(t\'—-_‘,j_v\ﬁ JJ‘J,)
VOV L 5 ol - FA STV o)Lt as JL

\'"—\Avuoup

GENETIC ALGORITHM IN OPTIMAL PREVENTIVE
PART REPLACEMENT FOR MINIMUM DOWNTIME
MAINTENANCE PLANNING

By: NEZAMEDDIN FAGHIH (Ph. D.) & BABAK SOHRABI\

ABSTRACT

This paper innovates, within the context of preventive
maintenance planning, the application of Genetic Algorithm, as a
modern powerful optimization tool, in minimum downtime strategies,
for optimal part replacement. Therefore, a brief account of Genetic
Algorithm is given and a computer program is written to aid the
solution of such problems by Genetic Algorithm. Then, the program
is used to solve anumerical example, concerning an equipment with
Gaussian failure characteristics. The results obtained by Genetic
Algorithm and the ordinary methods are compared to show that

exactly the same results can be approached by the application of

I- Shiraz University

Y-d GENETIC ALGORITHM IN OPTIMAL ...

Genetic Algorithm. Genetic Algorithm and mainterance planning,
both being subjects of statistical nature, can be combined to provide a
vasi area of interesting research work and, hence, some guidelines are

suggested for further research.

INTRODUCTION

Many analytical methods, for optimization problems, stop their
search operations as they reach a local optimal solution and are unable
to find global optimum answers. As an alternative approach to this
major problem and in order to solve complex optimization problems,
researchers have turmned to use other techniques. Among the new
methods, random algorithms, due to their simpfe structures and
operations, also not limited to special types of goal functions, have
been the most popular[1].

Genetic Algorithm constitutes a major class of random
algorithms. It is based on biological aspects of natural evolution and
was first introduced by J.H. Holland [2], [3]. Genetic Algorithm,
being a statistical method for optimization and search, is not oniy a
simple random search approach, but also leads to a good
convergence[3]. Genetic Algorithm(GA) has been applied to many
optimization problems in science and engineering, rendering
satistactory results[3], [4].

However, in the maintenance planning, optimal part
replacement policies, mainly, employ statistical methods and the

replacement function, based on the renewal theory, leading tc the

t.:._u_‘._u..h u:.llé v.¥

minimization of a function such as downtime [5], [6].

Hence, Genetic Algorithm appears to be a suitable tool for
optimal maintenance planning. In this paper, GA is applied to
planning for optimal part replacement and preventive maintenance
policies, to minimize downtime for equipment with normal failure
rate. Nevertheless, a brief account of GA is, firstly, explained, through

its basic operators.

BASIC OPERATORS IN GENETIC ALGORITHM
1) Coding:

Genetic algorithm uses coded shape of parameters and a usual
way to code the parameters, is to convert them into binary digits; so an
i..teger coding can be utilized [3], [4].

2) Chromosomes:

A string or array of bits, that is the coded shape of a probable
answer to the optimization problem, is called a chromosome. In fact,
bits 1n a string, have the same roles as gens have in nature. The initial
values of the gens are chosen randomly [3], [4].

3) Population:

A group of chromosomes are called a population. One of the
genetic algorithm abilities, is that it uses a population of
chromosomes, and not limited points of probabie answers in space or a
single chromosome [3], [4].

4) Fitness Value:

Each string can be assigned a fitness value, based on how well

Y.¥ GENETIC ALGORITHM IN OPTIMAL ...

the corresponding problem solution meets some stated goal. Each
individualss probability of being reproduced, is proportional to the
stringss fitness. Thus, the chromosome that has more fitness, would be
used in the mating procces, more than the one that has less fitness [3],
[4].
5) Cross Over Operator:

This operator uses two strings to reproduce two new answers

and it can be single - point or multiple - point. Single - point operator
mates two strings by joining the prefix of one string with the suffix of

the other string, relative to the cross over point, which is selected
randomly. This action creates two new strings which are called
offsprings or children [3], [4].

Cross over operator selects the parents with some assigned
probability, P, [3], [4].

6) Mutation Operator:

Each binary digit has some small probability of being reversed,
during the genetic recombination. This probability is usually shown
by Py, and is called mutation probability [3], [4].

