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Abstract
In this note we study the transformation semigroup (X,S), where S is a
finite union of its subsemigroups.
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Preliminaries:
By a transformation semigroup (X,S,?C) (or simply (X,S)) we mean a
compact Hausdorff topological space X, a discrete topological
semigroup S with identity e and a continuous map ?s: X×S→ X (?s(x, s)
= xs (∀x∈X, ∀s∈S)) such that:
•∀x∈X xe =x,
•∀x∈X ∀s, t∈S x (st) = (xs) t.
In the transformation semigroup (X,S) we have the following
definitions:
1. For each s∈S, define the continuous map ?õs : X→ X by x?õs=xs
(∀x∈X), we used to write s instead of ?�s. The closure of {?�ss∈S} in
XX with pointwise convergence, is called the enveloping sermigroup (or
Ellis semigroup) of (X,S) and it is written by E(X,S) or simply E(X).
E(X,S) has a semigroup structure (Ellis, 1969, Chapter 3), a nonempty
subset K of E(X,S) is called a right ideal if KE(X,S) ⊆ K, and it is called
a minimal right ideal if none of the right ideals of E(X,S) is a proper
subset of K.
2. A nonempty subset Z of X is called invariant if ZS ⊆ Z, moreover it
is called minimal if it is closed and none of the closed invariant subsets
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of X is a proper subset of Z. Let a∈X, A be a nonempty subset of X and
C be a nonempty subset of E(X,S), we introduce the following sets:

},{),(F,}{),(F bbpAbCpCApapCpCa =∈∀∈==∈=

}.ppCp{)C(,}AApCp{)C,A( ?µ?µ?µ?µ?µ?µ?µ 2JF
3. Let a∈X, A be a nonempty subset of X and K be a closed right ideal
of E(X,S), then (Sabbaghan and Shirazi, 2001a, Definition 1):
•We say K is an a-minimal set if:
- aK= aE(X,S),
- K dose not have any proper subset like L, such that L is a closed right
ideal of E(X,S) with aL = aE(X,S).
•We say K is an minimal-A set if:
- ∀b∈?á bK= bE(X,S),
- K dose not have any proper subset like L, such that L is a closed right
ideal of E(X,S) with bL = bE(X,S) for all b∈A.
•We say K is an minimal-A set if:
- AK= AE(X,S),
- K dose not have any proper subset like L, such that L is a closed right
ideal of E(X,S) with AL = AE(X,S).
The sets of all a-minimal (resp. minimal-A , minimal-A ) sets is
written by M(X,S)(a) (resp. M (X,S)(A), M (X,S)(A)).
M (X,S)(A) and M(X,S)(a) are nonempty ((Sabbaghan and Shirazi, 2001a,
Theorem 2) and (Sabbaghan, et al., 1997, Proposition 3)).
4. Let A be a nonempty subset of X, we introduce the following sets
(Sabbaghan and Shirazi, 2001b, Definition 1):
P(X,S) = {(x,y) ∈X×X∃p∈E(X,S) xp=yp},
PA(X,S) = {(x,y) ∈X×X ∃a∈A ∃I∈M(X,S)(a) ∀p∈ I xp=yp},
P A(X,S) = {(x,y) ∈X×X ∃ I ∈ M (X,S)(A) ∀p∈ I xp=yp },
M (X,S) = {?5≠D⊆ X∀K∈ M (X,S)(D) J(F(D,K))≠ ?5},
M (X,S) ={?�≠D⊆XM (X,S)(D)≠?�,∀K∈ M (X,S)(D) J( F (D,K))≠ ?�},
5. Let (Y,S) be a transformation semigroup, a continuous map ?�:
(X,S)→ (Y,S) is called a homomorphism if ?*(xs) = ?*(x)s (x∈X, s∈S).
Let ?<: (X,S)→ (Y,S) be an onto homomorphism, R(?<) = {(x,y)∈X ×?<
|?œ(x) = ?œ(y)}, ∆X ={(x,x)|x ∈ X}, A be a nonempty subset of X and B
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be a nonempty subset of Y. We say (Sabbaghan and Shirazi, 2001b,
Definition 7):
• (Y,S) is a distal (resp. A-distal, ( )MA distal) factor of (X,S) if R(?€)
∩ P(X,S) = ∆X (resp. R(?�) ∩ PA(X,S) = ∆X , R(?�) ∩ AP (X,S) = ∆X),

