Optimal Control of an Inhomogeneous Heat Problem by Using Measure Theory

S.A. ALAVI, A.V. KAMYAD and M.H. FARABI
Dept. of Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775,

Abstract

In this paper we consider an optimal control problem for an inhomogeneous Heat equation. We transfer the problem into a moment problem. Then this moment problem is changed to measure theoretic control problem, and the new problem is converted to an infinite dimensional linear programming problem. Finally we approximate the infinite dimensional linear programming problem to a finite dimensional one and the solution to this problem is used to find a piecewise constant control for the original problem.

Keywords: Heat equation, measure theory, semigroup theory, moment problem, optimal control, linear programming.

1. Statement of the problem

Let us consider the following problem:

1.1 \[
\begin{aligned}
\frac{\partial P(x,t)}{\partial t} & = c^2 \Delta P(x,t) + b(x)u(t) \\
x \in Q^0, 0 \leq t \leq T
\end{aligned}
\]

1.2 \[P(x_0) = F(x) \quad x \in Q\]

1.3 \[P(x,T) = 0 \quad x \in \partial Q, 0 \leq t \leq T\]

where Q is a n-cell in n-dimensional Euclidean space \(\mathbb{R}^n\) (for \(n=1,2\)), with interior \(Q^0\) and boundary \(\partial Q\) is the boundary of Q, \(u(.)\) is a scalar valued control function, \(\nabla^2\) is the Laplacian operator, \(c^2\) is a constant, \(F(.)\) is a measurable function, and \(b(.)\) is continuous on Q.

The control function \(u(.)\) will be admissible if it is a measurable function on \(J=[0,T]\) and,
1: It takes values in the set \([-1,1]\) for \(t \in [0,T]\).
2: The solution of the system (1.1)-(1.3) corresponding to this control function, that is \(P_u(x,t)\), satisfies the terminal condition:
\[P_u(x,T) = G(x) \quad x \in Q \]
where \(G(\cdot) \in L_2(Q)\) is the desired final state. We assume that the set of all admissible controls is nonempty and denote it by \(U\).

Our optimal control problem consists of finding a control \(u(t) \in U\) which minimizes the functional:
\[J(u) = \int_0^T f_0(t,u(t)) \, dt, \]
where \(f_0 \in C(\Omega), C(\Omega)\) is the space of all continuous functions on \(\Omega = [0,T] \times [-1,1]\) with the uniform topology. In the following we replace the above problem with another one in which we introduce an approximate piecewise constant optimal control by using measure theory.

A boundary controllability theory for hyperbolic and parabolic partial differential equations has been studied and some results have been obtained (Fattorini & Russell, 1971; Kamyad, 1992). Some authors used measure theory to solve boundary optimal control problem for the diffusion equation (Kamyad et al., 1992). Also, in 1996, Farahi et al., solved a boundary optimal control problem of a homogenous linear wave equation by using measure theory (Farahi et al., 1996a, 1996b). Recently Alavi et al., (Alavi et al., 1998) used measure theory and found an optimal control of inhomogeneous wave problem with internal control.

2. Obtaining moment problem

Let \(H^1(Q)\) denote the usual Sobolev space on \(Q\), i.e.,
\[H^1(Q) = \{ f : f \text{ and } f' \in L_2(Q) \}, \]
and define
\[V = \{ f \in H^1(Q) : f(x) = 0 \text{ for } x \in \partial Q \}. \]
Also, let \(y(t) = P(t, t) \), then we may write equations (1.1)-(1.3) as:

\[\begin{align*}
2.1 & \quad y(t) = Ay(t) + bu(t) \quad t \in J, \; y \in V, \\
2.2 & \quad y(0) = y_0,
\end{align*} \]

where \(y_0 = F(x) \) and \(A \) is a sectorial operator defined by \(A^2 = c^2 \nabla^2 \) with domain \(V \). Then we may write the solution of (2.1)-(2.2) as

\[y(t) = S(t)y_0 + \int_0^t S(t-s)bu(s)ds \quad t \in J, \]

where \(S(t) \) is a semigroup generated by the operator \(A \) (Banks, 1983).

