A Note on Transformation Semigroups

Masoud Sabbaghan and Fatemah Ayatollah Zadeh Shirazi

Dept. of Math, Faculty of Science, University of Tehran Enghelab Ave., Tehran, Iran (sabbagh @ khayam.ut.ac.ir)

(received: 7/12/2000; accepted:22/8/2001)

Abstract

In this note we study the transformation semigroup (X,S), where S is a finite union of its subsemigroups.

2000 AMS Classification Subject: 54H15

Key Words: distal, enveloping semigroup, transformation semigroup.

Preliminaries:

By a transformation semigroup $(X, S, ?\bigcirc$ (or simply (X, S)) we mean a compact Hausdorff topological space *X*, a discrete topological semigroup *S* with identity *e* and a continuous map ? $X \times S \rightarrow X$ (? $(x, s) = xs (\forall x \in X, \forall s \in S)$) such that:

•
$$\forall x \in X$$
 $xe = x$

• $\forall x \in X \quad \forall s, t \in S \quad x (st) = (xs) t.$

In the transformation semigroup (X,S) we have the following definitions:

1. For each $s \in S$, define the continuous map ?5: $X \rightarrow X$ by x?5=xs ($\forall x \in X$), we used to write *s* instead of ?^{*s*}. The closure of {?^{*s*} | $s \in S$ } in X^X with pointwise convergence, is called the enveloping sermigroup (or Ellis semigroup) of (*X*,*S*) and it is written by E(*X*,*S*) or simply E(*X*). E(*X*,*S*) has a semigroup structure (Ellis, 1969, Chapter 3), a nonempty subset *K* of E(*X*,*S*) is called a right ideal if $KE(X,S) \subseteq K$, and it is called a minimal right ideal if none of the right ideals of E(*X*,*S*) is a proper subset of *K*.

2. A nonempty subset Z of X is called invariant if $ZS \subseteq Z$, moreover it is called minimal if it is closed and none of the closed invariant subsets

of *X* is a proper subset of *Z*. Let $a \in X$, *A* be a nonempty subset of *X* and *C* be a nonempty subset of E(X,S), we introduce the following sets:

 $\mathbf{F}(a,C) = \{ p \in C \mid ap = p \} \quad , \quad \mathbf{F}(A,C) = \{ p \in C \mid \forall b \in A \quad bp = b \},$

 $\overline{F}(A,C)?\mu p^{2}\mu p^{2}\mu A , \quad J(C)?\mu p^{2}\mu p^{2}\mu p^{3}.$

3. Let $a \in X$, *A* be a nonempty subset of *X* and *K* be a closed right ideal of E(X,S), then (Sabbaghan and Shirazi, 2001a, Definition 1):

• We say *K* is an *a*-minimal set if:

- aK = aE(X,S),

- *K* dose not have any proper subset like *L*, such that *L* is a closed right ideal of E(X,S) with aL = aE(X,S).

- We say K is an A minimal set if:
- $\forall b \in ? a bK = bE(X,S),$

- *K* dose not have any proper subset like *L*, such that *L* is a closed right ideal of E(X,S) with bL = bE(X,S) for all $b \in A$.

- We say K is an A minimal set if:
- -AK = AE(X,S),

- *K* dose not have any proper subset like *L*, such that *L* is a closed right ideal of E(X,S) with AL = AE(X,S).

The sets of all *a*-minimal (resp. *A* - minimal , *A* - minimal) sets is written by $M_{(X,S)}(a)$ (resp. $\overline{M}_{(X,S)}(A)$, $\overline{\overline{M}}_{(X,S)}(A)$).

 $\overline{M}_{(X,S)}(A)$ and $M_{(X,S)}(a)$ are nonempty ((Sabbaghan and Shirazi, 2001a, Theorem 2) and (Sabbaghan, *et al.*, 1997, Proposition 3)).