• (X,S) is a distal (resp. B-distal, ( )MB distal) extension of (Y,S) if R(?X)
∩ P(X,S)=∆X (resp. R(?Ú)∩ )B(1P ?‡?Ã (X,S) = ∆X , R(?Ú) ∩ )(1P B−?Ã (X,S) =
∆X),
• (Y,S) is a proximal (resp. A-proximal, ( )MA proximal) factor of (X,S) if
R(?;) ⊆P(X,S) (resp. R(?;) ⊆PA(X,S) , R(ϕ) ⊆ AP (X,S)),

• (X,S) is a proximal (resp. B-proximal, ( )MB proximal) extension of
(Y,S) if R(?�) ⊆P(X,S) (resp. R(?�) ⊆ )B(1P ?‡?ü (X,S), R(?�) ⊆ )(1P B−?ü (X,S)).
6. Let A be a nonempty subset of X, then (Sabbaghan and Shirazi,
2001a, Definition 13):
• (X,S) is distal if E(X,S) is a minimal right ideal,
• (X, S) is called A- distal if for each a∈A, E(X, S)∈M(X, S)(a),
• (X, S) is called, ( )MA distal if E(X, S)∈ M (X,S)(A),
• (X, S) is called, ( )MA distal if E(X, S)∈ M (X,S)(A),
7. Let Z be a closed invariant subset of X, define:
h(X, S)(Z) = {n∈N ∪ {0}|∃ Z0 , … , Zn ∋

((Z0 ⊆ Z1 ⊆ … ⊆ Zn) ∧ (∀ i∈{0,…,n} ∀ j∈{0,…,n}-{i} Zi≠Zj )
∧ (∀ i∈{0,…,n} Zi is a closed invariant subset of Z))}.

Convention 1. In what follows (X, S) is a transformation semigroup, e
is the identity of S and S0, S1,…, Sn are subemigroups of S, such that

e∈Ι
n

i 0=

Si and S =Υ
n

i 1=

Si .

Lemma 2.

1. E(X,S)= Υ
n

i 1=

E(X, Si).

2. S= S1
…Sn and E(X,S) = E(X,S1) … E(X,Sn).



M. Sabbaghan, and F. Ayatollah Zadeh Shirazi IIJS, 2 (Math.),
2001
___________________________________________________________________

ÎÔÏ

Proof.
1. If p∈E(X,S), then there exists a net {s?‡}?‡∈Γ ⊆ S, such that

Γ∈?¥
lim sγ=p

(i.e.,
Γ∈?«

lim xsγ= xp (∀x∈X)), since S =Υ
n

i 1=

Si, so there exists i∈{1, … , n}

and a subnet {
?‡?‡s }λ∈Λ of {sγ}γ∈Γ, such that

?‡?‡s ∈ Si,

therefore
Λ∈?ê

lim
?‡?‡s = p∈E(X, Si). Thus E(X,S) ⊆Υ

n

i 1=

E(X,Si).

2. Use e∈Ι
n

i 1=

Si.

Theroem 3. Let A be a nonempty subset of X, then:
1. (X, S) is distal if and only if for each i∈{1, … , n}, (X, Si) is distal.
2. (X, S) is A-distal if and only if for each i∈{1, … , n}, (X, Si) is A-
distal.

3. Let A∈Ι
n

i 1=

M (X,Si) ∩ M (X,S). Then (X,S) is ( )MA distal if and only

if for each i∈{1, … , n}, (X, Si) is ( )MA distal.

4. Let A∈Ι
n

i 1=

M (X,Si) ∩ M (X,S). Then (X,S) is ( )MA distal if and only

if for each i∈{1, … , n}, (X, Si) is ( )MA distal.