Now let the eigenvalues and eigenfunctions of the operator \(A \) be given as follows:

\[\begin{align*}
Ae_n(x) &= -\gamma_n e_n(x), \\
e_n(x) &= 0, \quad x \in \partial Q, \quad n = 1, 2, \ldots;
\end{align*} \]

Let the expansion of \(h(x) \in L_2(Q) \) in terms of eigenfunction be

\[h(x) = \sum_{n=1}^{\infty} h_n e_n(x), \]

then we can write the semigroup \(S(t) \) as:

\[S(t)h = \sum_{n=1}^{\infty} h_ne_n(x). \]

Therefore, by (2.3) the solution of (2.1)-(2.2) is of the following form:

\[\begin{align*}
2.4 & \quad y(t) = \sum_{n=1}^{\infty} \left[F_n e^{-\gamma_nt} + b_n \int_0^t e^{-\gamma_n(s-t)}u(s)ds \right] e_n(x),
\end{align*} \]

where \(F_n \) and \(b_n \) are respectively the Fourier coefficients of \(F(x) \) and \(b(x) \).

Since \(P(x, t) = y(t) \), so by (2.4) the solution of the system (1.1)-(1.3) can be written as:

\[\begin{align*}
2.5 & \quad P(x, t) = \sum_{n=1}^{\infty} \left[F_n e^{-\gamma_nt} + b_n \int_0^t e^{-\gamma_n(t-s)}u(s)ds \right] e_n(x)
\end{align*} \]

Let the expansion of \(G(x) \), in terms of eigenfunctions be

\[G(x) = \sum_{n=1}^{\infty} G_n e_n(x). \]
By (1.4) and (2.5) we must find a control function u such that satisfies the following conditions:

$$F_n e^{-\gamma_n T} + b_n \int_0^T e^{-\gamma_n (T-t)} u(t) dt = G_n, \quad n=1,2,...$$

Assume in the Fourier series, $b(x) = \sum b_n e_n(x), b_n \neq 0$, then the above relation can be written as:

$$\int_0^T e^{-\gamma_n (T-t)} u(t) dt = \frac{1}{b_n} \left(G_n - F_n e^{-\gamma_n T}\right).$$

$n=1,2,....$

Now let

$$\hat{n}(t, u) = e^{-\gamma_n (T-t)} u(t), \quad a_n = \frac{1}{b_n} \left(G_n - F_n e^{-\gamma_n T}\right), \quad n=1,2,....$$

Hence, we must find a control function $u(\cdot): J \rightarrow [-1,1]$ such that:

$$\int_0^T \hat{n}(t, u) dt = a_n, \quad \forall n=1,2,....,$$

and minimizes the functional (1.5). We call this problem an optimal moment problem, and consider it in the next section.

3. Modified optimal moment problem

Now we replace the above moment minimization problem with another one as follow:

1: For a fixed control function $u(\cdot) \in U$, the mapping

$$\hat{\gamma}_n : F \rightarrow \int_0^T \hat{\gamma}_n(t, u) dt, \quad \forall F \in C(\Omega),$$

defines a positive linear functional on $C(\Omega)$.

2: By the Riesz representation theorem, there exists a unique positive Radon measure γ_u on Ω such that

