A Note on Transformation Semigroups

Masoud Sabbaghan and Fatemah Ayatollah Zadeh Shirazi
Dept. of Math, Faculty of Science, University of Tehran
Enghelab Ave., Tehran, Iran
(sabbagh@khayam.ut.ac.ir)

(received: 7/12/2000; accepted: 22/8/2001)

Abstract
In this note we study the transformation semigroup \((X,S)\), where \(S\) is a finite union of its subsemigroups.

2000 AMS Classification Subject: 54H15

Key Words: distal, enveloping semigroup, transformation semigroup.

Preliminaries:
By a transformation semigroup \((X,S,\cdot)\) (or simply \((X,S)\)) we mean a compact Hausdorff topological space \(X\), a discrete topological semigroup \(S\) with identity \(e\) and a continuous map \(\cdot : X \times S \rightarrow X\) \((\cdot, S) = xs (\forall x \in X, \forall s \in S)\) such that:

- \(\forall x \in X, xe = x\)
- \(\forall x \in X, \forall s, t \in S, x (st) = (xs) t\)

In the transformation semigroup \((X,S)\) we have the following definitions:

1. For each \(s \in S\), define the continuous map \(^s : X \rightarrow X\) by \(^s = xs\) \((\forall x \in X)\), we used to write \(s\) instead of \(^s\). The closure of \(\{s \mid s \in S\}\) in \(X^X\) with pointwise convergence, is called the enveloping semigroup (or Ellis semigroup) of \((X,S)\) and it is written by \(E(X,S)\) or simply \(E(X)\). \(E(X,S)\) has a semigroup structure (Ellis, 1969, Chapter 3), a nonempty subset \(K\) of \(E(X,S)\) is called a right ideal if \(KE(X,S) \subseteq K\), and it is called a minimal right ideal if none of the right ideals of \(E(X,S)\) is a proper subset of \(K\).

2. A nonempty subset \(Z\) of \(X\) is called invariant if \(ZS \subseteq Z\), moreover it is called minimal if it is closed and none of the closed invariant subsets...
of \(X \) is a proper subset of \(Z \). Let \(a \in X \), \(A \) be a nonempty subset of \(X \) and \(C \) be a nonempty subset of \(E(X,S) \), we introduce the following sets:
\[
F(a,C) = \{ p \in C \mid ap = p \}, \quad F(A,C) = \{ p \in C \mid \forall b \in A \quad bp = b \},
\]
and
\[
\overline{F}(A,C) \cup \{ p \mid p \in C \mid Ap \notin A \}, \quad J(C) \cup \{ p \mid p \in C \mid p^* \notin p \}.
\]

3. Let \(a \in X \), \(A \) be a nonempty subset of \(X \) and \(K \) be a closed right ideal of \(E(X,S) \), then (Sabbaghan and Shirazi, 2001, Definition 1):
- We say \(K \) is an \(a \)-minimal set if:
 - \(aK = aE(X,S) \),
 - \(K \) does not have any proper subset like \(L \), such that \(L \) is a closed right ideal of \(E(X,S) \) with \(aL = aE(X,S) \).
- We say \(K \) is an \(A \)-minimal set if:
 - \(\forall b \in A \quad bK = bE(X,S) \),
 - \(K \) does not have any proper subset like \(L \), such that \(L \) is a closed right ideal of \(E(X,S) \) with \(bL = bE(X,S) \) for all \(b \in A \).
- We say \(K \) is an \(A \)-minimal set if:
 - \(AK = AE(X,S) \),
 - \(K \) does not have any proper subset like \(L \), such that \(L \) is a closed right ideal of \(E(X,S) \) with \(AL = AE(X,S) \).

The sets of all \(a \)-minimal (resp. \(A \)-minimal, \(A \)-minimal) sets is written by \(M_{(X,S)}(a) \) (resp. \(\overline{M}_{(X,S)}(A) \), \(M_{(X,S)}(a) \)).