Proof.
1. (X,S) is distal if and only if (X,S) is X-distal (Sabbaghan and Shirazi,
2001a, Theorem 18), so this is a special case of (2).
2. We have (by (Sabbaghan and Shirazi, 2001a, Theorem 18)):
(X,S) is A-distal ⇔ ∀a ∈ A J (F(a, E(X, S))) = {e}

⇔ ∀a ∈ A J (F(a, Υ
n

i 1=

E(X, Si))) ={e} (by Lemma 2)

⇔ ∀a ∈ A Υ
n

i 1=

J (F(a, E(X, Si))) = {e}

⇔ ∀a ∈ A ∀ i∈{1,…,n} J (F(a, E(X, Si))) = {e}
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⇔ ∀ i∈{1,…,n} (X, Si) is A-distal .
3. We have (by (Sabbaghan and Shirazi, 2001a, Theorem 18)):
(X,S) is ( )MA distal ⇔ J (F(A, E(X, S))) = {e}

⇔ J (F(A, Υ
n

i 1=

E(X, Si))) ={e} (by Lemma 2)

⇔ Υ
n

i 1=

J (F(A, E(X, Si))) = {e}

⇔ ∀ i∈{1,…,n} J (F(A, E(X, Si))) = {e}
⇔ ∀ i∈{1,…,n} (X, Si) is ( )MA distal.

4. Use a Similar method described in (3).

Theroem 4. Let n = 2 in Convention l and let A be a nonempty subset
of X.
1. If (X,S) is distal then there exists i∈{1,2} such that E(X,S) = E(X,Si).
2. If (X,S) is A-distal, then for each a ∈ A there exists i∈{1,2} such
that F(a, E(X,S)) = F(a, E(X,Si)).
3. If A∈M (X,S1) ∩ M (X,S2) and (X,S) is ( )MA distal, then there
exists i∈{1, 2} such that F(A, E(X,S)) = F(A, E(X,Si)).
4. If A∈M (X,S1) ∩ M (X,S2) and (X,S) is ( )MA distal then there
exists i∈{1, 2} such that F (A, E(X,S)) = F (A, E(X,Si)).

Proof.
1. By Theorem 3, (X,S1), (X,S2) are distal therefore E(X,S1), E(X,S2)
and E(X,S) are groups. By Lemma 2 we have E(X,S) = E(X,S1) ∪
E(X,S2) Thus E(X,S1) ⊆ E(X,S2) or E(X,S2) ⊆ E(X,S1).

2. By Theorem 3, (X,S1), (X,S2) are A-distal therefore for each a ∈ A,
F(a, E(X,S1)), F(a, E(X,S2)) and F(a, E(X,S)) are groups (Sabbaghan
and Shirazi, 2001a, Theorem 18), moreover by Lemma 2, F(a, E(X,S))
=F(a, E(X,S1)) ∪ F(a, E(X,S2)), Thus F(a, E(X,S1)) ⊆ F(a, E(X,S2)) or
F(a, E(X,S2)) ⊆ F(a, E(X,S1))
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3. F(A, E(X,S1)), F(A, E(X,S2)) and F(A, E(X,S)) are groups
(Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar
method described in (2).
4. F (A, E(X,S1)), F (A, E(X,S2)) and F (A, E(X,S)) are groups
(Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar
method described in (2).

Theorem 5. Let A be a nonempty subset of X, we have:

1. P(X,S) = Υ
n

i 1=

P (X,Si).

2. PA(X,S) = Υ
n

i 1=

PA (X,Si).

3. Υ
n

i 1=
AP (X,Si) ⊆ AP (X,S)

4 If A∈Ι
n

i 1=

M (X,Si) ∩ M (X,S). Then P (X,S) =Υ
n

i 1=

P (X, Si).

Proof. In all items we use Lemma 2 and (Sabbaghan and Shirazi,
2001b, Theorem 4).
1. P(X,S) = PX(X,S), so this is a special case of (2).

