$
(2.6)

where $e_2 \in V_1$ and $e_i, e_j \in V_2$, and $\varepsilon_i = \pm 1$. We have from Gauss equation and (2.6) that,

$$R(e_{1},e_{i})e_{1} = c(e_{1} \wedge e_{i})e_{1} + A_{Je_{1}}A_{Je_{i}}e_{1} - A_{Je_{i}}A_{Je_{1}}e_{1}$$
$$= ce_{i} + \frac{1}{2}\lambda A_{Je_{1}}e_{i} - \lambda A_{Je_{i}}e_{1}$$
$$= ce_{i} + \frac{1}{4}\lambda^{2}e_{i} - \frac{1}{2}\lambda^{2}e_{i} = (c - \frac{1}{4}\lambda^{2})e_{i},$$
$$R(e_{1},e_{i})e_{2} = c(e_{1} \wedge e_{i})e_{2} + A_{Je_{1}}A_{Je_{i}}e_{2} - A_{Je_{i}}A_{Je_{1}}e_{2}$$

$$= \varepsilon_{i} \frac{\sqrt{3}}{2} \lambda A_{Je_{1}} e_{i} + \lambda A_{Je_{i}} e_{2}$$

$$= \varepsilon_{i} \frac{\sqrt{3}}{4} \lambda^{2} e_{i} + \varepsilon_{i} \frac{\sqrt{3}}{2} \lambda^{2} e_{i} = \frac{3\sqrt{3}}{4} \varepsilon_{i} \lambda^{2} e_{i},$$

$$R (e_{2}, e_{i}) e_{1} = c (e_{2} \wedge e_{i}) e_{1} + A_{Je_{2}} A_{Je_{i}} e_{1} - A_{Je_{i}} A_{Je_{2}} e_{1}$$

$$= \frac{1}{2} \lambda A_{Je_{2}} e_{i} + \lambda A_{Je_{i}} e_{2} = \varepsilon_{i} \frac{3\sqrt{3}}{4} \lambda^{2} e_{i},$$

$$R (e_{2}, e_{i}) e_{2} = c (e_{2} \wedge e_{i}) e_{2} + A_{Je_{2}} A_{Je_{i}} e_{2} - A_{Je_{i}} A_{Je_{2}} e_{2}$$

$$= c e_{i} + \varepsilon_{i} \frac{\sqrt{3}}{2} \lambda A_{Je_{2}} e_{i} + \lambda A_{Je_{i}} e_{1}$$

$$= c e_{i} + \frac{3}{4} \lambda^{2} e_{i} + \frac{1}{2} \lambda^{2} e_{i} = (c + \lambda^{2}) e_{i}.$$
(2.7)

From (2.6) we obtain that

L.

$$\sum_{k=1}^{n} A_{Je_{k}} e_{k} = \frac{n-2}{2} \lambda e_{1} + \frac{\sqrt{3}}{2} \lambda \sum_{k=3}^{n} \varepsilon_{k} e_{2}.$$
(2.8)

For semi-parallel Lagrangian submanifold M^n of $\tilde{M}^n(4c)$ we have, [2]

$$R(X,Y)\sum_{k=1}^{n} A_{Je_{k}}e_{k} = 0$$
(2.9)

Then from (2.7), (2.8) and (2.9) one obtains that,

$$0 = R(e_{2}, e_{i}) \sum_{k=1}^{n} A_{Je_{k}} e_{k} = \frac{n-2}{2} \lambda R(e_{2}, e_{i}) e_{1}$$
$$+ \frac{\sqrt{3}}{2} \lambda \sum_{k=3}^{n} \varepsilon_{k} R(e_{2}, e_{i}) e_{2}$$
$$= \varepsilon_{i} \frac{3\sqrt{3}}{8} (n-2) \lambda^{3} e_{i} + \frac{3\sqrt{3}}{2} \lambda^{3} \sum_{k=3}^{n} \varepsilon_{k} e_{i},$$
(2.10)

and

$$0 = R(e_{1}, e_{i}) \sum_{k=1}^{n} A_{Je_{k}} e_{k} = \frac{n-2}{2} \lambda R(e_{1}, e_{i}) e_{1}$$
$$+ \frac{\sqrt{3}}{2} \lambda \sum_{i=3}^{n} \varepsilon_{i} R(e_{1}, e_{i}) e_{2}$$
$$(2.11)$$
$$= \frac{n-2}{2} \lambda (c - \frac{1}{4} \lambda^{2}) e_{i} + \frac{9}{8} \varepsilon_{i} \lambda^{3} \sum_{k=3}^{n} \varepsilon_{k} e_{i},$$