4. Let \(A \) be a nonempty subset of \(X \), we introduce the following sets (Sabbaghan and Shirazi, 2001b, Definition 1):
\[
P(X,S) = \{ (xy) \in X \times X \mid \exists p \in E(X,S) \quad xp = yp \},
\]
\[
P_{(a)}(X,S) = \{ (xy) \in X \times X \mid \exists a \in A \quad \exists l \in M_{(X,S)}(a) \quad \forall p \in l \quad xp = yp \},
\]
\[
\overline{P}_{(a)}(X,S) = \{ (xy) \in X \times X \mid \exists l \in \overline{M}_{(X,S)}(A) \quad \forall p \in l \quad xp = yp \},
\]
\[
\overline{M}_{(X,S)}(D) = \{ ? \mid \exists D \subseteq X \mid \forall K \in \overline{M}_{(X,S)}(D) \quad J(F(D,K)) \neq ? \},
\]
\[
\overline{M}_{(X,S)}(D) = \{ ? \mid \exists D \subseteq X \mid \forall K \in \overline{M}_{(X,S)}(D) \quad J(F(D,K)) \neq ? \},
\]
\[
\Delta x = \{ (xy) \mid x \in X \}, \quad \Delta = \{ (xy) \mid x \in X \}, \quad A \]
be a nonempty subset of \(X \) and \(B \)
be a nonempty subset of Y. We say (Sabbaghan and Shirazi, 2001b, Definition 7):

- (Y,S) is a distal (resp. A-distal, $A^{[\mathfrak{N}]}$ distal) factor of (X,S) if $R(\varnothing) \cap P(X,S) = \Delta_X$ (resp. $R(\varnothing) \cap P_A(X,S) = \Delta_X$, $R(\varnothing) \cap \overline{P}_A(X,S) = \Delta_X$),

- (X,S) is a distal (resp. B-distal, $B^{[\mathfrak{N}]}$ distal) extension of (Y,S) if $R(\varnothing) \cap P(X,S) = \Delta_X$ (resp. $R(\varnothing) \cap P_{\gamma \gamma_{B}}(X,S) = \Delta_X$, $R(\varnothing) \cap \overline{P}_{\gamma \gamma_{B}}(X,S) = \Delta_X$),

- (Y,S) is a proximal (resp. A-proximal, $A^{[\mathfrak{M}]}$ proximal) factor of (X,S) if $R(\varnothing) \subseteq P(X,S)$ (resp. $R(\varnothing) \subseteq P_A(X,S)$, $R(\varnothing) \subseteq \overline{P}_A(X,S)$),

- (X,S) is a proximal (resp. B-proximal, $B^{[\mathfrak{M}]}$ proximal) extension of (Y,S) if $R(\varnothing) \subseteq P(X,S)$ (resp. $R(\varnothing) \subseteq P_{\gamma \gamma_{B}}(X,S)$, $R(\varnothing) \subseteq \overline{P}_{\gamma \gamma_{B}}(X,S)$).

6. Let A be a nonempty subset of X, then (Sabbaghan and Shirazi, 2001a, Definition 13):

- (X,S) is distal if $E(X,S)$ is a minimal right ideal,

- (X,S) is called A-distal if for each $a \in A$, $E(X,S) \in M_{X,S}(a)$,

- (X,S) is called, $A^{[\mathfrak{M}]}$ distal if $E(X,S) \in \overline{M}_{X,S}(A)$,

- (X,S) is called, $A^{[\mathfrak{M}]}$ distal if $E(X,S) \in \overline{M}_{X,S}(A)$.

