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Abstract

In this paper, we calculate theoretically the relaxation rates of hot, thermal and
antinodal quasiparticles by using Fermi’s golden rule. The transition probabilities
at low temperatures express in terms of Bogoliubov coefficients, singlet and
triplet scattering amplitudes and dimensionless Landau parameters. The values of
Landau parameters may be determined by comparison with the experimental data.
Furthermore, we calculate thermal conductivity coefficients of YBCO in terms of
antinodal quasiparticle relaxation rates which are in accordance with experimental

results.
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Introduction

Experiments such as penetration depth, transport and
angle resolved photoemission support the well-defined
quasiparticle excitations in the high-7, superconductors
at low temperatures [1]. There are also considerable
experimental evidences that the high-T7,. cuprates exhibit
the simple power law dependencies at low temperatures.
Superconducting state properties of the cuprates thus
appear to be consistence with d-wave BCS theory with
nodal quasiparticle excitations. Furthermore, the normal
state properties of the high-7. superconductors,
especially, optimal and underdoped ones, cannot be
considered in terms of well-defined quasiparticles [2].
Fermi liquid theory for the normal Fermi systems is
based on the existence of well-defined quasiparticle

excitations. Nevertheless, one can use this theory for
high-T7, superconductors at low temperatures since sharp
quasiparticle peaks do appear all over the Fermi surface
in the superconducting state at 7<7, [3]. The superfluid
Fermi liquid theory is at least consistent with the data in
the overdoped and optimally doped regimes, but
dubious in the underdoped regime [4].

Larkin [5] and Leggett [6] in their classic papers
could extend the Landau theory of Fermi liquids to s-
wave superfluids. Leggett’s microscopic theory of a
superfluid Fermi liquid determined the static properties
of this liquid in terms of normal phase Landau
parameters. Gross et al. [7], Xu et al. [8], Walker [1],
Paramekanti and Randeria [9] generalized the theory of
Landau to superconductors with anisotropic Fermi
surface, especially, to d-wave superconductors.
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Motivated by pump-probe experiments of Segre et
al. [10-12] and Gedik et al. [13] that in the limit of
strong intensity the quasiparticle relaxation rates depend
on T° and T’exp(A(T)/T) at low temperatures, we are
going to calculate the relaxation rates of quasiparticles
in a d-wave superconductor in the presence of Fermi
liquid interactions. Howell et al. [14] by presenting a
theory on which hot quasiparticles scatter through the
antinodal bottleneck before recombination and within a
model where quasiparticles are scattered by a simple
local interaction, could show that at high temperatures
there is a fast relaxation due to umklapp scattering.
They supposed that below some crossover temperature
relaxation rate is dominated by diffusion in momentum
space along the Fermi surface from the antinodes to the
nodes.

In this paper, we use the phenomenological theory of
Fermi liquid interaction of Paramekanti and Randeria
[9] for a two-dimensional d-wave superconductor on a
square lattice to calculate the transition probabilities of
different processes in terms of the Landau parameters.
Then by writing the Fermi’s golden rule for the
quasiparticle relaxation rate, 1/7, in terms of the
transition probabilities, we determine the temperature
dependence of the quasiparticle relaxation rate in terms
of the Landau parameters. Finally, we calculate thermal
conductivity coefficients of YBCO by using
Khalatnikov et al.’s work [15] and compare our results
with the experimental data [16,17].

The paper is organized as follows. In the next section
we calculate the transition probabilities for processes in
which two quasiparticles emerge into two, one
quasiparticle into three; and three quasiparticles
coalescence into one in terms of symmetric and anti-
symmetric amplitudes. Then we write the scattering
amplitudes in terms of Landau parameters. We present
calculations of hot and thermal quasiparticles relaxation
rates at low temperatures in the section of results. We
also calculate thermal conductivity coefficients of
YBCO and compare the result with experiment. Finally,
in the discussion section, we give some remarks on the
determination of the values of Landau parameters in
high-T, superconductors. The analytical results for the
transition probabilities in terms of T-matrix and
Bogoliubov coefficients come in the Appendix.

Materials and Methods

1. Transition Probabilities

To obtain the transition probabilities, at low
temperatures in which two-particle process dominate,
we start with the interaction term in the Hamiltonian as
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H :% S (3.4IT[1,2)alalaa,, (M

1,2,3,4
where i =1,2,3,4 stands for both momentum (I3i) and
spin (o,) variables. As we have mentioned in the spirit

of a Fermi liquid approach, we assume the existence of
well-defined quasiparticles. By using Bogoliubov

the

annihilation a;, operators may be replaced by the

transformations, particle creation a;(r and

quasiparticle creation b;(; and annihilation bﬁ(T

operators as [18]