Now, that the primary operators of genetic algorithm have been
introduced, one can focus on GA steps in the optimization problemes.
In fact, the first step is the determination of parameters which would
be used in the problem; then coding these parameters in a proper way
in order to show them as binary strings. Based on the goal function, a
fitness function for chromosomes is defined and an initial population

is formed randomly. Hence, the fitness of each string can be

o ke NI Yox

calculated and then optimization steps may be followed as depicted in
Figure 1,[3].

In fact, the more fittness a chromosome may possess, the more
is the chance that it is used in the reproduction operation; while
chromosomes with less fitness may not be used in the reproduction.
The simplest way to achieve this step, is to use the roulette wheel
approach. In this model, the surface of the wheel is divided into parts;
the number of parts being equal to the population size and the surface

of each part being related to the fitness value used for choosing
parents to mate for the reproduction process. The roulette wheel

approach can be simulated on a computer, by following a random

number generation scheme [3].

CONVERGENCE OF GENETIC ALGORITHM

An important point to raise is the convergence of Genetic
Algorithm towards a global optimal answer. The research work
undertook by Rudolph, in 1994, show [7] that GA convergence is
possible and, while convergence towards the global optimum is not
always a natural property of GA, but it can be achieved insome
circumstances. In fact, using Markov chains model, it is shown that if
in each step of GA reproduction, the fittest values were saved and
transformed to the next step,with a probability of 1,GA would
converge to global Optimum [7].

However the characteristics of GA may be summarized as

follows [21,[71,[81,[9],{10]:

Yo GENETIC ALGORITHM IN OPTIMAL ...

Primary population selection and
calculation of fitness

Selection of Chromosomes for
reproduction process

l

[Crossover I

Calculation of fitness of the new
chromosomes

|

Replacement of best fitted
chromosomes

Is the Solution
acceptable?

Stop / End

Figure 1: The optimization steps followed in Genetic Algorithm.

S e S Yoo

1) GA works with a population of chromosomes and is a
parallel search method for optimum answer points with genetic
operators. Information is transferred between points and because of
that, the probability of trapping in a local optimum point is low.

2) By a good selection of new population in each iteration, GA
converges to global optimum.

3) GA uses coded figures and parameters.

4) In GA, it is not necessary for the goal function to be
differentiable, but GA only needs to compute the goal function in
each point for achieving the global optimum and uses no other

information.
5) GA, being a random search technique, is controlled by the

fittness of chromosomes and transformation from one step to another
is dependent upon fittness.GA uses genetic operators to search
different parts of the solution space in order to achieve the global

optimum.

GENETIC ALGORITHM IN OPTIMAL PART
REPLACEMENT

In the maintenance planning, part replacement

strategies,mainly, rely on the renewal function, which in its numerical
form, appears as [51,[6]:

n-1 .
gin)= 3 ([1+g@-i-DYT P p(0ay M
i=0

The above iterative function, which in the replacement theory is

144 GENETIC ALGORITHM IN OPTIMAL ...

known as the replacement function, starts at g(0) = 0, due to the fact
that g(nt.)=0, for n = 0, ie., there is no renewal at the time
origine(t=0). There on, it renders the number of renewals or
replacements as g(n), at discrete time intervals nT, for any number n,
used as a multiple of an arbitrary constant time interval, T. The
equipment is, however, supposed to fail according to some probability
density function p(t).

In the optimal part replacement policies, the replacement
function, given by equation (1), is used to formulate the required
strategy. This is usually accomplished by minimizing or maximizing a
desired objective function. As a major tendency, the optimality of part
replacement policies are based on minimizing the total downtime, for
preventive replacements and also required due to the random failures
that may occur. Hence, the function to be minimized can be written as
[5]:

D(T,) =[t, +&(T)ts 1/ (T; +1,) @)

In the above equation, the total downtime D(T,) is minimized
with respect to the replacement time T, . The parameters 1, and 1y are
the times requied for a preventive replacement and a replacement
forced due to failure, respectively. The value for g(T,) can also be
computed from equation (1), for T, =nT. In practice, the values of
g(T,) are obtained, iteratively, from equation (1) and substituted in
equation (2), to find the value of T, which minimizes D (T,), asa

numerical solution [5], [6].