7. Let Z be a closed invariant subset of X, define:

$h_{X,S}(Z) = \{ n \in \mathbb{N} \cup \{0\} \mid \exists Z_0, Z_1, \ldots, Z_n \quad \exists((Z_0 \subseteq Z_1 \subseteq \cdots \subseteq Z_n) \wedge (\forall i \in \{0, \ldots, n\} \quad \forall j \in \{0, \ldots, n\} \setminus \{i\} \quad Z_i \neq Z_j) \\
\wedge (\forall i \in \{0, \ldots, n\} \quad Z_i \text{ is a closed invariant subset of } Z))\}.$

Convention 1. In what follows (X,S) is a transformation semigroup, e is the identity of S and S_0, S_1, \ldots, S_n are subsemigroups of S, such that $e \in \bigcap_{i=0}^{n} S_i$ and $S = \bigcup_{i=1}^{n} S_i$.

Lemma 2.

1. $E(X,S) = \bigcap_{i=1}^{n} E(X,S_i)$.

2. $S = S_i \cdots S_1$ and $E(X,S) = E(X,S_i) \cdots E(X,S_1)$.
Proof.
1. If $p \in E(X, S)$, then there exists a net $\{s_\gamma\}_{\gamma \in \Gamma} \subseteq S$, such that $\lim_{\gamma \in \Gamma} s_\gamma = p$ (i.e., $\lim_{\gamma \in \Gamma} x s_\gamma = xp$ ($\forall x \in X$)), since $S = \bigcup_{i=1}^n S_i$, so there exists $i \in \{1, \ldots, n\}$ and a subnet $\{s_{\gamma \gamma}\}_{\gamma \in \Lambda}$ of $\{s_\gamma\}_{\gamma \in \Gamma}$, such that $s_{\gamma \gamma} \in S_i$, therefore $\lim_{\gamma \in \Lambda} s_{\gamma \gamma} = p \in E(X, S_i)$, so $E(X, S) \subseteq \bigcup_{i=1}^n E(X, S_i)$.

2. Use $e \in \bigcap_{i=1}^n S_i$.

Theorem 3. Let A be a nonempty subset of X, then:
1. (X, S) is distal if and only if for each $i \in \{1, \ldots, n\}$, (X, S_i) is distal.
2. (X, S) is A-distal if and only if for each $i \in \{1, \ldots, n\}$, (X, S_i) is A-distal.
3. Let $A \in \bigcap_{i=1}^n \overline{M} (X, S_i) \cap \overline{M} (X, S)$. Then (X, S) is $A^{[\mathbb{1}]}$ distal if and only if for each $i \in \{1, \ldots, n\}$, (X, S_i) is $A^{[\mathbb{1}]}$ distal.
4. Let $A \in \bigcap_{i=1}^n \overline{M} (X, S_i) \cap \overline{M} (X, S)$. Then (X, S) is $A^{[\mathbb{1}]}$ distal if and only if for each $i \in \{1, \ldots, n\}$, (X, S_i) is $A^{[\mathbb{1}]}$ distal.

Proof.
1. (X, S) is distal if and only if (X, S) is X-distal (Sabbaghan and Shirazi, 2001a, Theorem 18), so this is a special case of (2).
2. We have (by (Sabbaghan and Shirazi, 2001a, Theorem 18)):
(X, S) is A-distal $\iff \forall a \in A \quad J (F(a, E(X, S))) = \{e\}$
$\iff \forall a \in A \quad J (F(a, \bigcup_{i=1}^n E(X, S_i))) = \{e\}$ (by Lemma 2)
$\iff \forall a \in A \quad \bigcup_{i=1}^n J (F(a, E(X, S_i))) = \{e\}$
$\iff \forall a \in A \quad \forall i \in \{1, \ldots, n\} \quad J (F(a, E(X, S))) = \{e\}$
A Note on Transformation Semigroups

3. We have (by Sabbaghan and Shirazi, 2001a, Theorem 18):
\[(X, S) \text{ is } A^{[\overline{M}]} \text{ distal } \iff J(F(A, E(X, S))) = \{e\}\]
\[\iff \bigcap_{i=1}^{n} J(F(A, E(X, S))) = \{e\}\]
\[\iff \forall i \in \{1, \ldots, n\} \quad J(F(A, E(X, S))) = \{e\}\]
4. Use a similar method described in (3).