_ T
bﬁo’ _uﬁ‘aa'aﬁo” _vﬁ,aa'a—ﬁa"
o o @)
bﬁo‘ :vﬁ,o'cr'aﬁo" +u;5,o'o"a7ﬁo'"
where the matrix elements u, . and v, . can be
chosen for d-wave superconductors as
s % s 3)
Usor =4[5 o5's 3 Ve = 4|57 g
’ 2 2E, " 2 2E,

with E, =./s; +A’ and assume a d-wave gap
parameter A=A, cos26, over a Fermi surface. Here,
0, is the angle between p and say the p, -axis in the
2D momentum space and A, is the maximum of the

gap. For the non-unitary state of d-wave
superconductor, there are the following properties
between u and v

4)

By using of Egs. (2) in Eq. (1), we obtain H in terms
of Bogoliubov quasiparticle creation and annihilation
operators

-p,oo’ :uﬁ,(ﬂr" H v—ﬁ,(rn' :Vﬁ,(nj"

{[3Tat|Thit 2N @bl —v.b,,)

(bl —vb  ub,—v b by —v,b')]
+[(3LAT Tt 2 @bl —v b))

Wb +ub by —v b )usb,, —vb)]
+[(3T 4 T 2d) v b, +ubl)

Wbl —vb_ ub,—v Db ub

+
3731 2724 +Vzb72T)]

+[(3LAT T 2T @ by —v,b )
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(vsbfz'r +u3b;l )(ulbw +V1bj1T )(uzbz‘r v b 24 )]

+[(3T 4TI 2w, by +ub))

(usb.:T _V.zbw )(ulbll +v b IT)(M sz Vzbjzi )] (5)

+[(3Yad Tl 24) 0, b, +ub))

(I +u3b;l)(u]bw +v b m)(” b, +v,b 2T)]}

2724

where i=1,2,3,4 This

Hamiltonian contains the terms b/b]b'b,, bbjb.b, ,
bib,bb,, bbjpTbT, and b b bb,.
decay one quasiparticle into three, convert two
quasiparticles into two, coalescence three quasiparticles
into one, create four quasiparticles from the condensate,
and scatter four quasiparticles into the condensate,
respectively. The last two processes are not allowed,
because in each process the total energy should be
conserved.

One may define the transition probability for two-
particle process with parallel spin as

stands for momentum 15,

These terms

2
W, (1) =27|(3 T4 M2 1)) ©6)
where subscripts on W indicate binary processes in
which two quasiparticles with spin up scatter to two
quasiparticles with spin up. For the antiparallel spin
case we have

W, (M) =2;;‘(3’?,4‘¢|H|1’T,2‘¢>‘2
(7
varl(3d.a it

The transition probability for coalesced processes,
are

WM =2a(4 M| 12t -3 1) ®)

2

W3,(T»L):27IK4'T|H|1' 12l -3 T}‘ . ©9)

Similarly the transition probabilities for decay
processes as

Ny =2al(3 tard 2 Mt (10)

2

w7 :27z|<3’ N4t 2 M H| T>| . (11)
In the Appendix, we present the above transition
probabilities in terms of the T -matrix elements. These
elements may be expressed in terms of the scattering
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amplitudes for pairs of quasiparticles in singlet and
triplet states, T, and T, respectively. By considering

properties of T, and T, , [18,19], we have
(21314111
=(-2434T1|4d1d)=T,,
(413N TNN2 1) =T,
(113N T|-4121)=T
(2134 T[-4,11)
=(=243NT |41 =4(T, - T,
(4134T1(1d,27)

a1

Al

=413 4T 14,21 =4(T, - T,y),
(-1134T|-44,271)

=(-13N T4 120) =4(T, - Ty,
(2134 T[-4 1Y)

=(2 134 T[4 1) =L(T, +T,),
<4T,3~HT|1T,2J«>

(st =i, et P

(3014 T|-4121)
=<—3 LITT|-41,2 ~L>E%(T +T)-

g
We can express the singlet and triplet scattering
amplitudes in terms of symmetric amplitude T® and
anti-symmetric amplitude T,

T =T -3T°,, T =T +T° (13)

The transition probabilities for quasiparticles which
are located near the nodes and the antinodes can be
simplified by using the following approximation for the
Bogoliubov coefficients: near the nodes one may write
u, ~1,v;

~0;and u; zvi ~1/2 for antinodales.

By substituting the values of #, and v, in the

equations of transition probabilities [Eqgs. (A1-A7)], we
finally obtain the following results for transition
probabilities in the case of thermal quasiparticles
scattering as
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w,, (TT) 27r| m| s
) (14)
22 (T‘J’) z (| am rII| + |Tzn + Tsll

),

and the other transition probabilities have nearly zero
value:

W (M) =, ()=, (1) =, (T¥)=0. (15)
At low temperatures only binary processes are
dominated for scattering of thermal quasiparticles with
each other. In the next section we consider this problem
extensively.
By substituting the values of u » and v » for thermal

and hot quasiparticles in the transition probabilities in
appendix (A1-A7), we have

2z 1
W, (TT) = | tH| 16

( T, (Ty + T+ Ty (T, +T,) )

)

