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Abstract
In this note we study the transformation semigroup (X,S), where S is a
finite union of its subsemigroups.
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Preliminaries:

By a transformation semigroup (X,S,?Q (or simply (X,S)) we mean a
compact Hausdorff topological space X, a discrete topological
semigroup S with identity e and a continuous map ?s X" S® X (?4X, S)
=xs (" xI X," sl S)) such that:

-l X Xe =X,

XX "s, tTS x(st) = (xs) t.

In the transformation semigroup (X,S) we have the following
definitions:

1. For each si S, define the continuous map ?85: X® X by x?&xs
(" xI X), we used to write s instead of ?T1The closure of {?Wsl S} in
X* with pointwise convergence, is called the enveloping sermigroup (or
Ellis semigroup) of (X,S) and it is written by E(X,S) or simply E(X).
E(X,S) has a semigroup structure (Ellis, 1969, Chapter 3), a nonempty
subset K of E(X,S) is called a right ideal if KE(X,S) | K, and it is called
a minimal right ideal if none of the right ideals of E(X,S) is a proper
subset of K.

2. A nonempty subset Z of X is called invariant if ZS | Z, moreover it
is called minimal if it is closed and none of the closed invariant subsets
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of X is a proper subset of Z. Let al X, A be a nonempty subset of X and
C be a nonempty subset of E(X,S), we introduce the following sets:

F(a,C)={pl Clap=p} , F(AC)={pl C|"bl A bp=b},

F(AC)?R{ p?IC| Ap ?1A} , J(C)?H p?iC| p* ?1p}-

3. Let al X, A be a nonempty subset of X and K be a closed right ideal
of E(X,S), then (Sabbaghan and Shirazi, 2001a, Definition 1):

- We say K is an a-minimal set if:

- aK= aE(X,S),

- K dose not have any proper subset like L, such that L is a closed right
ideal of E(X,S) with aL = aE(X,S).

- We say Kiisan A-minimal set if:

-" bl 24bK=bE(X,S),

- K dose not have any proper subset like L, such that L is a closed right
ideal of E(X,S) with bL = bE(X,S) for all bl A.

- We say Kisan A-minimal set if:

- AK= AE(X,9),

- K dose not have any proper subset like L, such that L is a closed right
ideal of E(X,S) with AL = AE(X,S).

The sets of all a-minimal (resp. A-minimal , A-minimal ) sets is
written by Mxs)(@) (resp. M xs)(A), M (x5)(A)).

M(x,g)(A) and M s)(a) are nonempty ((Sabbaghan and Shirazi, 2001a,
Theorem 2) and (Sabbaghan, et al., 1997, Proposition 3)).

4. Let A be a nonempty subset of X, we introduce the following sets
(Sabbaghan and Shirazi, 2001b, Definition 1):

P(X,S) = {(x,y) T X" x¥spl E(X,S) xp=yp},

Pa(X,5) ={(xy) T X' X ¥Bal A $IT Mxg(@) "pl 1 xp=yp},
PAX,S) ={(xy) T X' XYBIT Mxg(A) "pl 1 xp=yp},

M (X,5)={?3Di X% KI Mxs(D) JIF(D,K) 25,

M (X,S) ={?E DI X¥2M (D)t 20 KI M (D) J(F (D,K))* 213,
5. Let (Y,S) be a transformation semigroup, a continuous map ?[t
(X,9)® (Y,S) is called a homomorphism if 2txs) = ?2tx)s (xI X, sl S).
Let ?< (X,S)® (Y,S) be an onto homomorphism, R(?¥= {(x,y)| X~ 2<
| 2¢8) = 26}, D« ={(x,x)| x T X}, A be a nonempty subset of X and B
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be a nonempty subset of Y. We say (Sabbaghan and Shirazi, 2001b,
Definition 7):

. (V,S) is a distal (resp. A-distal, A® distal) factor of (X,S) if R(?%
CP(X,S) = Dx (resp. R(?JICPA(X,S) = Dk, R(?JIC P, (X,S) = Dy),

- (X,S) is a distal (resp. B-distal, B@distal) extension of (Y,S) if R(?X
CP(X,S)=Dx (resp. R(?)C Poagsy (X,S) = D« , R(?D'JCIE?M(B) (X,9) =
Dy),