G e i VaA

As a numerical example, consider an equipment with a failure
characteristic following the Gaussian probability distribution function
with parameters, p=7 and &= 2
(weeks, say), as the mean and standard deviation, respectively.
Suppose, also, that, 7, = 0.0238 and 1= 0.0476 weeks. Hence,
iterating equation (1), with T = 1 (week) and p (t) asa Gaussian
probability density function with the given parameters, the values
shown in Table 1 can be obtained. Then substituting these values for
g (T)), together with the given values of 1, and 1y, in equation (2),
Table 2 can be computed. As it can be seen in Table 2, the minimum
value of D(T;) occurs at T, =5 (weeks); that is, the optimum

preventive replacement period, for minimum downtime is 5 weeks.

g(n) 0 0.001 0.006 0.023 0.067 0.159 0.310 0.504 0.868 0.868

Table 1: Results of iterating equation (1) for Normal pdf with parameters u=7,8= 2 T=1.

T, 1 2 3 4 s 6 7 8 9

D(T,) 0.0232 0.0119 0.0082 0.0067 0.0062 0.0064 0.0068 0.0071 0.0072
(minimum downtime)
Table 2: Numerical minimization of downtime D(T,) with respect to the preventive

replacement period T,, as computed from equation (2), by substituting the

corresponding values.

Now, in order to apply GA to the problem of optimal

Vav GENETIC ALGORITHM IN OPTIMAL ...

preventive part replacement, based on minimizing total downtime,
according to equation (2), a computer program was written, in C
(language). This program is presented in Appendix A. Here, instead
of minimizing D(T;), the value of 1 /D(T,)is maximized, which
would rather simplify the task, as far as GA application is concerned

The above numerical example (worked out in table 2) was
soived by employing the computer program in Appendix A. Some
output samples are evidenced in Figures 2, 3, 4 and 5, which show that
generations, finally settle at fixed values, rendering optimal solutions.
The outputs read as x max = 5 and max = 160.24, which indicates T, =
5 (weeks) and minimum value of D(T;) as 1 / 160.24 = 0.0062.
Therefore, the same results as observed from Table 2, are obtained by

the application of Genetic Algorithm.

CONCLUSIONS
This paper has introduced the application of Genetic Algorithm

to the problem of optimal maintenance planning and preventive part
replacement for minimum total downtime of machinery. A computer
program was developed and it was observed that exactly the same
results as obtainable by ordinary methods, can be approached through
the application of Genetic Algorithm.

The Genetic Algorithm, as a useful and powerful optimization
method, employed by many researchers, provides a suitable approach
for optimal maintenance policies, specially due to fact that both of

them are subjects of statistical nature. It is hoped that the work

e pela A1 131
Population Repori
Generation 3 Generaticn 4 j
string x fitness # Parents xsite string x fifness e
0)0100 4.00 14918 | 0) (4, 5) | 0100 4.00 14918 e
1)0LI0 6.00 15640 | 1) (4, S) I 0100 4.00 149.18 é‘
2) 0100 4.00 149.18 | 2) (2, 8) 3 0100 4.00 149.18 &
3)0100 4.00 14918 | 3) (2, 8 3 0110 6.00 [54.40 E
4) 0160 4.00 14918 | 4) (!, 8) 3 0110 6.00 156.40 et
5) 0100 4.00 149.18 | Sy (1, 8) 3 0100 4.00 149.18 %
6) 0110 6.00 156.40 | 6) (0, 9 i 0i00 4.00 149.18 -
7) 1000 8.00 14040 |) (G, 9 | 0110 6.00 156.40 a
8) 0100 4.00 i49.18 | B) (3. 2} 0100 4.00 149.18 3
9) 0100 4.00 149.18 | 9} (3, 2) 0100 4.00 149.18 &
Note: Generation & Accumuiated Statistics: xmax= 6 bl
max=156.40 aiin=149,18
avg=151.34 sum=1513.44 nmutation=2 ncross=12
Population Report
?‘; Generation 31 Generittion 32
rE;
= # string x fitness # Parents xsiic string x fitness
,
2 0)0111 7.00 147.15 | 0) (3, 4) 0 0101 500 160.24
g ‘ 10101 S.00 16024 | 1) (3, 4) 0 0161 500 160.24
g 2) 01001 5.00 160.24 | 2) (3, 7) 0 0101 500 160.24
T 3)0101 500 160.24 | 3) (3.7) 0 1101 13.00 0,00
“E . 4) 0101 5.00 160.24 | 4) (3, 4) 2 0101 5.00 160.24
a 5)0101 5.00 160.24 |} 5) (3, 4) 2 0101 5.00 160.24
(‘,E‘j. 6) 0100 4.00 149.18 | 6) (6, B) [0100 400 149.18
§ 70101 5.00 160,24 | 7) (6, 8 1100 12.00 0.00
TE 8) 0100 4.00 149.18 | 8) (5., 7) 0101 S.00 160.24
: 9) 1001 9.00 138.83 | 9) (5, 7) 0101 5.00 160.24
e
Eo‘ Note: Generation 32 & Accumulated Statistics: xmax=
5