2. Let x,y ∈ X:
(x,y) ∈ PA(X, S)

⇔ ∃a∈A ∃p∈ F(a, E(X, S)) xp=yp

⇔ ∃a∈A ∃p∈ F(a, Υ
n

i 1=

E(X, Si)) xp=yp

⇔ ∃a∈A ∃p∈Υ
n

i 1=

F(a, E(X, Si)) xp=yp

⇔ ∃a∈A ∃i∈{1,…,n} ∃p∈ F(a, E(X, Si)) xp=yp
⇔ ∃i∈{1,…,n} (x,y) ∈ PA(X, Si)

⇔ (x,y) ∈ Υ
n

i 1=

PA(X, Si).
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Therefore PA (X, S) =Υ
n

i 1=

PA (X, Si).

3. For i∈{1,…,n}, if K ∈ M (X,Si)(A), then )S,X(KE is a closed right
ideal of E(X, S) and for each a ∈ A we have a )S,X(KE = aE(X, S),
thus there exists L∈ M (X,S)(A) such that L⊆ )S,X(KE (Sabbaghan and
Shirazi, 2001a, Corollary 3). Let (x,y) ∈ X, we have :

(x,y) ∈ Υ
n

i 1=
AP (X, Si).

⇒ ∃i∈{1,…,n} (x,y) ∈ AP (X, Si)
⇒ ∃i∈{1,…,n} ∃K∈ M (X,Si)(A) ∀p ∈ K xp=yp
⇒ ∃i∈{1,…,n} ∃K∈ M (X,Si)(A) ∀p ∈ K E(X, S) xp=yp
⇒ ∃i∈{1,…,n} ∃K∈ M (X,Si)(A) ∀p ∈ ),( SXKE xp=yp
⇒ ∃L∈ M (X,Si)(A) ∀p ∈ L xp=yp
⇒ (x,y) ∈ AP (X, S).

Therefore Υ
n

i 1=
AP (X, Si) ⊆ AP (X, S).

4. Let x,y ∈ X, we have:
(x,y) ∈ AP (X, S)

⇔ ∃p∈ F(A, E(X, S)) xp=yp

⇔ ∃p∈ F(A, Υ
n

i 1=

E(X, Si)) xp=yp

⇔ ∃p∈Υ
n

i 1=

F(A, E(X, S)) xp=yp

⇔ ∃i∈{1,…,n} ∃p∈ F(A, E(X, Si)) xp=yp
⇔ ∃i∈{1,…,n} (x,y) ∈ AP (X, Si)

⇔ (x,y) ∈ Υ
n

i 1=
AP (X, Si).
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Therefore AP (X, S) =Υ
n

i 1=
AP (X, Si).

Corollary 6. Let ?Ì : (X,S)→ (Y,S) be an onto homomorphisms, A be a
nonempty subset of X and B be a nonempty subset of Y , then (with all
the factors and extensions being under ?ã):
a. “(Y,S) is a distal factor of (X,S)” if and only if “for each i∈{1,…,n},
(Y,Si) is a distal factor of (X,Si)”.
b. “(Y,S) is an A-distal factor of (X,S)” if and only if “for each
i∈{1,…,n}, (Y,Si) is an A-distal factor of (X,Si)”.

c. Let A∈Ι
n

i 1=

M (X,Si) ∩ M (X,S), then “(Y,S) is an ( )MA distal factor

of (X,S)” if and only if “for each i∈{1,…,n}, (Y,Si) is an ( )MA distal
factor of (X,Si)”.
d. “(X,S) is a distal extension of (Y,S)” if and only if “for each
i∈{1,…,n}, (X,Si) is a distal extension of (Y,Si)”.
e. “(X,S) is a B-distal extension of (Y,S)” if and only if “for each
i∈{1,…,n}, (X,Si) is a B-distal extension of (Y,Si)”.

f. Let ?�-1(B)∈Ι
n

i 1=

M (X,Si) ∩ M (X,S), then “(X,S) is a ( )MB distal

extension of (Y, S)” if and only if “for each i∈{1,…,n}, (X, Si) is a
( )MB distal extension of (Y, Si)”.

Proof. Use Theorem 5.

Note 7. Let A1, …, An be nonempty subsets of X. We have:

1. If Υ
n

i 1=

Ai ∈M (X,S) and for each j ∈ {1,…,n}, (X,Sj) is ( )M
jA distal,

then (X,S) is Υ
n

i 1=

( )M
iA distal.
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2. If Υ
n

i 1=

AI ∈M (X,S) and for each j ∈ {1,…,n}, (X,Sj) is ( )M
jA distal,

then (X,S) is Υ
n

i 1=

( )M
iA distal.