Irnﬂ (16)

Wy (T‘L) 27[ 1(| Ty =Ty

1 2 1
+Z(|Tﬂ| ]

1. 1 .
57Tt T, (T, = T,)

|T:H +T,

1
_Z(Ttl )( I sII)

( a .SH) + ( a _slI ))}
and

1
Wi (TT) =27 4( an

W (T‘L) =2r|— (T;m +T

)

W, =2z|- : —T,+

2

(M) =2 (T, =T = (T, + T

For the scattering relaxation rate of thermal
quasiparticles with antinodal quasiparticles, we obtain
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W, =2x{— | |+

[mT+T (T, +T) ]}

1 1
oM =20{ 1 44T, -Tf
1
+E|:(|Tﬂ[ \n| +| t[I+TsH|2)

1 .
_[_Z(Tzn ST )( TVI)

1
_Z( Tﬂ)( a ‘II)
T (T =T+ ThT, - T ],
W31 (TT) - | an \m)|
Wy (T) = |m,
WB(TT): = (T T, (18)
WIS(T‘L) tIl

As it is obvious, the decay and coalescence processes
transition probabilities are not zero and we see in the
next section that they change the temperature
dependence of the relaxation rate of the thermal
quasiparticles with antinodal quasiparticles

2. Scattering Amplitudes

The scattering amplitudes can be written in terms of
Landau interaction function, f ;77 as [20]

T =S O+ O @ T (19)

0
"+q p"—G /2
:—g i (20)

The value of «’“(q) for ¢ =0 equals to one and
for g > p, nearly equals to zero [20]. Furthermore, we

can express the Landau interaction function for a two
dimensional d-wave superconductor as the following [9]
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[ (0.0)=YF,,[cos(10+m0)+cos(16 +mB) ], (21)

I<m

where [/ +m =4n and n can be positive or negative
integer. There are many more Landau parameters F,

on the lattice, labeled by two parameters [/ and m .
Here for simplicity and for tackling the problem under
our consideration, we keep only Landau parameter F|_,

and F,,, and set all other F, =0, hence Eq. (21)
gives

£(68,6") =2F, , +2F _ cos(6,6"). (22)

We define 6,, 6,, 6

.., the angles between the
momenta of the quasiparticles 2, 3 and 4 with the
momentum of the quasiparticle 1 as following

=0, ;5 6,=06, ; 0,=0; (23)

There are three cases which are relevant to the
existence of experimental data. Following, we first
consider the scattering amplitudes for the relaxation rate
of nodal (thermal) quasiparticles which are near the
nodes of the gap parameter, then for the case of the
scattering of antinodal quasiparticles with thermal
quasiparticles and finally for the case of the
scattering of thermal quasiparticles with antinodal
quasiparticles:

2.1. First Case: Scattering of Thermal
Quasiparticles with Each Other

Since the thermal quasiparticles are located near the
nodes of the gap parameter at low temperatures, the
angles between the momentum p, and momenta p,,

p, and p, are small. Therefore, if we take the angle

between p, and p, equal to @, then we have

6,=6, =6, and 6, =0. (24)

It can be shown on the basis of the gap parameter
function, energy and relaxation time that the maximum
value of 0 is =T /A, [16]. At low temperatures and

near the nodes Eq. (19) can be written as

T, =2F,, +2F, +O(T), (25)
where O(T) stands for the contribution of the second

term in Eq. (19) which is proportional to 7 and may be
compared to the other terms, i.e. at low temperatures the
relation between T, and scattering amplitudes of

Landau parameters is linear. Finally, by substituting
Egs. (24) and (25) in Eq. (14), we find

273

W, =W, (M) =8z(f,, +£,_,)" (26)

2.2. Second Case: Scattering of Antinodal
Quasiparticles with Thermal Quasiparticles

In this case, the gap parameter for the umklapp
processes is nearly independent of temperature, i.e.,
A, = constant. On the other hand, the gap parameter of

thermal quasiparticles is temperature dependent and is
proportional to 7' [19]. By substituting the values of
u, and v for the thermal or antinodal quasiparticles

into Egs. (16) and (17), after doing some algebra, we
finally get

W,,(MN)=27(f, +0.1341 2 —1.46f,  f, ),

W (M) =221 5y +/, 2 = (U=N3) 0 f ),

W, (M) =221 2+ 07512, +31 00 f10)s
(T =0, .
W, (M) =27(2f 7y +0.13f 2, +1.46f, , f, ),

W (N = 27221 2, +0.751 2~ oo f11).

2.3. Third Case: Scattering of Nodal
Quasiparticles with Antinodal Quasiparticles

Following the similar approach, Eq. (18) finally
gives

/8 (TT) = 2”(4f0?0 +0-134f1,271 _1~46f0,0f1,71)’

Wy (1\‘1’) = Zﬂ(zfo?o +f1,271 _0~732f0,0f1,71)n

W, () =27(0.13412)),
(28)
WH(TJ') = 27[(}(0?0 + 0'25f1,2-1 +fo,0f1,-1)»

W31(TT) = 2”fo?0=
W3| (T‘L) = 27[(2f0?0 + 0~25f1,271 +f0,0f1,71)-

We note that in this and second case, the order of
magnitude of the transition probabilities for decay and
coalescence processes are not the same as transition
probabilities for two quasiparticle processes.