$$\int_0^T \hat{\gamma}_n(t, u) dt = a_n, \quad \forall n=1,2,....$$

$$\forall F \in C(\Omega).$$
This measure \(\mathcal{U}_u \) is required to have certain properties which are abstracted from the definition of admissible controls. First by (3.2)
\[
|\mathcal{U}_u(F)| \leq T \sup_{\alpha} |F(t,u)|,
\]
hence
\[
\mathcal{U}_u(1) \leq T.
\]
Next, by (2.8) we have
\[
\mathcal{U}_u(\mathcal{U}_u) = a_n, \quad n = 1, 2, \ldots.
\]
Finally, consider functions \(H(\cdot) \in C(\Omega) \) which do not depend on \(u \), we have
\[
\int_\Omega H d\mathcal{U}_u = \int_0^T H(t,u(t)) dt = a_H,
\]
where \(a_H \) is the Lebesgue integral of \(H \). Let \(M^+(\Omega) \) be the set of positive Radon measures on \(\Omega \). The set \(Q_0 \) is defined as a subset of \(M^+(\Omega) \) such that:
\[
Q_0 = S_1 \cup S_2 \cup S_3
\]
where,
\[
S_1 = \{ \mathcal{U} \in M^+(\Omega) : \mathcal{U}(1) \leq T \},
\]
\[
S_2 = \{ \mathcal{U} \in M^+(\Omega) : \mathcal{U}(\mathcal{U}_u) = a_n, \quad n = 1, 2, \ldots \},
\]
\[
S_3 = \{ \mathcal{U} \in M^+(\Omega) : (\mathcal{U}(H) = a_H, \quad H \in C(\Omega) \}
\]
and \(H \) is independent of \(u \).
So the new optimization problem consists of minimizing the linear functional
\[
1 : Q_0 \to \mathbb{R} \text{ defined by }
\]
\[
1(\mathcal{U}) = \int_\Omega f_0 d\mathcal{U}
\]
over the set \(Q_0 \).
Proposition 3.1
The measure-theoretical control problem, which consist of finding the minimum of the functional I over the set Q_0, attains its minimum, say \ast, in Q_0 (Rubio, 1986).

4. Approximation of the optimal control by a piecewise constant control
Corresponding to each piecewise constant admissible control $u(\cdot)$, we may associate a measure $\ast u$, in $M^+(\Omega)I S_1 S_2$. Let Q_i be the set of all such measures $\ast u$. When the space $M^+(\Omega)$ has the week *-topology, Q_i is dense in $M^+(\Omega)I S_1 S_2$ (Theorem 1 of Ghouila-Houri, 1967). A basis of closed neighborhood in the week *-topology is given by sets of the form

$$\{ ? | (H_n) \leq \varepsilon, n = 1,2,\ldots, k+1 \},$$

where k is an integer $H_n \in C(\Omega, n = 1,2,\ldots, k+1)$, and $\varepsilon > 0$. In any week *-neighborhood of $\ast u$ (the minimizing measure), we can find a measure $\ast u$, corresponding to a piecewise control function $u(\cdot)$. In particular, we can put

$$H_1 = f_0, H_2 = \varphi, H_3 = \varphi, \ldots, H_{k+1} = \varphi;$$

then we can find a piecewise constant control $u_k(\cdot)$, such that

$$\left| \int_0^T f_0(t, u_k) dt - \ast f_0(\cdot) \right| \leq ?$$

and

$$\left| \int_0^T \varphi(t, u_k) dt - a_n \right| \leq ?$$

n = 1,2,\ldots, k.

Therefore, by using the piecewise constant control $u_k(\cdot)$, we can reach within $?$ of the minimum value $\ast f_0(\cdot)$.

Now, we analyze the relation between the desired final state $G(\cdot)$ and $P_k(\cdot, T)$ for the one-dimension state, $P_k(\cdot, T)$ is the
final state attained by using the control \(u_k(t) \). Let \(Q = [0, L] \), where \(L \) is a fixed positive real number; in this case, the eigenfunctions and the corresponding eigenvalues of the operator \(A = c^2 \frac{\partial^2}{\partial x^2} \) are as

\[
\begin{align*}
\varepsilon_n &= \sin \left(\frac{n\pi}{L} x \right) \quad x \in Q \\
\tau_n^2 &= \left(\frac{cn\pi}{L} \right)^2 \quad n = 1, 2, ...
\end{align*}
\]

Now we can show that if \(\tau \) is chosen small enough, and \(k \) large enough, the distance between \(G(t) \) and \(P_k(\cdot, T) \) in \(L^2(Q) \) can be made as small as desired.

Proposition 4.1

Given \(\tau \geq 0 \), we may choose \(k \) and \(\tau \) such that

\[
\int_0^L \left[P_k(x, T) - G(x) \right]^2 dx \leq \tau
\]

Proof

Without loss of generality, we assume that \(c = 1, T = L = 1 \). Thus by (2.5) and (4.3)-(4.4) we have

\[
P_k(x) = \sum_{n=0}^{\infty} \left[F_n \exp(-n^2\tau^2) + b_n \int_0^1 \exp(-n^2\tau^2(1-t))u_k(t)dt \right] \sin(n\pi x)
\]