If $\lambda \neq 0$, from (2.10), $\sum_{k=3}^{n} \varepsilon_{k} = -\varepsilon_{i} \frac{1}{4}(n-2)$, then from (2.11), n = 2, this is in contrast with the assumption $n \ge 3$. So, $\lambda = 0$. **case iv** : If $V_{2} \neq \emptyset$ and $\dim V_{1} \ge 2$, from Gauss equation we have,

$$R(e_{i}, e_{j})e_{k} = c(e_{i} \wedge e_{j})e_{k}$$

$$+A_{Je_{j}}A_{Je_{i}}e_{k} - A_{Je_{i}}A_{Je_{j}}e_{k} = 0,$$

$$R(e_{i}, e_{j})e_{1} = c(e_{i} \wedge e_{j})e_{1}$$

$$+A_{Je_{j}}A_{Je_{i}}e_{1} - A_{Je_{i}}A_{Je_{j}}e_{1} \qquad (2.12)$$

$$= -\lambda A_{Je_{j}}e_{i} + \lambda A_{Je_{i}}e_{j} = 0,$$

$$R(e_{i}, e_{j})e_{i} = c(e_{i} \wedge e_{j})e_{i} + A_{Je_{j}}A_{Je_{i}}e_{i}$$

$$-A_{Je_{i}}A_{Je_{i}}e_{i} = ce_{j} + \lambda^{2}e_{j},$$

for $e_i, e_j, e_k \in V_1$. Then, the restriction of $R(e_i, e_j)$ to $V_1 \cup \operatorname{span}_{\mathbb{R}} \{e_1\}$ is equal to $R(e_i, e_j) = (c + \lambda^2)(e_i \wedge e_j)$. Using (2.9) gives,

$$0 = R(e_i, e_j) \sum_{k=1}^n A_{Je_k} e_k = \sum_{k=1}^n R(e_i, e_j) A_{Je_k} e_k$$

= $(c + \lambda^2) \sum_{k=1}^n (e_i \wedge e_j) A_{Je_k} e_k$
= $(c + \lambda^2) (\sum_{k=1}^n \langle e_i, A_{Je_k} e_k \rangle e_j - \sum_{k=1}^n \langle e_j, A_{Je_k} e_k \rangle e_i)$
= $(c + \lambda^2) (\langle e_i, \sum_{k=1}^n A_{Je_k} e_k \rangle e_j - \langle e_j, \sum_{k=1}^n A_{Je_k} e_k \rangle e_i),$

If *M* is not totally geodesic, $c + \lambda^2 = 3\lambda^2 \neq 0$, so for each $e_k \in V_1$, $\langle e_i, \sum_{k=1}^n A_{je_k} e_k \rangle = 0$, therefore

 $\sum_{k=1}^{n} A_{Je_k} e_k$ is in the direction of e_1 . Then,

$$\sum_{k=1}^{n} A_{Je_{k}} e_{k} = \sum_{k=1}^{n} \langle A_{Je_{k}} e_{k}, e_{1} \rangle e_{1}$$

$$= \lambda (1 - \dim V_{1} + \frac{1}{2} \dim V_{2}) e_{1}$$
(2.13)

Let $e_k \in V_1$ and $e_l \in V_2$, from Gauss equation it is seen that

$$R(e_{k},e_{l})e_{1} = (e_{k} \wedge e_{l})e_{1} + A_{Je_{l}}A_{Je_{k}}e_{1} - A_{Je_{k}}A_{Je_{l}}e_{1}$$