4. Let *A* be a nonempty subset of *X*, we introduce the following sets (Sabbaghan and Shirazi, 2001b, Definition 1):

 $P(X,S) = \{(x,y) \in X \times X \mid \exists p \in E(X,S) \quad xp = yp\},\$ $P_A(X,S) = \{(x,y) \in X \times X \mid \exists a \in A \quad \exists I \in M_{(X,S)}(a) \quad \forall p \in I \quad xp = yp\},\$ $\overline{P}_A(X,S) = \{(x,y) \in X \times X \mid \exists I \in \overline{M}_{(X,S)}(A) \quad \forall p \in I \quad xp = yp\},\$ $\overline{M} \quad (X,S) = \{?5 \neq D \subseteq X \mid \forall K \in \overline{M}_{(X,S)}(D) \quad J(F(D,K)) \neq ?5\},\$ $\overline{M} \quad (X,S) = \{? \neq D \subseteq X \mid \overline{M}_{(X,S)}(D) \neq ?, \forall K \in \overline{\overline{M}}_{(X,S)}(D) \quad J(\overline{F}(D,K)) \neq ?\},\$ 5. Let (Y,S) be a transformation semigroup, a continuous map ? : $(X,S) \rightarrow (Y,S)$ is called a homomorphism if $?^*(xs) = ?^*(x)s \ (x \in X, s \in S).\$ Let $?<(X,S) \rightarrow (Y,S)$ be an onto homomorphism, $R(?) = \{(x,y) \in X \times ? < | ?(\mathfrak{R}) = ?(\mathfrak{Q})\}, \Delta_X = \{(x,x) \mid x \in X\}, A \text{ be a nonempty subset of } X \text{ and } B$

be a nonempty subset of *Y*. We say (Sabbaghan and Shirazi, 2001b, Definition 7):

• (*Y*,*S*) is a distal (resp. *A*-distal, $A^{(\overline{\mathbb{M}})}$ distal) factor of (*X*,*S*) if R(?) $\cap P(X,S) = \Delta_X$ (resp. R(?) $\cap P_A(X,S) = \Delta_X$, R(?) $\cap \overline{P}_A(X,S) = \Delta_X$),

• (X,S) is a distal (resp. *B*-distal, $B^{(\overline{M})}$ distal) extension of (Y,S) if $\mathbb{R}(?) \land \cap \mathbb{P}(X,S) = \Delta_X$ (resp. $\mathbb{R}(?) \land \cap \mathbb{P}_{?\tilde{\mathbb{A}}_1(B)}(X,S) = \Delta_X$, $\mathbb{R}(?) \land \cap \overline{\mathbb{P}}_{?\tilde{\mathbb{A}}_1(B)}(X,S) = \Delta_X$),

• (*Y*,*S*) is a proximal (resp. *A*-proximal, $A^{(\overline{\mathbb{M}})}$ proximal) factor of (*X*,*S*) if R(?) \subseteq P(*X*,*S*) (resp. R(?) \subseteq P_{*A*}(*X*,*S*) , R(φ) \subseteq $\overline{P}_A(X,S)$),

• (*X*,*S*) is a proximal (resp. *B*-proximal, $B^{(\overline{M})}$ proximal) extension of (*Y*,*S*) if R(?) \subseteq P(*X*,*S*) (resp. R(?) \subseteq P_{?@t(B)}(*X*,*S*), R(?) \subseteq $\overline{P}_{?@t(B)}(X,S)$).

6. Let A be a nonempty subset of X, then (Sabbaghan and Shirazi, 2001a, Definition 13):

- (X,S) is distal if E(X,S) is a minimal right ideal,
- (*X*, *S*) is called *A* distal if for each $a \in A$, $E(X, S) \in M_{(X, S)}(a)$,
- (X, S) is called, $A^{(\overline{M})}$ distal if $E(X, S) \in \overline{M}_{(X,S)}(A)$,
- (X, S) is called, $A^{\overline{\mathbb{M}}}$ distal if $E(X, S) \in \overline{\overline{\mathbb{M}}}_{(X,S)}(A)$,
- 7. Let *Z* be a closed invariant subset of *X*, define:

 $\begin{aligned} \mathbf{h}_{(X, S)}(Z) &= \{\mathbf{n} \in \mathbf{N} \cup \{0\} | \exists Z_0, \dots, Z_n \quad \mathfrak{s} \\ ((Z_0 \subseteq Z_1 \subseteq \cdots \subseteq Z_n) \land (\forall i \in \{0, \dots, n\} \quad \forall j \in \{0, \dots, n\} - \{i\} \quad Z_i \neq Z_j) \\ \land (\forall i \in \{0, \dots, n\} \quad Z_i \text{ is a closed invariant subset of } Z)) \}. \end{aligned}$

Convention 1. In what follows (X, S) is a transformation semigroup, e

is the identity of *S* and *S*₀, *S*₁,..., *S_n* are subemigroups of *S*, such that $e \in \prod_{i=0}^{n} S_i$ and $S = \sum_{i=1}^{n} S_i$.