max=160.24 min=0.00
avg=127.09 sum=1270.88 nmutation=46 ncross=104

S

\RY:) GENETIC ALGORITHM IN OPTIMAL ...

Population Report
Generation 45 Generation 46

string x fitness # Parents xsite string x fitness

0)0001 1.00 42.90 | 0) (2, 4) 0 0101 500 160.24
1)0101 S.00 160.24 | 1) (2,4) 0 1101 13.00 0.00
2)0101 5.00 160.24 | 2) (7, 6) 2 0101 500 160.24
3)0110 6.00 15640 | 3) (7,6) 2 0101 500 160.24
4)0101 5.00 16024 | 4) (3,2) 0 0100 4.00 149.18
5) 0101 5,00 160.24 i S) (3,2 0 0111 7.00 147.15
6) 0101 5.00 16024 | 6) (S, 4) 1 0101 500 160.24
7) 0101 S5.00 160.24 | 7) (S, 4) I 0101 5.00 160.24
8)0100 4.00 149.18 | 8) (2.9) 2 0101 500 160.24
9) 0101 5.00 160.24 | 9) (2, 9) 2 0101 5.00 160.24

Note: Generation 46 & Accumubated Statistics: xmax= S
max=160.24 min=0.00
avg=141.80 sum=1418.03 nmutation=59 ncross=154

Figure 4: Output Samples for Generations 45 and 46.

Population Report

Generation 49 Generation 50

string x fitness # Parents xsite string x fitness

0) 0101 S.00 160.24 | 0) (1, 8) 0 0101 500 160.24
1)0101 5.00 160.24 | 1) (1, 8) 0 0101 500 160.24
2) 0101 5.00 16024 | 2) (8, 4) L 0101 500 160.24
3)0101 5.00 160.24 | 3) (8,4 1 010F 500 160.24
4) 0101 5.00 160.24 | 4) (8, 6) 0101 5.00 160.24
5)0101 5.00 160.24 | 5) (8, 6) 0101 5.00 160.24
6) 0101 5.00 160.24 | 6) (5,2) 1 0101 500 160.24
7)0001 1.00 42.90 | 7) (5,2) 1 0101 500 160.24
8)0101 5.00 160.24 | 8) (0, 6) 0 0101 500 160.24
9) 0101 5.00 160.24 | 9) (0, 6) 0 0101 500 160.24

Note: Generation S0 & Accumulated Statistics: xmax= 5 max=160.24

min=160.24
avg=160.24 sum=1602.43 nmutation=64 ncross=167

Figure 5: Output Samples for Generations 49 and S0O.

o ke il \8¥

reported in this paper, paves the way for further work in this
interesting area and applying GA to various maintenance planning
strategies. As far as minimum downtime preventive part replacement
is concerned, however, it is suggested that further research work may
be undertaken on the application of GA, while considering the
possibilities of eliminating the renewal theory and, hence, the

replacement function.

REFERENCES

I - Lasser, J.B., Baraiya, P.P. and Warland, J.(1987), “Simulated
Annealing, Random Search, Multistart or SAD?”, Systems &
Control Letters, North - Holland, pp. 297 - 301.

2 - Holland, J.H.(1989), “Searching Nonlinear Functions for High
Values”, Applied Mathematics & Computation, 32, pp. 255 - 274.

3 - Lawrence, D.(1991), “Handbook of Genetic Algorithms”, Reinhold
Publishers.

4 - Goldberg, E.D.(1989), “ Genetic Algorithms in Search,

Optimization and Machine Learning”, Addison - Wesley

publishers.\

5 - Jardine, AXK.S. (1973), “Maintenance, Replacement and
Reliability”, Pitman publishers.

6 - Cox, D.R.(1962), “ Renewal Theory”, Methuen / Wiley.