Results

1. Calculation of Relaxation

Using the Fermi’s golden rule we can evaluate the
relaxation rate, 1/ 7, , or quasiparticle lifetime 7, in the
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limit of the strong intensity and for the general case
under our consideration as

Loy {[sz M+ %sz (M]

Ty 2,34

é‘(]51 +ﬁ2 _]_53 _]_54)5(E1 +Ez _E3 _E4)
><501%2’03”4712(1—n3)(1—n4)
1
+[W]3(T~L)+EW13(TT)J
5(ﬁ1 _ﬁz _ﬁ3 _ﬁ4)§(E1 _E2 _E3 _E4) (29)

X50‘1+O'2,O‘3+64 (l_nz)(l_ns)(l_n4)
1
+[W31('N)+5W31(TT)]
é‘(]51 +ﬁ2 +133 _ﬁ4)5(E1 +E2 +E3 _E4)

X 50',+o-z,o-3+a4n2n3 (1 - 7’l4)} .

where n, is Fermi-Dirac distribution function for ith

quasiparticle.  Throughout the paper we set
h=k, =c=1.1Itis obvious from Eqgs. (26-28) that the

Fermi liquid corrections renormalize the relaxation rates
through the transition probabilities. The effects of
backflow terms, i.e., the dependence of energies on
quasiparticle occupations do not affect the results of the
relaxation rates.

The relaxation rate of thermal quasiparticles which
scatter with each other in a two dimensional d-wave
superconductor for the first case of the section 2.1 is

TPI

1 Z”J‘dzp2d2p3d2p4

_ Ere LATUO R ()

><5(pa| +ﬁ2_ﬁ3_ﬁ4) (30)
S(E,+E,~E,—E )n,(1-n,)(1-n,),

where the transition probabilities are given in Eq. (26).
After the integrations of d(p,, +p,, —pP;, —P,. ) and

O(P,, + Py, —Ds, —P4,) as well as using the relation
de, =p,dp, /m”, we have

5

m

@)’

L=27r
TPI

1
[dedodedom, (N)+5W22 ™] @n

Xé‘(El +E,-E; _E4)n2 (1—7’13)(1—714)

D4=P1+Pr—P3
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Now we can use the above equation for the
calculation of the relaxation rate of thermal
quasiparticles which scatter with each other. In this

case, by using the approximation uf, 1, v j ~0 and
transition probabilities from Eq. (26) and the

integrations with respect to energies and angles we
finally get

1 97’
ey Fo,o +F1,-1)zs (32)

200
where F, =f, m /x are dimensionless Landau

parameters. As it is obvious from Eq. (32) the relaxation
rate of thermal quasiparticles which scatter with each
other obtain in terms of Landau parameters Fj,, F_,,
A, and T . The T°* dependence of the relaxation rate

has been obtained on the basis of scaling argument by
Walker-Smith [21].

To calculate the relaxation rate in umklapp process,
for scattering antinodal quasiparticle with thermal

quasiparticles one may write u; :v; =1/2 and u; =],
2 . . .

v, =0, respectively. Moreover, the scattering angles in

the hot quasiparticles are restricted to the region A,

and are nearly temperature independent, but the gap
parameter for thermal quasiparticles is proportional to
T [19]. Putting Eq. (27) for transition probabilities in
Eq. (29) and doing the integrations with respect to
energy and angle variables, we have

1oy,
AOIZF

(8F,, +6.42F,

TPl

(33)
+2.6F, \F,_)*[1-n(A,)],

where weput 6, =A,/E,.

For the third case in the section 2.3, the relaxation
rate for scattering of nodal quasiparticle with antinodal
quasiparticles may be written as
1 4T°A,

(11F7, +2.83F2,

T ol F

(34)
+2.34F,  F )'n (A =n(Ay)],
For temperatures 7' <A, , we may simplify above
equation as

L _4r’A,

(11F}, +2.83F 7,

Tpl 0~ F

(35)
—4.34F, \F, _Ye ™'
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This relaxation rate has been calculated by Walker-
Smith [21]. They obtain the above temperature
dependence with undetermined coefficient. In their
calculations, only the two quasiparticle’ processes have
been taken into account, whereas in our approach decay,
two quasiparticle’ and coalescence scattering processes
take part in this case.

2. Calculation of Thermal Conductivity Coefficients

2.1. First Case: Calculation of Thermal
Conductivity in Collision of Thermal
Quasiparticles by Thermal Quasiparticles
Thermal conductivity is defined by [15]:
o o

1
K, =—|dtE —n’(1-n° . 36
p =gt ot aont 2, (36)

J

where n° is the Fermi-Dirac distribution function and
T is the temperature. By substituting of 7, from Eq.