Lemma 2.

1. $E(X,S) = \bigvee_{i=1}^{n} E(X, S_i).$ 2. $S = S_1 \cdots S_n$ and $E(X,S) = E(X,S_1) \cdots E(X,S_n).$

Proof.

1. If $p \in E(X,S)$, then there exists a net $\{s_?\}_{?\notin\Gamma} \subseteq S$, such that $\lim_{?\notin\Gamma} s_\gamma = p$ (i.e., $\lim_{?\in\Gamma} xs_\gamma = xp \ (\forall x \in X)$), since $S = \sum_{i=1}^n S_i$, so there exists $i \in \{1, ..., n\}$ and a subnet $\{s_?_{\frac{1}{r_1}}\}_{\lambda \in \Lambda}$ of $\{s_\gamma\}_{\gamma \in \Gamma}$, such that $s_?_{\frac{1}{r_1}} \in S_i$, therefore $\lim_{?\in\Lambda} s_?_{\frac{1}{r_1}} = p \in E(X, S_i)$. Thus $E(X,S) \subseteq \sum_{i=1}^n E(X,S_i)$. 2. Use $e \in \prod_{i=1}^n S_i$.

Theroem 3. Let *A* be a nonempty subset of *X*, then:

1. (*X*, *S*) is distal if and only if for each $i \in \{1, ..., n\}$, (*X*, *S_i*) is distal. 2. (*X*, *S*) is *A*-distal if and only if for each $i \in \{1, ..., n\}$, (*X*, *S_i*) is *A*-distal.

3. Let $A \in \prod_{i=1}^{n} \overline{\mathsf{M}}(X,S_{i}) \cap \overline{\mathsf{M}}(X,S)$. Then (X,S) is $A^{(\underline{\mathsf{M}})}$ distal if and only if for each $i \in \{1, ..., n\}, (X, S_{i})$ is $A^{(\underline{\mathsf{M}})}$ distal. 4. Let $A \in \prod_{i=1}^{n} \overline{\mathsf{M}}(X,S_{i}) \cap \overline{\mathsf{M}}(X,S)$. Then (X,S) is $A^{(\underline{\mathsf{M}})}$ distal if and only

if for each $i \in \{1, ..., n\}$, (X, S_i) is $A^{(\overline{\underline{M}})}$ distal.

Proof.

1. (X,S) is distal if and only if (X,S) is X-distal (Sabbaghan and Shirazi, 2001a, Theorem 18), so this is a special case of (2). 2. We have (by (Sabbaghan and Shirazi, 2001a, Theorem 18)): (X,S) is A-distal $\Leftrightarrow \forall a \in A$ J (F(a, E(X, S))) = {e}

$$\Leftrightarrow \forall a \in A \quad J (F(a, \Upsilon E(X, S_i))) = \{e\} \quad (by \text{ Lemma 2})$$
$$\Leftrightarrow \forall a \in A \quad \Upsilon_{i=1}^n J (F(a, E(X, S_i))) = \{e\}$$
$$\Leftrightarrow \forall a \in A \quad \forall i \in \{1, \dots, n\} \quad J (F(a, E(X, S_i))) = \{e\}$$

$$\Rightarrow \forall i \in \{1,...,n\} \quad (X, S_i) \text{ is } A\text{-distal }.$$
3. We have (by (Sabbaghan and Shirazi, 2001a, Theorem 18)):

$$(X,S) \text{ is } A^{(\overline{\mathbb{M}})} \text{ distal} \Leftrightarrow J (F(A, E(X, S))) = \{e\}$$

$$\Leftrightarrow J (F(A, \sum_{i=1}^{n} E(X, S_i))) = \{e\} \quad (by \text{ Lemma } 2)$$

$$\Leftrightarrow \sum_{i=1}^{n} J (F(A, E(X, S_i))) = \{e\}$$

$$\Leftrightarrow \forall i \in \{1,...,n\} \quad J (F(A, E(X, S_i))) = \{e\}$$

$$\Leftrightarrow \forall i \in \{1,...,n\} \quad J (F(A, E(X, S_i))) = \{e\}$$

$$\Leftrightarrow \forall i \in \{1,...,n\} \quad (X, S_i) \text{ is } A^{(\overline{\mathbb{M}})} \text{ distal.}$$

4. Use a Similar method described in (3).

Theroem 4. Let n = 2 in Convention 1 and let A be a nonempty subset of X.