(Compare with Theorem 3).

Proof. In (1) and (2) we have (by (Sabbaghan and Shirazi, 2001a,
Theorem 18) and Lemma 2):

{e} ⊆ J (F(Υ
n

i 1=

Ai , E(X,S))) = Υ
n

j 1=

J (F(Υ
n

i 1=

Ai , E(X,Sj)))

⊆ Υ
n

j 1=

J (F(Aj , E(X,Sj))) = Υ
n

j 1=

{e}.

So J(F(Υ
n

i 1=

Ai , E(X,S))) = J( F (Υ
n

i 1=

Ai , E(X,Sj))) = {e}. Therefore (X, S) is

Υ
n

i 1=

( )M
iA distal in (1) and (X,S) is Υ

n

i 1=

( )M
iA distal in (2).

Theroem 8. Let A be a nonempty subset of X, we have:
1. E(X,S0) ⊆ E(X,S).
2. If (X,S) is distal, then (X,S0) is distal.
3. If (X,S) is A-distal, then (X,S0) is A-distal.
4. If (X,S) is ( )MA distal and A?ÐM (X,S0), then (X,S0) is ( )MA distal.
5. If (X,S) is ( )MA distal and A?°M (X,S0), then (X,S0) is ( )MA distal.
6. Let Z be a closed invariant subset of (X,S), then Z is a closed
invariant subset of (X, S0) and h(X,S) (Z) ≤ ),( 0SXh (Z).

7. P(X, S0) ⊆ P(X, S), PA(X, S0) ⊆ PA(X, S) and AP (X, S0) ⊆ AP (X, S),

Proof. Take S = S ∪ S0 and use Lemma 2, Theorem 3 and Theorem 5.

Corollary 9. Let (X,S) be distal, then for each s ∈S – {e}and each m ∈
N, There exists a net {m?‡}γ∈Γ in N such that

Γ∈?Â
lim ?‡ms = s -m.
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Proof. Let m∈ N and s ∈S – {e}, by Theorem 8 (X, {sK|K ∈N}∪ {e})
is distal, therefore E(X,{sk|k ∈N}∪ {e}) is a group, so there exists a
net {m?‡}γ∈Γ in N ∪ {0} such that

Γ∈?§
lim ?‡ms = s -m (s0=e), since s ≠ e we

can take m?‡∈ N (γ∈Γ).

Corollary 10. Let ?>: (X,S)→ (Y,S) be an onto homomorphism and let
A be a nonempty subset of X and B be a nonempty subset of Y, then
(with all the factors and extensions being under ?V):
a. If (Y,S0) is a proximal factor of (X,S0), then (Y,S) is a proximal factor
of (X,S).
b. If (Y,S0) is an A-proximal factor of (X,S0), then (Y,S) is an A-
proximal factor of (X,S).
c. If (Y,S0) is an ( )MA proximal factor of (X,S0), then (Y,S) is an

( )MA proximal factor of (X,S).
d. If (X,S0) is a proximal extension of (Y,S0), then (X,S) is a proximal
extension of (Y,S).
e. If (X,S0) is a B-proximal extension of (Y,S0), then (X,S) is a B-
proximal extension of (Y,S).
f. If (X,S0) is a ( )MB proximal extension of (Y,S0), then (X,S) is a ( )MB
proximal extension of (Y,S).

Proof. Use Theorem 8.

Theorem 11. Let A be a nonempty subset of X.