Let

\[
\tau_n = F_n \exp(-n^2\tau^2) + b_n \int_0^1 \exp(-n^2\tau^2(1-t))u_k(t)dt, \quad n = 1, 2, ...
\]

the Fourier coefficients \(\tau_n \) of \(P_k(\cdot, 1) \), satisfy

\[
|\tau_n| \leq |F_n| \exp(-n^2\tau^2) + |b_n| \int_0^1 \exp(-n^2\tau^2(1-t))dt \quad n = 1, 2, ...
\]

\[
\leq \frac{|F_n|}{n^2\tau^2} + \frac{|b_n|}{n^2\tau^2}.
\]
Since F_n and b_n are respectively, the Fourier coefficients of $F(\cdot)$ and $b(\cdot)$, then for the same integer k, when $n \geq k$, we have $|F_n| \leq 1$ and $|b_n| \leq 1$. Thus

$$|?_n| \leq \frac{2}{n^2/\pi^2}.$$

Also, since the desired final state $G(x) = \sum G_n \sin(\pi n x)$ is reachable by an admissible control, $|G_n|$ satisfies the same inequality as $|?_n|$. Thus,

$$\int_0^1 [P_k (x, t) - G(x)]^2 dx = \frac{1}{2} \sum_{n=1}^k (?)_n^2 - G_n)^2 + \frac{1}{2} \sum_{n=k+1}^\infty (b_n - G_n)^2,$$

where for $k \geq k_1$,

$$\sum_{n=k+1}^\infty (\pi n - G_n)^2 \leq \frac{16}{\pi^4} \sum_{n=k+1}^\infty \frac{1}{n^4}.$$

Since the last summation in this expression is the tail of a convergent series we may choose k such that $k \geq k_1$ and

$$4.7 \quad \sum_{n=k+1}^\infty (\pi n - G_n)^2 \leq \frac{?}{2}.$$

Also, we choose $? = \frac{1}{2b_0} \sqrt{\frac{2}{k}}$, where $b_0 = 2 \sup_{x \in [0,1]} |b(x)|$. In the neighborhood defined by choosing π and k as above, there exists a $?_0$ corresponding to a piecewise constant control $u_0(\cdot)$ for which we have (4.2). Thus by (2.7) we can write

$$\begin{align*}
? \pi, (?_n? G) \frac{?}{2} F\exp(? n^2 t) \frac{?}{2} b_n \frac{?}{2} (t \pi, ?_n t) dt \frac{?}{2} G_n \frac{?}{2} \\
? \pi, b_n (t, \pi) dt \frac{?}{2} (t, \pi) \frac{?}{2} \frac{?}{2} \frac{?}{2} (t, \pi) dt \frac{?}{2} \frac{?}{2}
\end{align*}$$

by (4.2) we have

$$4.8 \quad \sum_{n=1}^k (\pi n - G_n)^2 \leq b_0^2 k^2 \leq \frac{?}{2}.$$
Therefore by (4.7)-(4.8) we have
\[
\int_0^T [P_k(x,T) - F(x)]^2 \, dx = \sum_{n=1}^K (\xi_n - F_n)^2 + \sum_{n=1}^\infty (\xi_n - F_n)^2 \leq \frac{2}{2} + \frac{2}{2} = 2
\]

5. Approximation of the optimal measure

Now we develop a method for the estimation of a nearly-optimal piecewise constant control. In this method we follow Kamyad et al., (1991). First we obtain an approximate value of the optimal measure \(\mathcal{M} \). Let \(Q(M_1, M_2) \) be the set of measures in \(\mathcal{M} \) satisfying

\[
\begin{align*}
&\text{if } n \leq T \\
&\sum_{\mu} \mathcal{C}(\mu) = a_n, n = 1,2,\ldots, M_1 \\
&\sum_{H_n} = a_{H_n}, n = 1,2,\ldots, M_2
\end{align*}
\]

Define \(\mathcal{M}(Q(M_1, M_2)) \) as

\[
\mathcal{M}(Q(M_1, M_2)) = \min \{ \mathcal{M}(f_0); f_0 \in Q(M_1, M_2) \}
\]

then

\[
\lim_{M_1, M_2 \to \infty} \mathcal{M}(Q(M_1, M_2))(f_0) = \mathcal{M}(f_0)
\]

(see Proposition 3.1 in Kamyad et al., 1992).