1. If (X,S) is distal then there exists $i \in \{1,2\}$ such that $E(X,S) = E(X,S_i)$. 2. If (X,S) is *A*-distal, then for each $a \in A$ there exists $i \in \{1,2\}$ such that $F(a, E(X,S)) = F(a, E(X,S_i))$.

3. If $A \in \overline{\mathsf{M}}(X,S_1) \cap \overline{\mathsf{M}}(X,S_2)$ and (X,S) is $A^{(\underline{\mathsf{M}})}$ distal, then there exists $i \in \{1, 2\}$ such that $F(A, E(X,S)) = F(A, E(X,S_i))$.

4. If $A \in \overline{M}(X,S_1) \cap \overline{M}(X,S_2)$ and (X,S) is $A^{[\overline{M}]}$ distal then there exists $i \in \{1, 2\}$ such that $\overline{F}(A, E(X,S)) = \overline{F}(A, E(X,S_i))$.

Proof.

1. By Theorem 3, (X,S_1) , (X,S_2) are distal therefore $E(X,S_1)$, $E(X,S_2)$ and E(X,S) are groups. By Lemma 2 we have $E(X,S) = E(X,S_1) \cup E(X,S_2)$ Thus $E(X,S_1) \subseteq E(X,S_2)$ or $E(X,S_2) \subseteq E(X,S_1)$.

2. By Theorem 3, (X,S_1) , (X,S_2) are *A*-distal therefore for each $a \in A$, $F(a, E(X,S_1))$, $F(a, E(X,S_2))$ and F(a, E(X,S)) are groups (Sabbaghan and Shirazi, 2001a, Theorem 18), moreover by Lemma 2, $F(a, E(X,S)) = F(a, E(X,S_1)) \cup F(a, E(X,S_2))$, Thus $F(a, E(X,S_1)) \subseteq F(a, E(X,S_2))$ or $F(a, E(X,S_2)) \subseteq F(a, E(X,S_1))$

3. $F(A, E(X,S_1))$, $F(A, E(X,S_2))$ and F(A, E(X,S)) are groups (Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar method described in (2).

4. $\overline{F}(A, E(X,S_1))$, $\overline{F}(A, E(X,S_2))$ and $\overline{F}(A, E(X,S))$ are groups (Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar method described in (2).

Theorem 5. Let *A* be a nonempty subset of *X*, we have:

1.
$$P(X,S) = \sum_{i=1}^{n} P(X,S_i).$$

2. $P_A(X,S) = \sum_{i=1}^{n} P_A(X,S_i).$
3. $\sum_{i=1}^{n} \overline{P}_A(X,S_i) \subseteq \overline{P}_A(X,S)$
4 If $A \in \prod_{i=1}^{n} \overline{M}(X,S_i) \cap \overline{M}(X,S).$ Then $\overline{P}(X,S) = \sum_{i=1}^{n} \overline{P}(X,S_i).$

Proof. In all items we use Lemma 2 and (Sabbaghan and Shirazi, 2001b, Theorem 4).

1. $P(X,S) = P_X(X,S)$, so this is a special case of (2).

2. Let
$$x, y \in X$$
:
 $(x, y) \in P_A(X, S)$
 $\Leftrightarrow \exists a \in A \quad \exists p \in F(a, E(X, S)) \quad xp = yp$
 $\Leftrightarrow \exists a \in A \quad \exists p \in F(a, \bigvee_{i=1}^{n} E(X, S_i)) \quad xp = yp$
 $\Leftrightarrow \exists a \in A \quad \exists p \in \bigvee_{i=1}^{n} F(a, E(X, S_i)) \quad xp = yp$
 $\Leftrightarrow \exists a \in A \quad \exists i \in \{1, \dots, n\} \quad \exists p \in F(a, E(X, S_i)) \quad xp = yp$
 $\Leftrightarrow \exists i \in \{1, \dots, n\} \quad (x, y) \in P_A(X, S_i)$
 $\Leftrightarrow (x, y) \in \bigvee_{i=1}^{n} P_A(X, S_i).$