Theorem 4. Let \(n = 2 \) in Convention 1 and let \(A \) be a nonempty subset of \(X \).
1. If \((X, S)\) is distal then there exists \(i \in \{1, 2\} \) such that \(E(X, S) = E(X, S_i) \).
2. If \((X, S)\) is \(A \)-distal, then for each \(a \in A \) there exists \(i \in \{1, 2\} \) such that \(F(a, E(X, S)) = F(a, E(X, S_i)) \).
3. If \(A \subseteq \mathcal{M}^{-1}(X, S_1) \cap \mathcal{M}^{-1}(X, S_2) \) and \((X, S)\) is \(A^{[\overline{M}]} \) distal, then there exists \(i \in \{1, 2\} \) such that \(F(A, E(X, S)) = F(A, E(X, S_i)) \).
4. If \(A \subseteq \mathcal{M}^{-1}(X, S_1) \cap \mathcal{M}^{-1}(X, S_2) \) and \((X, S)\) is \(A^{[\overline{M}]} \) distal then there exists \(i \in \{1, 2\} \) such that \(\overline{F}(A, E(X, S)) = \overline{F}(A, E(X, S_i)) \).

Proof.
1. By Theorem 3, \((X, S_1), (X, S_2)\) are distal therefore \(E(X, S_1), E(X, S_2) \) and \(E(X, S) \) are groups. By Lemma 2 we have \(E(X, S) = E(X, S_1) \cup E(X, S_2) \) Thus \(E(X, S_1) \subseteq E(X, S_2) \) or \(E(X, S_2) \subseteq E(X, S_1) \).
2. By Theorem 3, \((X, S_1), (X, S_2)\) are \(A \)-distal therefore for each \(a \in A \), \(F(a, E(X, S_1)) \), \(F(a, E(X, S_2)) \) and \(F(a, E(X, S)) \) are groups (Sabbaghan and Shirazi, 2001a, Theorem 18), moreover by Lemma 2, \(F(a, E(X, S)) = F(a, E(X, S_1)) \cup F(a, E(X, S_2)) \), Thus \(F(a, E(X, S_1)) \subseteq F(a, E(X, S_2)) \) or \(F(a, E(X, S_2)) \subseteq F(a, E(X, S_1)) \).
3. \(F(A, E(X, S_1)), F(A, E(X, S_2)) \) and \(F(A, E(X, S_3)) \) are groups (Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar method described in (2).

4. \(\overline{F}(A, E(X, S_1)), \overline{F}(A, E(X, S_2)) \) and \(\overline{F}(A, E(X, S_3)) \) are groups (Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar method described in (2).

Theorem 5. Let \(A \) be a nonempty subset of \(X \), we have:

1. \(P(X,S) = \bigcup_{i=1}^{n} P_i(X,S) \).

2. \(P_A(X,S) = \bigcup_{i=1}^{n} P_A(X,S_i) \).

3. \(\bigcup_{i=1}^{n} P_A(X,S_i) \subseteq P_A(X,S) \).

4. If \(A \subseteq \bigcap_{i=1}^{n} \overline{M}(X,S_i) \cap \overline{M}(X,S) \). Then \(\overline{P}(X,S) = \bigcup_{i=1}^{n} \overline{P}(X,S_i) \).

Proof. In all items we use Lemma 2 and (Sabbaghan and Shirazi, 2001b, Theorem 4).

1. \(P(X,S) = P(X, S) \), so this is a special case of (2).