= $-\lambda A_{Je_{l}}e_{k} - \frac{1}{2}\lambda A_{Je_{k}}e_{l} = -\frac{3}{2}\lambda A_{Je_{l}}e_{k}$ (2.14)

If $A_{Je_l}e_k = 0$, (2.5) yields $\langle \mathbb{I}_{ll}, \mathbb{I}_{kk} \rangle = \lambda^2$, but since $\langle \mathbb{I}_{ll}, \mathbb{I}_{kk} \rangle = \frac{1}{2}\lambda^2$, so $\lambda = 0$. From (2.9), (2.13) and (2.14) we have

$$0 = R(e_{k}, e_{l}) \sum_{m=1}^{n} A_{Je_{m}} e_{m}$$

= $\lambda (1 - \dim V_{1} + \frac{1}{2} \dim V_{2}) R(e_{k}, e_{l}) e_{1}$ (2.15)
= $-\frac{3}{2} (1 - \dim V_{1} + \frac{1}{2} \dim V_{2}) \lambda^{2} A_{Je_{l}} e_{k}$,

If $A_{Je_l}e_k \neq 0$ from (2.15) we get that either $\lambda = 0$ or $(1 - \dim V_1 + \frac{1}{2}\dim V_2) = 0$. Then from (2.13), H = 0.

So, isotropic Lagrangian submanifolds of $\tilde{M}^{n}(4c)$ are either totally geodesic or minimal in $\mathbb{C} P^{n}(4c)$.

From the classification of minimal isotropic Lagrangian submanifolds of $\tilde{M}^{n}(4c)$ and constant isotropic Lagrangian submanifolds of $\tilde{M}^{n}(4c)$ given in [12], we obtain the following corollaries:

Corollary 3: Let $n \ge 3$, non-totally geodesic isotropic Lagrangian submanifolds M^n in complex space form $\tilde{M}^n(4c)$ are minimal and n = 5,8,14 or 26.

Corollary 4: Let M^n $(n \ge 3)$ be a complete isotropic Lagrangian submanifold of $\tilde{M}^n(4c)$. Then M^n is a totally geodesic or minimal submanifold in $\mathbb{C}P^n(4c)$, and locally isometric to one of the following spaces:

- a) n = 5; SU(3)/SO(3),
- b) n = 8; SU(3),
- c) n = 14; SU(6)/Sp(3),

d) n = 26; E_6 / F_4 , where E_6 , F_4 are exceptional Lie groups.

From [7], we know that all submanifolds in Corollary 4, are minimal.

We also know that isotropic Lagrangian submanifolds, are semi-parallel, for $n \ge 3$, [2]. In Theorem 2, we proved that, for $n \ge 3$, isotropic Lagrangian submanifolds are either totally geodesic or minimal. To prove the theorem we used the condition that M is semi-parallel. Now we prove the same result for isotropic Lagrangian surfaces.

Theorem 5: If M^2 is a λ -isotropic Lagrangian surface in the complex space form $\tilde{M}^2(4c)$, then M is either totally geodesic or minimal. Moreover, all constant isotropic Lagrangian surfaces in $\tilde{M}^2(4c)$, are either totally geodesic or flat and minimal surfaces in $\mathbb{C}P^2(4c)$.

Proof: If $\lambda = 0$ from (2.5) *M* is totally geodesic. If

 $\lambda \neq 0$, for Lagrangian surfaces, from [12], we have that $\forall p \in M$ there exist an orthonormal basis $\{e_1, e_2\}$ of $T_p M$ satisfying $A_{Je_1}e_1 = \lambda_1e_1$ and $A_{Je_1}e_2 = \lambda_2e_2$, $\lambda_1 \ge 2\lambda_2$. Since, M is λ -isotropic, $\lambda_1^2 = \lambda^2$. From (1.4) we get that $\langle A_{Je_1}e_2, e_2 \rangle = \langle A_{Je_2}e_2, e_1 \rangle = \lambda_2$, and from (2.4),

 $0 = \langle A_{Je_2} e_2, A_{Je_1} e_2 \rangle = \lambda_2 \langle A_{Je_2} e_2, e_2 \rangle ,$

so, $A_{Je_2}e_2 = \lambda_2 e_1$. Using the fact that M is λ -isotropic gives, $\lambda_2^2 = \lambda^2$. Also, from $\lambda_1 \ge 2\lambda_2$, one gets that $\lambda_1 = \lambda$ and $\lambda_2 = -\lambda$. So, $H = JA_{Je_1}e_1 + JA_{Je_2}e_2 = 0$, i.e. M is minimal.