The set \(\Omega = [0,T] \times \mathbb{R} \) will be covered with a grid, by taking \(m_1 + 1 \) and \(m_2 + 1 \) points along the t-axis and u-axis, respectively. These points will be equidistant, at distances \(\frac{T}{m_1} \) and \(\frac{2}{m_2} \), each separately in the order mentioned. Now \(\Omega \) is divided to \(N = m_1 m_2 \) equal rectangles \(\Omega_j, j = 1,2,\ldots, N \), we choose points \(Z_j \in \Omega_j \) and let

\[
\mathcal{Z} = \{Z_j; j = 1,2,\ldots, N\}
\]

Now let \(\mathcal{P}(M_1, M_2, \mathcal{Z}) \subseteq \mathbb{R}^N \) be the set of all \((\mathcal{Z}_1, \mathcal{Z}_2,\ldots, \mathcal{Z}_N) \) defined by:
Proposition 5.1
For every \(\alpha \geq 0 \), the problem of minimizing the function
\[
\sum_{j=1}^{N} \beta_a j(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_1
\]
\[
\sum_{j=1}^{N} \eta_i H_i(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_2
\]
we can write the following proposition:

Proposition 5.1
For every \(\alpha \geq 0 \), the problem of minimizing the function
\[
\sum_{j=1}^{N} \beta_a j(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_1
\]
\[
\sum_{j=1}^{N} \eta_i H_i(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_2
\]
for \(N = N(\alpha) \) sufficiently large, the solution satisfies
\[
\sum_{j=1}^{N} \beta_a j(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_1
\]
\[
\sum_{j=1}^{N} \eta_i H_i(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_2
\]
where \(\alpha \) tends to zero as \(\alpha \) tends to zero.

Proof
The proof is the same as that of the Theorem III (Rubio 1986).
Thus we can compute \(\sum_{j=1}^{N} \beta_a j(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_1 \)
\(\sum_{j=1}^{N} \eta_i H_i(Z_j) - \alpha_i \leq \beta_i, i = 1, 2, \ldots, M_2 \)
where \(\alpha \) tends to zero as \(\alpha \) tends to zero.
Optimal control of an inhomogeneous…

5.3 \[\sum_{j=1}^{N+1} f_j(Z_j) \]

over the set of coefficient \(?_j \geq 0, j = 1,2,\ldots, N+1 \), such that

\[\sum_{j=1}^{N+1} (Z_j ? a_j,i) = 1,2,\ldots, M_j \]

5.4 \[H_i(Z_j) \geq a_{M_i,i} = 1,2,\ldots, M_2 \]

We used one slack variable \(?_{N+1} \), to put the last inequality in (5.2) in the equality form.

Remark
If \(\sum_{j=1}^{N} Z_j = T \) then \(?_{N+1} = 0 \). Also we choose \(H_i(t,u), i=1,2,\ldots,M_2 \) as follows:

\[H_i(t,u) = \begin{cases} 1, t \in J_i & \\ 0, \text{otherwise} & \end{cases} \]

where \(J_i = \left[\left(i-1 \right) T / m_j , i T / m_j \right], i=1,2,\ldots,m_j \), so:

\[a_{M_i} = \int_0^T H_i(t,u) dt = \frac{T}{m_j} \]

Now by using the solution of the finite dimensional linear programming (5.3)-(5.4), we can construct an approximate control function. Let \(Z_n = (t_n,u_n), n=1,2,\ldots,N \) to each \(n \) we can attribute a pair \((i,j) \) as follows:

\[n = m_j(j-1) + i \quad 1 \leq i \leq m_j, \quad 1 \leq j \leq m \],

assume \(K_{ij} = ?_n \). We define a piecewise-constant control as:

5.5 \(u(t) = u_n \quad t \in B_{ij} \)

where
5.6 \[B_j \delta_{ij} \delta_{rj} K_{ij} \delta_{rj} K_{ij} \delta_{ij} \]

Since those intervals \(B_j \) for which \(K_{ij} = 0 \) are reduced to a point, they do not contribute anything to intervals and so can be ignored. By using the piecewise-constant control we can compute the final state \(P(x, T) \).