(32) in above relation, we get

Ki/ :lJ.pddeQ - t\2
T 2r) (1+e")
(37
.. 24,
Evfz‘pip -52E72_(3)(F00 +F;-1)72-
J 9T s B
and by explaining the momentum in terms of

quasiparticles effective mass it gets the below form

1 2 ZA(Z)m* (Fo,o +E,—1)_2

ij T F 3 2 2
or 2r) (38)
de e
dop.p. | —— &%
] p’p’JE (Ite')

In the anisotropic case for thermal quasiparticle, y
changes from 0 to y, instead of 0 to 27 . Also around

the nodes we define @ as y+ /4, so we have
K.=K,=K, =K, (39)

where

m Ay 2 (E, ,+F )7 5 ‘ e'
K=—"""" =" T*"dy| "dt———, (40
3672°T Il ey 40
The solution of integral on ¢ gives

A2 2 -2
_m AOVF Fo,o +F1,71)

367°T*?
rw o dy T 1
(J.o _.[0 d}/1+ef~1 j

1+’

(41)
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By defining X =2A,y /T , we calculate K for two

limits of X >1 and X <« 1. First for the X >1 we
obtain

_m Ay (F+F )7
367°T*?

E 2407,
_Zm T T _280m
-y.e T+ -—e T |,
2A, 2A,

which means K o« 1/T. Next, for the X «1, we
obtain

K

(42)

MY+ FL)

Em
—ye T +y |, (43
367T2T2 E 7»1 7»1] ( )

which means K o7 2.

2.2 Second Case: Calculation of Thermal
Conductivity in Collision of Antinodal
Quasiparticles by Antinodal Quasiparticles

By using Fermi’s golden rule, we write relaxation
rates for calculating thermal conductivity such as

I d2p2d2p3d2p4 l
—=27 | — (7, (M) + W (™]

x6(py+ Py =P = Ps) (44)
S(E\+E,—E;—E)n,(1-ny)(1-n,).
The integration of the Delta function and using the
de, =p,dp, /m", gives

%: 27[de,d 6,d e 6, , (1) +%sz (™]

x5(E,+E,—E,—E,)

n,(1=ny)(1=n,)

(45)

Pa=P\+Pr=P3
Furthermore, by calculation this integral on angle

elements and energies, we see that the relaxation rate is
proportional to exp(—A, /T ), where A, is fraction of

maximum superconductor gap around the antinodals.
By using Eq. (36) and integration, we find K as

1 ce 1 ¢
Koo [ dEge™ ™ = [" aEE? - A°
VAR T 70
1 1 T (46)
= [ dEE=—E'=".
T 2o 2
From this equation we see that K is proportional to
T , which is consistence with experimental results
[16,17].
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Discussion

This paper has developed a phenomenological
approach to evaluation of the Landau parameters in d-
wave superconductors with anisotropic Fermi surfaces
and energy gaps. As we have emphasized, Fermi liquid
theory cannot provide to give an adequate description of
the normal state properties of the high-T,

superconductors. Thus, we restricted our calculations
well below the critical temperature 7, that will be

considered as being possibly explicable in terms of
Fermi liquid theory [22]. The symmetry of the square
lattice restricts the form of expansion of the interaction
function to more Landau parameters. As the case for

Fermi liquid in normal and superfluid *He [23,24], we
keep only two Landau parameters and set all the other
equal to zero in calculation of the relaxation rates.

The very strong interactions in the normal state of
high-7, superconductors suggest that electron-electron
rather than electron-phonon scattering is the dominated
relaxation mechanism [22]. In the pump-probe laser
pulse experiments the exited quasiparticles decay to
equilibrium over a series of time which have been
considered extensively by Howell et al. [14]. In this
paper, we concentrated on the relaxation rates that there
are experimental data on them. In the experiment of
Segre et al. [10] the extrapolated relaxation rate of
quasiparticles of energy A, vanishes as 7—0 and for low
intensity of laser pulse behaves as T° law. While the
later results [13], suggest activated behavior for the
lowest measured temperature (down to 10 K). In the
case of umklapp scattering the quasiparticles, the
relaxation rate has been considered experimentally by
Hosseini et al. [25] and theoretically by Walker-Smith
[21] and Howell et al. [14]. The temperature
dependence of this relaxation rate is proportional to
AD)exp(-Ay/T), where at T—0, AT)—>T".

In this paper, we calculated the normal and umklapp
scattering processes with a powerfull approach in which
we could take into account the Landau parameters in the
relaxation rates. In the spirit of a Fermi liquid approach,
we assume the existence of well-defined quasiparticles
and write the transition probabilities in terms of
Bogiliubov coefficients (u; and v;) and T-matrix
elements, then by using appropriate approximations on
u;, v; and angles between the momentums in the
scattering processes, we could obtain simple forms for
the transition probabilities. As we have mentioned
already two dimensionless non-zero Landau parameters
Fopand F_, contribute in these transition probabilities.
Finally, we calculate the relaxation rates by using the
Fermi’s golden rule for scattering processes like thermal
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quasiparticles with each other, hot quasiparticles with
thermal quasiparticles and vice versa. We are now in a
position to make some remarks.