2. Let \(x, y \in X \):

\((xy) \in P_A(X, S) \) \(\iff\) \(\exists a \in A \) \(\exists p \in F(a, E(X, S)) \) \(xp = yp \)

\(\iff\) \(\exists a \in A \) \(\exists p \in F(a, \bigcup_{i=1}^{n} E(X, S_i)) \) \(xp = yp \)

\(\iff\) \(\exists a \in A \) \(\exists p \in \bigcup_{i=1}^{n} F(a, E(X, S_i)) \) \(xp = yp \)

\(\iff\) \(\exists a \in A \) \(\exists i \in \{1, \ldots, n\} \) \(\exists p \in F(a, E(X, S_i)) \) \(xp = yp \)

\(\iff\) \(\exists i \in \{1, \ldots, n\} \) \((xy) \in P_A(X, S) \)

\(\iff\) \((xy) \in \bigcup_{i=1}^{n} P_A(X, S_i) \).
Therefore $P_A(X, S) = \bigoplus_{i=1}^{n} P_A(X, S_i)$.

3. For $i \in \{1, \ldots, n\}$, if $K \in \overline{M_{(X,S_i)}}(A)$, then $\overline{K E(X,S)}$ is a closed right ideal of $E(X, S)$ and for each $a \in A$ we have $a \overline{K E(X,S)} = a E(X, S)$, thus there exists $L \in \overline{M_{(X,S)}}(A)$ such that $L \subseteq \overline{K E(X,S)}$ (Sabbaghan and Shirazi, 2001a, Corollary 3). Let $(x, y) \in X$, we have:

$$(x, y) \in \bigoplus_{i=1}^{n} \overline{P_A}(X, S_i).$$

Then there exists $L \in \overline{M_{(X,S)}}(A)$ such that $L \subseteq \overline{K E(X,S)}$.

4. Let $x, y \in X$, we have:

$$(x, y) \in \bigoplus_{i=1}^{n} P_A(X, S) \iff \exists p \in F(A, E(X, S)) \iff \exists p \in F(A, \bigoplus_{i=1}^{n} E(X, S)) \iff \exists p \in F(A, \bigoplus_{i=1}^{n} E(X, S)) \iff \exists i \in \{1, \ldots, n\} \iff (x, y) \in \bigoplus_{i=1}^{n} P_A(X, S).$$
Therefore $\overline{P}_A(X, S) = \bigwedge_{i=1}^{n} \overline{P}_A(X, S_i)$.

Corollary 6. Let $\phi : (X, S) \rightarrow (Y, S)$ be an onto homomorphism, A be a nonempty subset of X and B be a nonempty subset of Y, then (with all the factors and extensions being under ϕ):

a. “(Y, S) is a distal factor of (X, S)” if and only if “for each $i \in \{1, \ldots, n\}$, (Y, S_i) is a distal factor of (X, S)”.

b. “(Y, S) is an A-distal factor of (X, S)” if and only if “for each $i \in \{1, \ldots, n\}$, (Y, S_i) is an A-distal factor of (X, S)”.

c. Let $A \subseteq \bigcap_{i=1}^{n} \overline{M}(X, S) \cap \overline{M}(X, S)$, then “$(Y, S)$ is an A-distal factor of (X, S)” if and only if “for each $i \in \{1, \ldots, n\}$, (Y, S_i) is an A-distal factor of (X, S)”.

d. “(X, S) is a distal extension of (Y, S)” if and only if “for each $i \in \{1, \ldots, n\}$, (X, S_i) is a distal extension of (Y, S)”.

e. “(X, S) is a B-distal extension of (Y, S)” if and only if “for each $i \in \{1, \ldots, n\}$, (X, S_i) is a B-distal extension of (Y, S)”.

f. Let $\phi^{-1}(B) \subseteq \bigcap_{i=1}^{n} \overline{M}(X, S) \cap \overline{M}(X, S)$, then “$(X, S)$ is a B-distal extension of (Y, S)” if and only if “for each $i \in \{1, \ldots, n\}$, (X, S_i) is a B-distal extension of (Y, S)”.

Proof. Use Theorem 5.