7 - Rudolph, G. (1994), “ Convergence Analysis of Canonical Genetic
Algorithms”, IEEE Transactions on Neural Networks, Vol.5,
No.1, pp. 96 - 101.

1ay GENETIC ALGORITHM IN OPTIMAL ...

8 - Sriniras, M. and Patanaik, L.M.(1994), “Adaptive Probability of
Crossover and Mutation in Genetic Algorithm”, IEEE
Transactions on Power Systems, Vol.24, No.4, pp. 656 - 666.

9 - Galar, R.(1989), “Evolutionary Search with Soft Selection”,

Biological Cybemetics, Springer Verlag, pp.357 - 364.
10- Karloy, F.P. (1993), “Genetic Algorithms for the Travelling

Salesman Problem Based on a Heuristic Crossover Operation”,

Biological Cybernetics, Springer Verlag, pp. 539 - 546.

APPENDIX A

#include "'stdlib.h"
#include "'math.h"
#include "conio.h"
#include "stdio.h"
#include "dos.h"
#include "time.h"
#include "alloc.h"
#include "math.h"
#define maxpop 100
#define maxstr 30
#define pi 3.141592654

char **dim2(int row,int col,unsigned int size);
void free2(float **pa);

float integ(int a, int b, int mu, int sig);

double randm(void);

struct individ

{

int chrom|maxstr];
float x;

float fitness;

int parentl;

L) Y4y

int parent2;
int xsite;

};

struct individ oldpopu[maxpop];
struct individ newpopu|maxpop];

int popsize, Ichrom, gen, maxgen, nmutate, ncross, jrand=-1, interv,
Xmax;

float pcross, pmutate, sumfit, avg, max, min,**g,tof,tor;

double oldrand|[S5]={0};

FILE *fpt;

FILE *f1;

main()
{

int j;

gen=0;

ininormal();

initialize();

gotoxy(30,12);

printf(" PLEASE WAITE");

for (gen=1; gen<=maxgen; gen++)

{

generation();
statistics(newpopu);
report(gen);
for(j=0;j<maxpop;j++)

{
}

H
gotoxy(28,13);
printf("END OF SIMULATION");

oldpopuljl=newpopulj};

144 GENETIC ALGORITHM IN OPTIMAL ...

fclose(fpt):
fclose(f1);
free2(g);

}

ininormal(void)
{
int miu, sigma, n, i;
char namel[15], name2{15};

clrser();

gotoxy(1,9);

printf(" \n'"');
printf(" A Genetic Algorithm Process Simulator -
GENETICA\n");

printf(" Babak Sohrabi\n");

printf(" Industerial Management Dept. \n'"");
printf(" Shiraz University 1996\n");

printf(" \n"");
getch();

clrser();

printf(" All of the results of this simulation are gathered in two
files\n"');

printf("'the first one contains generations and the second one
contains\n''):

printf("'the MAX and AVG of each generation (for plotting).\n'");
printf("\nEnter output files name:\n");

scanf(" %os %s" namel,name2);

fpt=fopen(namel," w");

fi=fopen(name2,"w");

clrser();

printf("M\n*xxxsxxaxax Parameters Of The desired process
ﬂ****k*\""):

printf(""\nEnter mean and St.Dev. of the process (Weeks):\n"');

scanf(" % d Yod" ,&miu,&sigma);

o pda A Y4

printf(" Enter the interval of simulation (Wecks):\n'"):
scanf(" %d" ,&interv);

printf(" Enter tor and tof (Hours):\n"");

scanf(" Yof Y%l ,&tor, & tof);

fprintf(fpt,” --- - ---\n"");
fprintf(fpt," A Genetic Algorithm Process Simulator - GENETICA\n");
fprintf(fpt,"” Babak Sohrabi\n");
fprintf(fpt,” Industerial Management Dept. \n"');
fprintf(fpt,” Shiraz University 1996\n"');
fprintf(fpt,” - -\n'");

skip(3);

fprintf(fpt,'"\n***x**x*xx Parameters Of The Desired Process
’(****\""); .