1. Umklapp processes involving collisions with a
quasiparticle with its momentum and energy fairly close
to those of quasiparticles which their energy gaps occur
in the neighborhood of A, . In the obtaining of Egs.

by assuming A, =200K [26], A, =2A,/3[21] and
E. =8A,,wehave 6, = 4.8" . The relaxation rates in
Egs. (33-35) probably contain this undetermined
parameter. More experimental results on the relaxation
rates or other thermodynamics quantities are needed to
cancel this uncertainty. To estimate the value of F,
approximately one may put F,_,= 0 in Eq. (35), then
Hosseini et al. data for YBa,Cu3;Og99 x = 0.99 give the
value for the Landau parameter Fj ,=+0.68.

2. By comparing the coefficients of the relaxation
rates in Egs. (32) and (35) with the experimental results
of Segre et al. [10] and Gedik et al. [13] respectively
and assuming A, ~35K and A, =29K at T =10K
(i) F,,=%023 and F_ =401

F,, =%0.05 and (ii): F_, =70.37 for x =0.5.

we  get or

3. Paramekanti and Randeria [9] have kept only a
single Landau parameter F|_, # 0 in their calculation of

the in-plane superfluid stiffness through the calculation
of penetration depth of a d-wave superconductor.
Furthermore, they assumed a doping dependence
F,_, =B +Cx . With the help of Uemura et al. [27] data

1

we get F_(x =0.2)=-0.7 to —0.5. Here, we should

mention that this Landau parameter in the work of
Paramekanti and Randeria is the antisymmetric ampli-
tudes, whereas our F,_, is the symmetric amplitudes
and presumably are different with each other.

4. Walker and Smith [21] within a constant could fit
their theoretical results on umklapp processes with the
data of Hosseini et al. [25]. Both theoretical results of
Walker-Smith and us on the umklapp relaxation rate
show that the relaxation rate is ¢T > exp(-A, /T ). We
obtain the coefficient ¢ in terms of Landau parameters
F,, and F,_, [see Egs. (34-35)]. 1/ >0 as T —0.

This is the case for weak intensity of laser pulses, more
experimental results are needed in this area to extract
the correct values of F, and F,_,.

5.The Landau parameters in the normal or

superfluid *He are pressure dependence whereas here
depend on the oxygen doping of the -cuprate
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superconductors [28], probably on the intensity of the
laser pulses and impurities.

In conclusion, this paper gives a detailed description
of the Landau parameter contribution to the relaxation
rates of quasiparticles scattering in high-7, supercon-
ductors, at low temperatures. There are many more
Landau parameters F, , on the lattice, that we suppose

only Fy, and F_ have the non-zero values in the

calculation of the relaxation rates of the thermal and hot
quasiparticle’ scattering. In remark 1 we mentioned
more experimental results on the relaxation rates or
other thermodynamic quantities of high-7, supercon-
ductor are needed to determine exactly the values of
F,, and F,_,. We have shown that for vanishing laser

intensity there are three relaxations mechanism for
quasiparticles at low temperatures: thermal quasiparti-
cles scatter with each other; Eq. (32), with a 7° law, the
other is for the scattering of antinodal quasiparticle with
thermal quasiparticles, Eq. (33) and finally scattering of
nodal quasiparticle with antinodal quasiparticles, Eq.
(35). The lifetime of antinodal quasiparticle with
thermal quasiparticles is proportional to 7° at low
temperatures whereas as the lifetime of thermal
quasiparticles with each other is proportional to 7 °.
Hence at low temperatures we can ignore the scattering
of antinodal quasiparticles with nodal ones.
Furthermore, thermal conductivity in collision of
thermal quasiparticles with each other do not
correspond to experimental results, but thermal
conductivity in collision of antinodal quasiparticles with
each other is in good agreement with experimental
results. This shows that in d-wave superconductors in
addition of existence electronic and phononic
mechanisms, another mechanism influences on the
mechanism of thermal conductivity.
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Appendix

Transition Probabilities in Terms of T-matrix

In this appendix we present the transition probabilities in terms of matrix elements of 7 and Bogoliubov coefficients.
Using the Hamiltonian in Eq. (5) with the transition probability for two-particles with parallel spin process, Eq. (6), and
writing the Dirac bracket in terms of vacuum state with help of Wick’s theorem and carrying out a lengthy algebra we
find

w, (M) :272{(|u2| s s e+ o+ 2 e e a)|(4 T3 T[12 ol

2 20 2 2| 2 2 2
|”3| |u2| ”1V1”4V4+|”1| |”4| “2V2“2“3V3+|V1| |V4| ”2V2”3V3+|V2| |V3| ”1”1”4"4)

x(<4T3T|T|1T2T> (- 1¢3?|T|—4T2¢>+<—1¢3T|T|—4T2¢>*<4T3T|T|1T2T>)