Note 7. Let A_1, \ldots, A_n be nonempty subsets of X. We have:

1. If $\bigwedge_{i=1}^{n} A_i \subseteq \overline{M}(X, S)$ and for each $j \in \{1, \ldots, n\}$, (X, S_j) is $A_j^{(\overline{M})}$ distal, then (X, S) is $\bigwedge_{i=1}^{n} A_i^{(\overline{M})}$ distal.
2. If \(\bigoplus_{i=1}^{n} A_i \in \overline{\text{M}}(X,S) \) and for each \(j \in \{1, \ldots, n\}, (X,S) \) is \(A_j^{[\overline{M}]} \) distal, then \((X,S) \) is \(\bigoplus_{i=1}^{n} A_i^{[\overline{M}]} \) distal.

(Compare with Theorem 3).

Proof. In (1) and (2) we have (by Sabbaghan and Shirazi, 2001a, Theorem 18) and Lemma 2):

\[
\{e\} \subseteq J(F(\bigoplus_{i=1}^{n} A_i, E(X,S))) = \bigoplus_{j=1}^{n} J(F(\bigoplus_{i=1}^{n} A_i, E(X,S))) \subseteq \bigoplus_{j=1}^{n} J(F(\bigoplus_{i=1}^{n} A_i, E(X,S))) = \{e\}.
\]

So \(J(F(\bigoplus_{i=1}^{n} A_i, E(X,S))) = J(F(\bigoplus_{i=1}^{n} A_i, E(X,S))) = \{e\} \). Therefore \((X,S) \) is \(\bigoplus_{i=1}^{n} A_i^{[\overline{M}]} \) distal in (1) and \((X,S) \) is \(\bigoplus_{i=1}^{n} A_i^{[\overline{M}]} \) distal in (2).

Theorem 8. Let \(A \) be a nonempty subset of \(X \), we have:
1. \(E(X, S_0) \subseteq E(X, S) \).
2. If \((X,S) \) is distal, then \((X,S_0) \) is distal.
3. If \((X,S) \) is \(A \)-distal, then \((X,S_0) \) is \(A \)-distal.
4. If \((X,S) \) is \(A^{[\overline{M}]} \) distal and \(A \in \overline{\text{M}}(X,S_0) \), then \((X,S_0) \) is \(A^{[\overline{M}]} \) distal.
5. If \((X,S) \) is \(A^{[\overline{M}]} \) distal and \(A \in \overline{\text{M}}(X,S_0) \), then \((X,S_0) \) is \(A^{[\overline{M}]} \) distal.
6. Let \(Z \) be a closed invariant subset of \((X,S) \) and \(h_{x,S}(Z) \leq h_{x,S_0}(Z) \).
7. \(P(X, S_0) \subseteq P(X, S) \), \(P_A(X, S_0) \subseteq P_A(X, S) \) and \(\overline{P}_{A}(X, S_0) \subseteq \overline{P}_{A}(X, S) \).

Proof. Take \(S = S \cup S_0 \) and use Lemma 2, Theorem 3 and Theorem 5.

Corollary 9. Let \((X,S) \) be distal, then for each \(s \in S - \{e\} \) and each \(m \in \mathbb{N} \), there exists a net \(\{m\}_{\gamma \in \Gamma} \) in \(\mathbb{N} \) such that \(\lim_{\gamma \in \Gamma} s^m = s^{-m} \).
Proof. Let \(m \in \mathbb{N} \) and \(s \in S - \{ e \} \), by Theorem 8 \((X, \{ s^k \mid k \in \mathbb{N} \} \cup \{ e \})\) is distal, therefore \(E(X, \{ s^k \mid k \in \mathbb{N} \} \cup \{ e \}) \) is a group, so there exists a net \(\{ m \}_\gamma \) in \(\mathbb{N} \cup \{ 0 \} \) such that \(\lim_{\gamma \to \Gamma} s^m = s^{-m} (s^0 = e) \), since \(s \neq e \) we can take \(m \in \mathbb{N} \) (\(\gamma \in \Gamma \)).