1. Let a1, …, ap, b1, …, bq ∈ S be such that S =(Υ
p

i 1=

S0 ai) ∪ (Υ
q

i 1=

bi S0),

then:

a. E(X, S) = (Υ
p

i 1=

E(X, S0) ai) ∪ (Υ
q

i 1=

biE(X, S0)).

b. (X,S) is distal if and only if a1 ,…, ap, b1 ,…, bq are one to one and
(X,S0) is distal.
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c. Suppose a1, …, ap, b1,…, bq∈F(A,S). Then (X,S) is A-distal if and
only if a1, …, ap, b1,…, bq are one to one and (X,S0) is A-distal.
d. Suppose a1, …, ap, b1,…, bq∈F(A,S) and A?‚M (X,S) ∩
M (X,S0). Then (X,S) is ( )MA distal if and only if a1 ,…, ap, b1 ,…, bq

are one to one and (X, S0) is ( )MA distal.
e. Suppose a1, …, ap, b1, …, bq∈ F (A,S) and A?áM (X,S) ∩

M (X,S0) . Then (X, S) is ( )MA distal if and only if a1, …, ap, b1 ,…,
bq are one to one and (X, S0) is ( )MA distal.

2. Let s∈ S be such that s-1∈ S, then:
a. E(X, s-1S0s) = s-1 E(X, S0)s.
b. (X, S0) is distal if and only if (X, s-1S0s) is distal.
c. Suppose s∈F(A,S). Then (X, S0) is A-distal if and only if (X, s-1S0s) is
A-distal.
d. Suppose s∈F(A,S) and A?§M (X,S0) ∩ M (X, s-1S0s). Then (X,S0)
is ( )MA distal if and only if (X, s-1S0s) is ( )MA distal.
e. Suppose s∈ F (A,S) and A?�M (X, S0) ∩ M ( X, s-1S0s). Then
(X,S0) is ( )MA distal if and only if (X, s-1S0s) is ( )MA distal.

Proof.
1.
a. Let r∈E(X,S), then there exists a net {s?‡}γ∈Γ ⊆ S such that

Γ∈?ø
lim sγ= r.

There exists a subnet {
?‡?‡s }λ∈Λ of {s?‡}γ∈Γ and {

?‡?‡t }λ∈Λ ⊆S0 such that:
(∃i∈{1,…,p} ∀λ∈Λ

?‡?z ?‡?™?‡ts ai ) ∨ (∃i∈{1,…,q} ∀λ∈Λ

?‡
?‡?‡s bi

?‡?‡t ).
There exists a subnet {

?‡?ñ
?‡t }?‡∈Ω of {

?‡?‡t }λ∈Λ such that
?‡?ù?ù

lim
?‡?ñ

?‡t ∈

E(X,S0), therefore r∈ (Υ
p

i 1=

E(X,S0)ai) ∪ (Υ
q

i 1=

bi E(X,S0)).

b. If (X,S) is distal, then E(X,S) is a group, so a1, …, ap, b1, …, bq are
one to one, also (X,S0) is distal by Theorem 8.
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Conversely suppose a1, …, ap, b1, …, bq be one to one and (X,S0) be

distal, then E(X,S0) is a group, so the elements of (Υ
p

i 1=

E(X,S0)ai)

∪ (Υ
q

i 1=

bi E(X,S0)) are one to one, thus by (a) the elements of E(X,S) are

one to one and J(E(X,S)) ={e}. Therefore (X,S) is distal.
c. If (X,S) is A-distal and a ∈ A, then F(a, E(X,S)), is group and a1,…,
ap, b1 ,…, bq ∈ F(a, E(X, S)), so a1 ,…, ap, b1 ,…, bq are one to one,
also (X,S0) is A-distal by Theorem 8.
Conversely suppose a1 ,…, ap, b1 ,…, bq be one to one and (X,S0) is A-
distal, then for each a ∈ A, then F(a, E(X, S0)) is a group, so the

elements of (Υ
p

i 1=

F(a, E(X,S0))ai) ∪ (Υ
q

i 1=

bi F(a, E(X, S0))) are one to one,

thus the elements of F(a, E(X, S)), are one to one (by using (a) we

have (Υ
p

i 1=

F(a, E(X, S0))ai) ∪ (Υ
q

i 1=

bi F(a, E(X, S0))) = F(a, E(X, S)))

and, J(F(a, E(X, S))) ={e}. Therefore (X, S) is A-distal.
d. Use a similar method described in (c).
e. Use a similar method described in (c).
2. Use a similar method described in (1).

Corollary 12.

If S is a group and S0 is a normal subgroup of S such that
0S

S is finite,

then (X,S) is distal if and only if (X,S0) is distal.
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