+(| | |u1|2u2v2u4v4+|u4|2|u2|2ulvlu3v3+|v2|2|v4|2ulvlu3v3+|v1|2|v3|2u2v2u4v4)
(@1 3T 21) (2431 1)1t -4 d)+ (3124 7|-4411) (4131 |T|1T2T>) (Al)
+(| | |v1|2|u2|2tv4|2+|u4|2|vz|2+|u1|2|v3|2+2u2v3u1u2v2u4v4)<—1¢ 31 |T|—4T2~L>‘2

N P R T W R T S R R O T N PRy

x((-14 37 T|-4t24)(- 2~L3T|T|—4¢1T>*+<—1~L3T|T|—4T2¢>*<—2~L3T|T|—4¢1T>)

2 2 2 2 2 2 2 2 2 2
s ol | Pl e Pl ] W]+ 20w vy, :

Similarly the transition probability with antiparallel spin process [Eq. (7)] is IV ,, (N/) = 27r|a|2 + 27r|b|2 where

(2431|1]-4l11)

=%{( 23T =4 1 gy vy, = (=2 T3 M1 =4 Dy Luw
(32 M=y L a3 20T T[T 4T

+ (43T 2 Vg, + (<1 3T =4 2 gy v,
(a2 d 3 M Lugay o+ (-1 2T =4 3T e v

+

278
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3 T4 ~L|T|1 T2 ¢>u Uyl Uy ( 2'T4’~L|T|1‘T—3’~L>u4,v_2.u]v_3.
31 T]= 4 2y gy, = (=2 T =1 T[4 3 v e
{

+(-1' »L4'~L|T|—3'»L2'¢>u4,v_l,v_3,u2,— —1'~L—4'\L|T|2'¢—3’»1«>u4,v_l,uz,v_3,

~
~
(-
—(ad =1 T=3b 2 gy (4 -1 LT2d 3
+(3 a2 1 g, + (-2 =4 T =31 g v L, .
(3= rf2 b A gy (=21 T| =3 AT v
—(a 3 T2 1 D aa, (<14 +3 T2 4 Dy
—(a 2 M= 1 g = (-1 2 T3 -4 T Ly v
and
b :(3'¢4'T|H|1’T2‘¢>:1{(—2'T4'T|T|—3'T1'T>u4.v,z,v,3,ul,
(=2 AT 3 Dy g+ (4 T2 T3 T Luy
—(@ T2 et 3 M usaa ~ (3 4 T 2V,
(=1 da M T=3 2 Wy v, — (32N T A uu
12 T|=3 T 4 v v+ (AT T 2V,
(=2 3T T =4 hugy a4 (AT =1[T]=3 M 2wy
(=2 =1 T =3 A v (-1 3T =4 2 Dy,
(=13 T2 =4 e+ (31 T4 2wy,

2! T3’»1«|T|—4'»L1'T>u3.\/72,vf4,u].—<4'T—1'»1«|T|2'~L—3'T>v71,u4,u2,v73,
2! T—l’»L|T|—4'i«—3‘T>v71,v72.v4vf3,+<3’¢4‘T|T|2'~L1'T>u4,u3,u2,ul,

+(-1' i«4'T|T|—2’J/—3'T>u4,vfl,u2.v73,+<3'~L—2‘T|T|—4’\|/ 1’T>v72,u3,v%,ul,

(-

(-

(-

(-

R CIN S A 1\ AR AR A C A A s DA B TR
(-

-(-

(- (A3)
(-

+{-1'{ =21 |T|—4' -3 T>v72.vfl,vf4,v73,}.
The transition probabilities for coalesced processes defined in Egs. (8) and (9), respectively, become as

WM =22 { (e s s e+ oo s = 2 e s e T3 1t 27

2 2 2 2 2 2 2 2
+(_|”4| |u2| “|V1M3V3+|u1| |v3| u2V2”4v4+|u3| |V1| M2V2”4V4_|v4| |V2| ulv1u3v3)
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x((4 13111 21) (- 2¢3T|T|—4~L1T>+(—2~L3T|T|—4¢1T>*<4T3T|T|1T2T>)
+

2 2 2 2
|v | |u2| Uy Uy, +|u4| |u| 2V21/I3V3+|\14| |"1| u3v3u2v2+|v2| |u3| u1v1u4v4)

(@3 T 2t) (-1 3T T)-ad2 )+ (-1131 |T|—4¢2T>*(4T3T|T|1T2T>)

({

(

(¢
(b o b b P b bl 20 )
(

(¢

<

(-1437|-a 2t (A4)