Corollary 10. Let \(?(X, S) \to (Y, S) \) be an onto homomorphism and let \(A \) be a nonempty subset of \(X \) and \(B \) be a nonempty subset of \(Y \), then (with all the factors and extensions being under ?):

a. If \((Y, S_0) \) is a proximal factor of \((X, S_0) \), then \((Y, S) \) is a proximal factor of \((X, S) \).

b. If \((Y, S_0) \) is an \(A \)-proximal factor of \((X, S_0) \), then \((Y, S) \) is an \(A \)-proximal factor of \((X, S) \).

c. If \((Y, S_0) \) is an \(A^{[\Omega]} \) proximal factor of \((X, S_0) \), then \((Y, S) \) is an \(A^{[\Omega]} \) proximal factor of \((X, S) \).

d. If \((X, S_0) \) is a proximal extension of \((Y, S_0) \), then \((X, S) \) is a proximal extension of \((Y, S) \).

f. If \((X, S_0) \) is a \(B \)-proximal extension of \((Y, S_0) \), then \((X, S) \) is a \(B \)-proximal extension of \((Y, S) \).

e. If \((X, S_0) \) is a \(B^{[\Omega]} \) proximal extension of \((Y, S_0) \), then \((X, S) \) is a \(B^{[\Omega]} \) proximal extension of \((Y, S) \).

Proof. Use Theorem 8.

Theorem 11. Let \(A \) be a nonempty subset of \(X \).

1. Let \(a_1, \ldots, a_p, b_1, \ldots, b_q \in S \) be such that \(S = (\bigcup_{i=1}^{p} S_0 a_i) \cup (\bigcup_{i=1}^{q} b_i S_0) \), then:

a. \(E(X, S) = (\bigcup_{i=1}^{p} E(X, S_0 a_i) \cup (\bigcup_{i=1}^{q} b E(X, S_0)) \).

b. \((X, S) \) is distal if and only if \(a_1, \ldots, a_p, b_1, \ldots, b_q \) are one to one and \((X, S_0) \) is distal.
c. Suppose $a_1, \ldots, a_p, b_1, \ldots, b_q \in F(A,S)$. Then (X,S) is A-distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X,S_0) is A-distal.

d. Suppose $a_1, \ldots, a_p, b_1, \ldots, b_q \in F(A,S)$ and $A? \bar{M}^{-}(X,S) \cap \bar{M}^{-}(X,S_0)$. Then (X,S) is $A^{(3)}$ distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X,S) is $A^{(3)}$ distal.

e. Suppose $a_1, \ldots, a_p, b_1, \ldots, b_q \in \bar{F}(A,S)$ and $A? \bar{M}^{-}(X,S) \cap \bar{M}^{-}(X,S_0)$. Then (X,S) is $A^{(3)}$ distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X,S_0) is $A^{(3)}$ distal.

2. Let $\mathcal{S} \subseteq S$ be such that $s^1 \in \mathcal{S}$, then:
 a. $E(X, s^1 \mathcal{S} \mathcal{S}) = s^1 E(X, \mathcal{S} \mathcal{S})$.
 b. (X, \mathcal{S}) is distal if and only if $(X, s^1 \mathcal{S} \mathcal{S})$ is distal.
 c. Suppose $\mathcal{S} \subseteq F(A,S)$. Then (X, \mathcal{S}) is A-distal if and only if $(X, s^1 \mathcal{S} \mathcal{S})$ is A-distal.
 d. Suppose $\mathcal{S} \subseteq F(A,S)$ and $A? \bar{M}^{-}(X,S_0) \cap \bar{M}^{-}(X, s^1 \mathcal{S} \mathcal{S})$. Then (X,\mathcal{S}) is $A^{(3)}$ distal if and only if $(X, s^1 \mathcal{S} \mathcal{S})$ is $A^{(3)}$ distal.
 e. Suppose $\mathcal{S} \subseteq \bar{F}(A,S)$ and $A? \bar{M}^{-}(X, S_0) \cap \bar{M}^{-}(X, s^1 \mathcal{S} \mathcal{S})$. Then (X, \mathcal{S}) is $A^{(3)}$ distal if and only if $(X, s^1 \mathcal{S} \mathcal{S})$ is $A^{(3)}$ distal.