Example 5.1

Consider the heat equation with internal control

\[P_t(x, t) = P_{xx}(x, t) + xu(t), \quad (x, t) \in \Omega = (0, 1) \times (0, 0.4) \]

with the following initial and boundary conditions:

\[
\begin{cases}
P(x, 0) = 10(x - x^2), & 0 \leq x \leq 1 \\
P(0, t) = P(1, t) = 0, & 0 \leq t \leq 0.4
\end{cases}
\]

We are going to construct the optimal control function \(u(\cdot): [0, 0.4] \to [-1, 1] \), such that the solution of the system \((5.7)-(5.8)\) corresponding to this control function satisfies the following desired final condition:

\[P(x, 0.4) = 0, \quad x \in [0, 1] \]

and, minimizes the functional

\[J(u) = \int_0^T |u(t)| dt. \]

We assume \(M_1 = 10, M_2 = 20, m_1 = m_2 = 20 \), so the set \(\Omega = [0, 0.4] \times [-1, 1] \) is divided to \(N = 400 \) subrectangles. Also, we define \(Z_i = (t_i, u_i), i = 1, 2, ..., 400 \), as

\[
\begin{align*}
\quad t_{20i+1} = t_{20i+2} = ... = t_{20i+20} = 0.02i + 0.01 & \quad i = 0, 1, 2, ..., 19 \\
\quad u_{2i+1} = u_{2i+2} = ... = u_{38i+1} = \frac{2}{19} i - 1 & \quad i = 0, 1, 2, ..., 19
\end{align*}
\]
So, the linear programming problem (5.3)-(5.4) changes to the following problem:

Minimize

$$\sum_{j=1}^{400} |u_j|$$

subject to:

\[
\begin{align*}
?_j & \geq 0 & j = 1, \ldots, 400 \\
\sum_{j=1}^{400} e^{-n^2 \frac{(0.4-t_j)}{2}} u_j &= \begin{cases}
\frac{20}{n^2} e^{-0.4n^2}, & n = 2k-1 \\
0 & n = 2k
\end{cases} & n = 1, \ldots, 10 \\
?_{20i+1} + ?_{20i+2} + \cdots + ?_{20i+20} &= 0.02 & i = 1, \ldots, 19
\end{align*}
\]

In this example, the cost function converges to the value 0.0903. The graph of the piecewise constant control function formed by using the above method, can be seen in Figure 5.1. The initial and final states are shown in Figure 5.2. We mention that \(P(x_{04}) \) is approximated by only the first four terms of the series (2.5), that is:

\[
P(x_{04}) = 0.0430 \sin(4\pi \theta) - 0.0028 \sin(2\pi \theta) + 0.0066 \sin(3\pi \theta) - 0.0025 \sin(4\pi \theta)
\]
Figure 5.2 - Initial and final actual states for Example 5.1.

6. Optimal control for the two-dimensional inhomogeneous heat equation

In this section let $Q = [0, L] \times [0, H]$ where L and H are fixed positive numbers; in this case, the eigenfunction and eigenvalues of the operator $A = C \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$ are as:

$$e_m(x, y) = \frac{2}{\sqrt{LH}} \sin \left(\frac{m\pi x}{L} \right) \sin \left(\frac{n\pi y}{H} \right), \quad \lambda_m = \left(\frac{m^2}{L} \right)^2 + \left(\frac{n^2}{H} \right)^2.$$

Therefore, we can write the solution of (1.1)-(1.3) as

$$P(x, y, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} b_m e^{\alpha t} \frac{\partial F_m}{\partial y} \frac{\partial e^{-\alpha t}}{\partial y} u(t) dt \quad ?^{2n} \mathcal{F}_m \mathcal{U}_m \left(\frac{\partial}{\partial y} \right) \mathcal{U}_m \left(\frac{\partial}{\partial y} \right)$$

Where b_m and F_m are respectively double Fourier sine coefficients of functions $b(x, y)$ and $F(x, y)$. So, by (2.6) we must find a control function $u(t)$ such that:

$$\int_0^t \frac{1}{b_m}(G_{mn} - F_m e^{\alpha nt}) dt$$
where G_m is double Fourier sine coefficients of function $G(x, y)$. But, by the following correspondence

$$f : N \times N \rightarrow N$$

$$\langle m, n \rangle \rightarrow 2^{m+1}(2n-1) = k,$$

the above relation can be written as the following from

$$\int_0^T e^{-\gamma_s(T-t)} u(t) dt = \frac{1}{b_k} \left(G_k - F_k e^{-\gamma_s T}\right)$$

$k = 1, 2, \ldots$.