Therefore $P_A(X, S) = \bigvee_{i=1}^n P_A(X, S_i).$

3. For $i \in \{1,...,n\}$, if $K \in \overline{M}_{(X,Si)}(A)$, then $\overline{KE}(X,S)$ is a closed right ideal of E(X, S) and for each $a \in A$ we have $a \overline{KE}(X,S) = aE(X, S)$, thus there exists $L \in \overline{M}_{(X,S)}(A)$ such that $L \subseteq \overline{KE}(X,S)$ (Sabbaghan and Shirazi, 2001a, Corollary 3). Let $(x, y) \in X$, we have :

$$\begin{aligned} (x,y) \in \ & \bigvee_{i=1}^{n} \overline{P}_{A}(X, S_{i}). \\ \Rightarrow \ & \exists i \in \{1, \dots, n\} \quad (x,y) \in \overline{P}_{A}(X, S_{i}) \\ \Rightarrow \ & \exists i \in \{1, \dots, n\} \quad \exists K \in \overline{M}_{(X,Si)}(A) \quad \forall p \in K \quad xp = yp \\ \Rightarrow \ & \exists i \in \{1, \dots, n\} \quad \exists K \in \overline{M}_{(X,Si)}(A) \quad \forall p \in \overline{KE}(X, S) \quad xp = yp \\ \Rightarrow \ & \exists i \in \{1, \dots, n\} \quad \exists K \in \overline{M}_{(X,Si)}(A) \quad \forall p \in \overline{KE}(X, S) \quad xp = yp \\ \Rightarrow \ & \exists L \in \overline{M}_{(X,Si)}(A) \quad \forall p \in L \quad xp = yp \\ \Rightarrow \ & (x,y) \in \overline{P}_{A}(X, S). \end{aligned}$$

Therefore $\sum_{i=1}^{n} \overline{P}_{A}(X, S_{i}) \subseteq \overline{P}_{A}(X, S).$

4. Let
$$x, y \in X$$
, we have:
 $(x, y) \in \overline{P}_A(X, S)$
 $\Leftrightarrow \exists p \in F(A, E(X, S)) \quad xp = yp$
 $\Leftrightarrow \exists p \in F(A, \sum_{i=1}^n E(X, S_i)) \quad xp = yp$
 $\Leftrightarrow \exists p \in \sum_{i=1}^n F(A, E(X, S)) \quad xp = yp$
 $\Leftrightarrow \exists i \in \{1, ..., n\} \quad \exists p \in F(A, E(X, S_i)) \quad xp = yp$
 $\Leftrightarrow \exists i \in \{1, ..., n\} \quad \exists p \in F(A, E(X, S_i)) \quad xp = yp$
 $\Leftrightarrow \exists i \in \{1, ..., n\} \quad (x, y) \in \overline{P}_A(X, S_i)$
 $\Leftrightarrow (x, y) \in \sum_{i=1}^n \overline{P}_A(X, S_i).$

Therefore $\overline{\mathbf{P}}_{A}(X, S) = \sum_{i=1}^{n} \overline{\mathbf{P}}_{A}(X, S_{i}).$

Corollary 6. Let ? $(X,S) \rightarrow (Y,S)$ be an onto homomorphisms, *A* be a nonempty subset of *X* and *B* be a nonempty subset of *Y*, then (with all the factors and extensions being under ? \tilde{a} :

a. "(Y,S) is a distal factor of (X,S)" if and only if "for each $i \in \{1,...,n\}$, (Y,S_i) is a distal factor of (X,S_i) ".

b. "(*Y*,*S*) is an *A*-distal factor of (*X*,*S*)" if and only if "for each $i \in \{1,...,n\}$, (*Y*,*S_i*) is an *A*-distal factor of (*X*,*S_i*)".

c. Let $A \in \prod_{i=1}^{n} \overline{\mathsf{M}}(X,S_{i}) \cap \overline{\mathsf{M}}(X,S)$, then "(Y,S) is an $A^{(\overline{\mathsf{M}})}$ distal factor

of (X,S)" if and only if "for each $i \in \{1,...,n\}$, (Y,S_i) is an $A^{(\overline{M})}$ distal factor of (X,S_i) ".

d. "(*X*,*S*) is a distal extension of (*Y*,*S*)" if and only if "for each $i \in \{1,...,n\}$, (*X*,*S_i*) is a distal extension of (*Y*,*S_i*)".

e. "(*X*,*S*) is a *B*-distal extension of (*Y*,*S*)" if and only if "for each $i \in \{1,...,n\}$, (*X*,*S_i*) is a *B*-distal extension of (*Y*,*S_i*)".

f. Let $?^{-1}(B) \in \prod_{i=1}^{n} \overline{\mathsf{M}}(X,S_i) \cap \overline{\mathsf{M}}(X,S)$, then "(X,S) is a $B^{(\underline{M})}$ distal

extension of (Y, S)" if and only if "for each $i \in \{1, ..., n\}$, (X, S_i) is a $B^{(\underline{M})}$ distal extension of (Y, S_i) ".