+

2 2 2 2 2 2
|V | |7/l2| u3v3u4v |u3| |1/l4| Z'llv]MZVZ_|v3| |V4| u]vlu2v2+|u]| |V2| u3v3u4v4)

x((-243 M 1|-44171) (-1431 |T|—4¢2T>+(—2¢3T|T|—4¢1T>*(—1¢3T|T|—4¢2T>)

+

|v | |v | |v | |u| +|u3| |v| |u4| |u2| F2uy Uy uyuy, )(—2¢3T|T|—4~L1T>‘2},

and
2 2 2 2 2 2 2 2 2
W31(T~L)=27r{(|vz| s s+ 20 a2 4T3 1)
+(|u4|2|u3|2ulvluzvz_|V2|2|”1|2u3V3u4v4_|V1|2|u2|2u3"3”4v4+|V3|2|V4|2uzvzuzvz)

x((47-1d[1f24 3 (-2t a1 1] 3111) + (4T—1¢|T|2¢—3T>*(—2T4T|T|—3T1T>)

+

2 2 2 2
| | |v | Uy uy, +|u4| |u| 2\/21431/3+|v1| |v4| u2v2u3v3—|v3| |u2| u1v1u4v4>
(A3)

+

(
x((-2 T atr=3111) (-2 1 -1 [T]-4d 3T+ (27 -1 |T|—4¢—3T>*(—2T4T|T|—3T1T})
(|vl| |u4 |u2 |u3| +|v | |v | |v | |u| 2u1v1u2v2u3v3u4v4)‘<4T—l¢|T|2~L—3T>‘2

2 2
+ |v| |u3| U,V U Y, +|u4| |u2| UV UV +|v | |v | UV UV |v3| |u1| u2v2u4v4>

x((41-1d1|2¢ —3T>* (=211 [T]-3 T -4+ (-2 T -1 |1|-31 4 ¢>* (at-1d124 —3T>),

Finally, we get the transition probabilities for decay processes [Egs. (10) and (11)] as

W13(T~L):2ﬂ{(|u3|2 |u2|2 |u1|2|v4|2 +|u4|2|vl|2|v2|2|v3|2 —2u1v1u2v2u3v3u4v4)< 2731 |T|—4T 1T>‘2

2 2 2 2 2 2 2 2
+ _|”3| |”1| ”4V4”2V2+|”2| |V4| ”1V1”3V3+|”4| |Vz| ”1v1”4v4_|‘/3| |V1| UVl Yy

x <_z¢3¢|T|_4¢1¢><4¢3¢|T|m¢>*+<-z¢3¢|T|-4¢1¢>*<4¢3¢|T|1¢z¢>)

+
—_—

2 2 2 2 2 2 2 2
_|u3| |V4| ulvlu2v2+|u1| |u2| u3V3”4V4+|Vl| |V2| ”3V3u4v4_|v3| |u4| U Uy,

x((-213MT[-41 1) (-1437 [1]-47 z¢>"+<_z¢3T|T|-4T1T>*<-1¢3¢|T|_4¢z¢>)
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+

|u3 |u4| |u| |v | +|u2| |v| |v | |v | 2ulv1u2v2u3v3u4v4)‘<4¢3T|T|1T2~L>‘

+

. (A6)
x((4 43T 24) (-1 3T T[4t 2d)+(-143 T4 T 2L) (4l 3T|T|1T2¢>)

+

2 2 2 2 2 2
(| | |v | Uy Uy, |u4| |u1| u2v2u3v3—|vl| |v4| u2v2u3v3+|v3| |u2| u1v1u4v4)

|u3| |v| |v | |v | +|v | |u| |u2| |u4| 2ulv1u2v2u3v3u4v4)‘<—l¢3T|T|—4T2~L>r},

W13(TT)=2H{(|M3|2 |u4|2|\/2|2 |”1|2 +|u2|2|v1|2 |v4|2|v3|2 —2u1v1u2v2u3v3u4v4)<4T3 T|T|1T 2 T>2

+ |u3| |u | UV UV, +|v | |u4| UV Uy, +|u2| |v | Uy Uy, — |v | |v| UV UV, )

(41311 21) (-2 37 [T]-4d 11)4(-2131 |T|—4¢1T>*(4T3T|T|2T1T>)

+

(AT)

((

( e | b, | uyuy, +|u4| |u| 2v2u3v3+|vl|2|v4|2u2v2u3v3—|v3|2|u2|2ulvlu4v4)
><(<4T3T|T|1T2T (- 1¢3T|T|—4¢2T>+<—1¢3T|T|—4¢2T>*<4T3T|T|1TzT})
ju | |”2| Vs | |”| + | |V| Vs | Vs | 2”1"1”2"2”3"3“4"4)

|
+(|u3| |v | UY UV, — |u| |u2| UV U Y, — |v| |v | U UV, +|v | |u4| Uy U, )

(=243t T-al1t)

x((-243 M4 L11) (- 1¢3T|T|—4¢2T>+(—1¢3T|T|—4¢2T>*(—2¢3T|T|—4¢1T>).
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