Proof.

1.
 a. Let $r \in E(X,S)$, then there exists a net $\{s_\gamma\}_{\gamma \in \Gamma} \subseteq S$ such that $\lim s_\gamma = r$. There exists a subnet $\{s_{\gamma_\lambda}\}_{\lambda \in \Lambda}$ of $\{s_\gamma\}_{\gamma \in \Gamma}$ and $\{s_{\gamma_\lambda}\}_{\lambda \in \Lambda} \subseteq \mathcal{S}$ such that:

 \[
 (\exists i \in \{1, \ldots, p\} \ \forall \lambda \in \Lambda \ \ s_{\gamma_\lambda} \ ? \ a_i) \lor (\exists i \in \{1, \ldots, q\} \ \forall \lambda \in \Lambda
 s_{\gamma_\lambda} \ ? \ b_i)\).

 There exists a subnet $\{t_{i\lambda}\}_{\lambda \in \Lambda} \subseteq \{t_i\}_{i \in \Omega}$ such that $\lim t_{i\lambda} \in E(X,\mathcal{S})$, therefore $r E(X,\mathcal{S}) = (\bigwedge_{i=1}^{p} E(X,\mathcal{S}) a_i) \cup (\bigwedge_{i=1}^{q} b_i E(X,\mathcal{S}))$.

 b. If (X,S) is distal, then $E(X,S)$ is a group, so $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one, also (X,\mathcal{S}) is distal by Theorem 8.
Conversely suppose \(a_1, \ldots, a_p, b_1, \ldots, b_q\) be one to one and \((X,S_0)\) be distal, then \(E(X,S_0)\) is a group, so the elements of \((\bigcup_{i=1}^{p} E(X,S_0) a_i) \cup (\bigcup_{i=1}^{q} b_i E(X,S_0))\) are one to one, thus by (a) the elements of \(E(X,S)\) are one to one and \(J(E(X,S)) = \{e\}\). Therefore \((X,S)\) is distal.

c. If \((X,S)\) is \(A\)-distal and \(a \in A\), then \(F(a, E(X,S))\) is group and \(a_1, \ldots, a_p, b_1, \ldots, b_q \in F(a, E(X,S))\), so \(a_1, \ldots, a_p, b_1, \ldots, b_q\) are one to one, also \((X,S_0)\) is \(A\)-distal by Theorem 8.

Conversely suppose \(a_1, \ldots, a_p, b_1, \ldots, b_q\) be one to one and \((X,S_0)\) is \(A\)-distal, then for each \(a \in A\), then \(F(a, E(X,S_0))\) is a group, so the elements of \((\bigcup_{i=1}^{p} F(a, E(X,S_0)) a_i) \cup (\bigcup_{i=1}^{q} b_i F(a, E(X,S_0)))\) are one to one, thus the elements of \(F(a, E(X,S))\), are one to one (by using (a) we have \((\bigcup_{i=1}^{p} F(a, E(X,S_0)) a_i) \cup (\bigcup_{i=1}^{q} b_i F(a, E(X,S_0))) = F(a, E(X,S))\)

and, \(J(F(a, E(X,S))) = \{e\}\). Therefore \((X,S)\) is \(A\)-distal.

d. Use a similar method described in (c).

e. Use a similar method described in (c).

2. Use a similar method described in (1).

Corollary 12.

If \(S\) is a group and \(S_0\) is a normal subgroup of \(S\) such that \(\frac{S}{S_0}\) is finite, then \((X,S)\) is distal if and only if \((X,S_0)\) is distal.

References