Proof. Use Theorem 5.

Note 7. Let $A_1, ..., A_n$ be nonempty subsets of X. We have:

1. If $\underset{i=1}{\overset{n}{\mathbf{Y}}} A_i \in \overline{\mathsf{M}}$ (*X*,*S*) and for each $j \in \{1,...,n\}$, (*X*,*S_j*) is $A_j^{(\overline{\mathrm{M}})}$ distal, then (*X*,*S*) is $\underset{i=1}{\overset{n}{\mathbf{Y}}} A_i^{(\overline{\mathrm{M}})}$ distal. 2. If $\sum_{i=1}^{n} A_{i} \in \overline{M}$ (*X*,*S*) and for each $j \in \{1,...,n\}$, (*X*,*S_j*) is $A_{j}^{(\overline{M})}$ distal, then (*X*,*S*) is $\sum_{i=1}^{n} A_{i}^{(\overline{M})}$ distal. (Compare with Theorem 3).

Proof. In (1) and (2) we have (by (Sabbaghan and Shirazi, 2001a, Theorem 18) and Lemma 2):

$$\{e\} \subseteq J (F(\underset{i=1}{\overset{n}{Y}}A_{i}, E(X,S))) = \underset{j=1}{\overset{n}{Y}} J (F(\underset{i=1}{\overset{n}{Y}}A_{i}, E(X,S_{j})))$$
$$\subseteq \underset{j=1}{\overset{n}{Y}} J (F(A_{j}, E(X,S_{j}))) = \underset{j=1}{\overset{n}{Y}} \{e\}.$$
So $J(F(\underset{i=1}{\overset{n}{Y}}A_{i}, E(X,S))) = J(\overline{F}(\underset{i=1}{\overset{n}{Y}}A_{i}, E(X,S_{j}))) = \{e\}.$ Therefore (X, S) is
 $\underset{i=1}{\overset{n}{Y}} A_{i}^{(\overline{M})}$ distal in (1) and (X,S) is $\underset{i=1}{\overset{n}{Y}} A_{i}^{(\overline{M})}$ distal in (2).

Theroem 8. Let *A* be a nonempty subset of *X*, we have:

1. $E(X,S_0) \subseteq E(X,S)$. 2. If (X,S) is distal, then (X,S_0) is distal. 3. If (X,S) is *A*-distal, then (X,S_0) is *A*-distal. 4. If (X,S) is $A^{(\overline{\mathbb{M}})}$ distal and A? $\overline{\mathbb{M}}$ (X,S_0) , then (X,S_0) is $A^{(\overline{\mathbb{M}})}$ distal. 5. If (X,S) is $A^{(\overline{\mathbb{M}})}$ distal and A? $\overline{\mathbb{M}}$ (X,S_0) , then (X,S_0) is $A^{(\overline{\mathbb{M}})}$ distal. 6. Let *Z* be a closed invariant subset of (X,S), then *Z* is a closed invariant subset of (X, S_0) and $h_{(X,S)}(Z) \leq h_{(X,S_0)}(Z)$. 7. $P(X, S_0) \subseteq P(X, S)$, $P_A(X, S_0) \subseteq P_A(X, S)$ and $\overline{P}_A(X, S_0) \subseteq \overline{P}_A(X, S)$,

Proof. Take $S = S \cup S_0$ and use Lemma 2, Theorem 3 and Theorem 5.

Corollary 9. Let (X,S) be distal, then for each $s \in S - \{e\}$ and each $m \in \mathbb{N}$, There exists a net $\{m_{?}\}_{\gamma \in \Gamma}$ in \mathbb{N} such that $\lim_{r \to \infty} s^{m_{?t}} = s^{-m}$.