Therefore, by (2.7), we need to find a control function $u(t) : [0, T] \rightarrow [-1, 1]$ such that satisfies in (2.8) and minimizes the functional (1.5). This problem is an optimal moment problem, and we considered it in the previous sections. We give an example in two-dimensional system.

Example 6.1

Consider the two-dimensional inhomogeneous heat equation

$$P_t(x, y, t) = P_{xx}(x, y, t) + P_{yy}(x, y, t) + xy \mu(t)$$

for $(x, y, t) \in (0, ?) \times (0, ?) \times \left[0, \frac{3\pi}{2}\right]$, where the initial and boundary conditions are:

1. $P(x, y, 0) = 0.2 \sin(x) \sin(y)$
2. $P(x, y, 0) = 0$
3. $P(x, y, 0) = 0$

We are going to construct the optimal control function $u(t) : [0, \frac{3\pi}{2}] \rightarrow [-1, 1]$, such that the solution of the system (6.2), (6.5) corresponding to this control function, satisfies the following desired final condition:

$$P(x, y, \frac{3\pi}{2}) = 0,$$
and also, minimizes the functional
\[
J(u) = \int_0^T u^2 dt.
\]
Let \(M_1 = 10, M_2 = 20, m_1 = m_2 = 20 \), thus \(N = 400 \). Also, we select \(Z_i = (t_i, u_i), i = 1, 2, ..., 400 \), as
\[
t_{20i+1} \quad t_{20i+2} \quad ... \quad t_{20i+20} \quad \frac{39}{40} (i \? I), \quad i = 0, 1, 2, ..., 19
\]
\[
u_{i+1} = u_{2i+1} = ... = u_{38i+1} = \frac{2}{19} i - 1, \quad i = 0, 1, 2, ..., 19.
\]
So, the linear programming problem (5.3)-(5.4) changes to the following problem:
Minimize
\[
\sum_{i=1}^{400} u_i^2
\]
subject to,
\[
\begin{align*}
\sum_{j=1}^{400} e^{-\frac{39}{2} t_j} u_j &= -0.05 e^{-\frac{39}{2}}, \quad n = 2 \\
\sum_{j=1}^{400} e^{-\frac{39}{2} t_j} u_j &= 0, \quad n = 5, 8, 10, 13, 17, 18, 20, 25, 26 \\
\sum_{j=1}^{400} e^{-\frac{39}{2} t_j} u_j &= 0.1, \quad n = 20, 21, ..., 29
\end{align*}
\]
In this example the cost function takes the value of 0.0055. By using of the solutions of this finite dimensional linear programming problem and (5.5) we obtained an approximated piecewise constant control function. Figure 6.1 shows this control function. By (6.1) we can compute \(p \left(x, y, \frac{39}{2} \right) \), the initial and desired final states are shown in Figures 6.2-6.3. In Figure 6.3, \(p \left(x, y, \frac{39}{2} \right) \) is approximated by only the first eleven terms of the series (6.1), that is:
\[
P\left(x, y, \frac{3\pi}{2} \right) = 0.0121 \sin(x) \sin(y) - 0.0060 \sin(2x) \sin(y) \\
- 0.0060 \sin(x) \sin(2y) + 0.0029 \sin(2x) \sin(2y) + 0.0037 \sin(3x) \sin(y) \\
+ 0.0037 \sin(x) \sin(3y) - 0.0017 \sin(3x) \sin(2y) - 0.0017 \sin(2x) \sin(3y) \\
- 0.0023 \sin(4x) \sin(y) - 0.0023 \sin(4x) \sin(4y) + 0.0010 \sin(3x) \sin(3y)
\]

Figure 6.1- The nearly optimal control for Example 6.1.

Figure 6.2- Initial state for Example 6.1.
Figure 6.3- Final state actually achieved for Example 6.1.

References