Now, suppose that M^2 is a constant isotropic Lagrangian surface, so M^2 is either totally geodesic or minimal. From Gauss equation, we obtain that M has constant Gaussian curvature $c - 2\lambda^2$.

In [8], it has been shown that, minimal Lagrangian submanifolds of constant sectional curvature in complex space forms are either totally geodesic or flat. So, if M^2 is not totally geodesic, we have $c - 2\lambda^2 = 0$, so $c = 2\lambda^2 > 0$, i.e. M^2 is a flat, minimal Lagrangian surface in $\mathbb{C} P^2(4c)$.

From [12], we know that every minimal Lagrangian surface M^2 in $\tilde{M}^2(4c)$ is isotropic. From Gauss equation we know that the Gaussian curvature of each λ -isotropic Lagrangian surface is $c - 2\lambda^2$. So, from Theorem 5 we obtain the following corollary.

Corollary 6: A minimal Lagrangian surface M^2 of constant Gaussian curvature c_1 in $\tilde{M}^2(4c)$ is either totally geodesic or flat, constant λ -isotropic surface in $\mathbb{C}P^2(4c)$.

Acknowledgment

The author would like to thank gratefully Mr. M.J. Vanaei for his help in the prepration of the final corrected version of the paper.

References

- 1. Blair, D.E, Riemannian Geometry of Contact and Symplectic Manifolds. 2nd ed. Progress in Math., 203, Birkhauser, (2010).
- Chacón, P. M. and Lobos, G. A. Pseudo-parallel Lagrangian submanifolds in complex space forms. *Diff Geo. Appl.* 27: 137-145 (2009).
- Chen, B. Y. Lagrangian H-umbilical submanifolds of para-Kahler manifolds. *Taiwanse J. Math.* Vol. 15, No. 6: 2483-2502 (2011).
- Chen, B.Y. and Oguie, K. Two theorems on Kähler manifolds. *Michigan Math. J.* 21: 225-229 (1974).
- Chen, B.Y. Classification of Lagrangian surfaces of constant curvature in complex projective plane. J. Geo. Physics, 53: 428–460 (2005).
- Chen, B.Y. Interaction of Legendre Curves and Lagrangian submanifolds. *Israel J. Math.* CS 99: 69-108 (1997).
- Chen, B.Y. Riemanian Geometry of Lagrangian submanifolds. *Taiwanse J. Math.* Vol. 5, No. 4: 681-723 (2001).
- Ejiri, N. Totally Real Minimal Immersions of ndimensional Real Space Forms into n-dimensional Complex Space Forms. *Proc. of American Math. Society.* Vol. 84 No. 2: 243-246 (1982).
- Kasabov, O. Totally Real Semiparallel Isotropic Submanifold of Complex Space forms. *Tensor* (N.S) 56: 12-18 (1995).
- 10. Lumiste, Ü. Semiparallel Submanifold in Space Form. Springer (2009).
- 11. Lumiste, Ü. Submanifold with Parallel Fundamental Form. Handbook of Differential Geometry, North-Holland, Amsterdam, vol. I: 777–864 (2000).
- Montiel, S. and Urbano, F. Isotropic Totally Real Submanifolds. *Math. Z.* 199: 55-60 (1988).
- Naitoh, H. Isotropic submanifolds with parallel second fundamental form Pⁿ(c). Osaka J.Math. 18 no. 2: 427– 464 (1981).
- 14. O'Neill, B. Isotropic and Kähler Immersions. *Canad. J. Math.* **17**: 907-915 (1965).