Proof. Let $m \in \mathbb{N}$ and $s \in S - \{e\}$, by Theorem 8 $(X, \{s^k | K \in \mathbb{N}\} \cup \{e\})$ is distal, therefore $\mathbb{E}(X, \{s^k | k \in \mathbb{N}\} \cup \{e\})$ is a group, so there exists a net $\{m_{?}\}_{\gamma \in \Gamma}$ in $\mathbb{N} \cup \{0\}$ such that $\lim_{? \in \Gamma} s^{m_{?^{+}}} = s^{-m} (s^0 = e)$, since $s \neq e$ we

can take $m_? \notin \mathbf{N} \ (\gamma \in \Gamma)$.

Corollary 10. Let $? \ge (X,S) \rightarrow (Y,S)$ be an onto homomorphism and let *A* be a nonempty subset of *X* and *B* be a nonempty subset of *Y*, then (with all the factors and extensions being under ?).

a. If (Y,S_0) is a proximal factor of (X,S_0) , then (Y,S) is a proximal factor of (X,S).

b. If (Y,S_0) is an A-proximal factor of (X,S_0) , then (Y,S) is an A-proximal factor of (X,S).

c. If (Y,S_0) is an $A^{(\underline{M})}$ proximal factor of (X,S_0) , then (Y,S) is an $A^{(\underline{M})}$ proximal factor of (X,S).

d. If (X,S_0) is a proximal extension of (Y,S_0) , then (X,S) is a proximal extension of (Y,S).

e. If (X,S_0) is a *B*-proximal extension of (Y,S_0) , then (X,S) is a *B*-proximal extension of (Y,S).

f. If (X, S_0) is a $B^{(\underline{M})}$ proximal extension of (Y, S_0) , then (X, S) is a $B^{(\underline{M})}$ proximal extension of (Y, S).

Proof. Use Theorem 8.

Theorem 11. Let *A* be a nonempty subset of *X*.

1. Let $a_1, ..., a_p, b_1, ..., b_q \in S$ be such that $S = (\sum_{i=1}^{p} S_0 a_i) \cup (\sum_{i=1}^{q} b_i S_0),$

then:

a.
$$E(X, S) = (\sum_{i=1}^{p} E(X, S_0) a_i) \cup (\sum_{i=1}^{q} b_i E(X, S_0)).$$

b. (X,S) is distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X,S_0) is distal.

c. Suppose $a_1, \ldots, a_p, b_1, \ldots, b_q \in F(A, S)$. Then (X, S) is A-distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X, S_0) is A-distal. d. Suppose $a_1, \ldots, a_p, b_1, \ldots, b_q \in F(A, S)$ and $A?_{\mathcal{M}} (X, S) \cap \overline{M} (X, S_0)$. Then (X, S) is $A^{(\overline{\mathbb{M}})}$ distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X, S_0) is $A^{(\overline{\mathbb{M}})}$ distal. e. Suppose $a_1, \ldots, a_p, b_1, \ldots, b_q \in \overline{F}(A, S)$ and $A?_{\mathcal{M}} (X, S) \cap \overline{\overline{M}} (X, S_0)$. Then (X, S) is $A^{(\overline{\mathbb{M}})}$ distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X, S_0) is $A^{(\overline{\mathbb{M}})}$ distal if and only if $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one and (X, S_0) is $A^{(\overline{\mathbb{M}})}$ distal. 2. Let $s \in S$ be such that $s^{-1} \in S$, then: a. $E(X, s^{-1}S_0s) = s^{-1} E(X, S_0)s$. b. (X, S_0) is distal if and only if $(X, s^{-1}S_0s)$ is distal. c. Suppose $s \in F(A, S)$. Then (X, S_0) is A-distal if and only if $(X, s^{-1}S_0s)$ is A-distal. d. Suppose $s \in F(A, S)$ and $A?_{\mathbb{M}} (X, S_0) \cap \overline{\mathbb{M}} (X, s^{-1}S_0s)$. Then (X, S_0)

is $A^{(\underline{M})}$ distal if and only if $(X, s^{-1}S_0s)$ is $A^{(\underline{M})}$ distal. e. Suppose $s \in \overline{F}(A, S)$ and $A? \overline{M}(X, S_0) \cap \overline{M}(X, s^{-1}S_0s)$. Then (X, S_0) is $A^{(\underline{M})}$ distal if and only if $(X, s^{-1}S_0s)$ is $A^{(\underline{M})}$ distal.

Proof.