fprintf(fpt,"\nMean = %d weeks St.Dev. = %d weeks\n",miu,sigma);

fprintf(fpt,"\nlnterval of simulation = %d weeks\n"interv);

fprintf(fpt,"\ntor = %.2f hours tof =9 0.2{ hours\n\n"" tor,tef);

fprintf(fpt,"\nThe resuits of the RENEWAL FUNCTION for
NORMAL PDF\n");

fprintf(fpt,""with Mean = %d and St.Dev. = ¢ od\n'') miu,sigma);

fprintf(fpt,” : \n'"');

tof = tof/(24*7);
tor = tor/(24*7);

g=(float **)dim2(1,interv+1,sizeof(float));
for(n=0; n<=interv; n++){ g|0]{n]=0; }

for(n=1; n<=interv; n++)
{
for(i=0;: i<n; i++)
{
g[0][n] = g[0][n] + (1 + g[O][n-i-1]) * (integ(i,i+1,miu,sigma));

}
fprintf(fpt," g[Yo d] = %.30n" n,g[0][n});

H

VAQ GENETIC ALGORITHM IN OPTIMAL ...

float integ(int a, int b, int mu, int sig)

{

float h, fi, la, it, t=a, ev=0, 0d=0;
int j;

h = fabs((b-2a))/100;
fi = (1/(sig*sqrt(2*pi))) * exp(-(a-mu)*(a-mu)/(2*sig*sig)) * 0.5;
la = (1/(sig*sqrt(2*pi))) * exp(-(b-mu)*(b-mu)/(2*sig*sig)) * 0.5;

for(j=1; j<=100-3; j=j+2)
{

t=t+h;
od = od + (1/(sig*sqrt(2*pi))) * exp(-(t-mu)*(t-mu)/(2*sig*sig));

t=t+ h;
ev = ev + (1/(sig*sqrt(2*pi))) * exp(-(t-mu)*(t-mu)/(2*sig*sig));

)
t=t+h;
od = od + (1/(sig*sqrt(2*pi))) * exp(-(t-mu)*(t-mu)/(2*sig*sig));

it=(fi + la + 4*od + 2*ev)*h/3;

return(it);

char **dim2(int row,int col,unsigned int size)

{ inti;
char **prow,*pdata;
pdata=(char *)calloc(row*col,size);
if(pdata==(char *)NULL){
printf("Interval of simulation is too long. Reduce it."');
exit(1); }
prow=(char **)malloc(row*sizeof(char *));
if(prow==(char **)NULL){

S pda hibs VAA

printf(" Interval of simulation is too long. Reduce it.");
exit(1); }
for(i=0;i<row;i++){
prow|ij=pdata;
pdata +=size*col;
}
return prow;
}
void free2(pa)
float **pa;
{ free(*pa);
free(pa); }

double objfunc(double x)

{
/* const float coef=1073741823;

const int n=10;

double y;
y=pow(x/coef,n);
return(y);*/

double y;

if(x > interv)
{

y=0;
}

else

{

y = (x + tor) / (tor + g|0][x]*tof);
}

return(y);

}

double decode(int crom[maxstr], int lbits)

{

int j;

YAV GENETIC ALGORITHM IN OPTIMAL ...

float accum=0, powof2=1;
for(j=0; j<Ibits; j++)
{
if(crom{i}==1)! accum=accum-+powof2; }
powof2=powof2 * 2;
}

return{accum);

}

statistics(struct individ popufmaxpop})

{

int j;

sumfit = popu|0].fitness;
min = popu|0].fitness;
max = popul0].fitness;
xmax = popul0}].x;

for(j=1:j<popsize;j++)

f
1

sumfit = sumfit + popufj].fitness;
if(popufj].fitness>max){ max=populj].fitness: xmax=populj].x;)
if(populj].fitness<min){ min=populj}.fitness; }

}

avg = sumfit/popsize;

}

void initdata(void)

{

clreser();

printf("*xxRxxxx Genetic Algorithm Data Entry and Initialization
********\"");

printf(*\n");

printf(""Enter population size ------- > "); scanf(" %d",&popsize);
printf(' Enter chromosome lenght ----- > ")s scanf("'%d" ,&lchrom);
printf(" Enter max. generations ---—-- > "); scanf("" %d" . &maxgen);

1o/

printf('"'Enter crossover probability -> "'): scanf(Yol & pcross);

Sy pee s VAR

printf(" Enter mutation probability --> ™): scanf(" %", &pmutate);
sleep(1); clrscr();

randomiz{);

steep(1); clrser();

nmutate=0;

ncross=0;

;

initreport(void)

{
skip(3);