1.

a. Let $r \in E(X,S)$, then there exists a net $\{s_{?}\}_{\gamma \in \Gamma} \subseteq S$ such that $\lim_{\gamma \in \Gamma} s_{\gamma} = r$.

There exists a subnet $\{s_{?\ddagger}\}_{\lambda \in \Lambda}$ of $\{s_{?}\}_{\gamma \in \Gamma}$ and $\{t_{?\ddagger}\}_{\lambda \in \Lambda} \subseteq S_{\theta}$ such that:

$$\begin{array}{ll} (\exists i \in \{1, \ldots, p\} \ \forall \lambda \in \Lambda \ s_{?_{2}^{TM}} ? \ddagger_{?_{2}^{t}} a_{i}) \lor (\exists i \in \{1, \ldots, q\} \ \forall \lambda \in \Lambda \\ s_{?_{2}^{t}} ? \not b_{i} t_{?_{2}^{t}}). \end{array}$$

There exists a subnet $\{t_{?_{\pm}}\}_{? \in \Omega}$ of $\{t_{?_{\pm}}\}_{\lambda \in \Lambda}$ such that $\lim_{? \notin Q \notin \pm} t_{?_{\pm}} \in Q \oplus Q$

$$\mathbf{E}(X,S_0), \text{ therefore } r \in (\sum_{i=1}^p \mathbf{E}(X,S_0)a_i) \cup (\sum_{i=1}^q b_i \mathbf{E}(X,S_0)).$$

b. If (X,S) is distal, then E(X,S) is a group, so $a_1, \ldots, a_p, b_1, \ldots, b_q$ are one to one, also (X,S_0) is distal by Theorem 8.

Conversely suppose $a_1, \ldots, a_p, b_1, \ldots, b_q$ be one to one and (X, S_0) be distal, then $E(X,S_0)$ is a group, so the elements of $(\Upsilon E(X,S_0)a_i)$ $\cup (\mathbf{\mathbf{Y}}^{q} b_{i} \mathbf{E}(X, S_{0}))$ are one to one, thus by (a) the elements of $\mathbf{E}(X, S)$ are one to one and $J(E(X,S)) = \{e\}$. Therefore (X,S) is distal. c. If (X,S) is A-distal and $a \in A$, then F(a, E(X,S)), is group and a_1, \ldots, a_n $a_p, b_1, \dots, b_q \in F(a, E(X, S))$, so $a_1, \dots, a_p, b_1, \dots, b_q$ are one to one, also (X, S_0) is A-distal by Theorem 8. Conversely suppose $a_1, \ldots, a_p, b_1, \ldots, b_q$ be one to one and (X, S_0) is Adistal, then for each $a \in A$, then F(a, E(X, S₀)) is a group, so the elements of $(\sum_{i=1}^{p} F(a, E(X, S_0))a_i) \cup (\sum_{i=1}^{q} b_i F(a, E(X, S_0)))$ are one to one, thus the elements of F(a, E(X, S)), are one to one (by using (a) we have $(\sum_{i=1}^{p} F(a, E(X, S_0))a_i) \cup (\sum_{i=1}^{q} b_i F(a, E(X, S_0))) = F(a, E(X, S)))$ and, $J(F(a, E(X, S))) = \{e\}$. Therefore (X, S) is A-distal. d. Use a similar method described in (c). e. Use a similar method described in (c). 2. Use a similar method described in (1).

Corollary 12.

If S is a group and S_0 is a normal subgroup of S such that $\frac{S}{S_0}$ is finite,

then (X, S) is distal if and only if (X, S_0) is distal.

References

Ellis, R., (1969) *Lectures on Topological Dynamics*, W. A. Benjamin, New York.

Sabbaghan, M. and Ayatollah Zadeh Shirazi, F., (2001a) *a-minimal* sets and related topics in transformation semigroups (I), Interational Journal of Mathematics and Mathematical Sciences, 25, 10, 637-654.

- Sabbaghan, M. and Ayatollah Zadeh Shirazi, F., (2001b) *a-minimal* sets and related topics in transformation semigrops (II), International Journal of Mathematics and Mathematical Sciences, **25**, 10, 655-668.
- Sabbaghan, M.; Ayatollah Zadeh Shirazi, F. and Wu, Ta-Sun, (1997) *a-minimal sets*, Journal of Science of the University of Tehran, **2**, 1-12.