- (Y,S) is a proximal (resp. A-proximal, A(E)proximal) factor of (X,S) if
R(?) | P(X,S) (resp. R(?) | Pa(X,S),R( )T P,(X,9)),

- (X,S) is a proximal (resp. B-proximal, BM proximal) extension of
(Y,S) if R(2WH P(X,S) (resp. R(?)I Piggsy (X,S), R(2MI Py (X,9)).
6. Let A be a nonempty subset of X, then (Sabbaghan and Shirazi,
2001a, Definition 13):
- (X,S) is distal if E(X,S) is @ minimal right ideal,
- (X, S) is called A- distal if for each al A, E(X, S)I M s)(a),
- (X, S) is called, A®) distal if E(X, S)T M ws)(A),
. (X, S) is called, A@distal ifEX, S M xs(A),
7. Let Z be a closed invariant subset of X, define:
hex,5)(2) = {nT' N |‘§ {0}$2, ..., 2 )
((Zol Zy1 1 Zy) Uil {0,...,n} "jl {O,....n}-{i} Z1Z)
U (" il {0,...,n} Ziisaclosed invariant subset of Z))}.

Convention 1. In what follows (X, S) is a transformation semigroup, e
is the identity of S and S, Sy, ..., S, are subemigroups of S, such that

el | SiandS=US:.

i=0 i=1
Lemma 2.
1. E(X,9)= UE(X, Si).

i=1

2.5=5,-S, and E(X,S) = E(X,S1) ~ E(X,Sn).
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Proof.
1. If pl E(X,S), then there exists a net {s:}acl S, such that lim s =p

(i-e., lim xsg= xp (" xI X)), since S =JS;, so there exists il {1, ..., n}
o i=1

and a subnet {s; hi. of {sggo such that s, 1 S

therefore Iiém So3,= pl E(X, Si). Thus E(X,S) I J E(X,S).
oL ot

2.Useel | S.

i=1

Theroem 3. Let A be a nonempty subset of X, then:

1. (X, S) is distal if and only if for each il {1, ..., n}, (X, ) is distal.

2. (X, S) is A-distal if and only if for each il {1, ... , n}, (X, S)) is A-
distal.

3. LetAl | M (X.S)CM (X.S). Then (X,S) is A® distal if and only
i=1

if for each il {1, ... , n}, (X, S) is A®)distal.

4. LetAl | M (X,S) QM_ (X,S). Then (X,S) is A@)distal if and only

i=1

if for each il {1, ..., n}, (X, S)) is A(E)distal.

Proof.

1. (X,S) is distal if and only if (X,S) is X-distal (Sabbaghan and Shirazi,
2001a, Theorem 18), so this is a special case of (2).

2. We have (by (Sabbaghan and Shirazi, 2001a, Theorem 18)):
(X,S)isA-distal U "al A J(F(a E(X, S))) = {e}

U "al A J(F(a, LnJE(x, S))) ={e} (by Lemma 2)

U "al A _LnJJ(F(a, E(X, S))) = {e}

"al A vl {1,....n} J(F(a, E(X, S))) = {e}

([a)
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O "il {1,...n} (X, S)is A-distal .
3. We have (by (Sabbaghan and Shirazi, 2001a, Theorem 18)):
x,5) is A®distal 0 J (F(A, E(X, S))) = {e}
J(FA, UEX, S))) ={e} (by Lemma 2)

i=1

([a)

U 3 (FOA, EQ 5) = {e}

il {1,...n}  J(F(A, E(X, S))) = {e}
O "t {1,...n} (X S)is A distal,
4. Use a Similar method described in (3).

U
U

Theroem 4. Let n = 2 in Convention | and let A be a nonempty subset
of X.

1. If (X,S) is distal then there exists il {1,2} such that E(X,S) = E(X,S).
2. If (X,S) is A-distal, then for each a T A there exists il {1,2} such
that F(a, E(X,S)) = F(a, E(X,S)).

3. 1f AT M (X,S) CM (XS and (X,5) is A®distal, then there
exists il {1, 2} such that F(A, E(X,S)) = F(A, E(X,S?).

4. 1F AT M (X,S) CM  (X,S,) and (X,9) is A distal then there
exists il {1, 2} such that F (A, E(X,S)) = F (A, E(X,S)).

Proof.

1. By Theorem 3, (X,S;), (X,Sy) are distal therefore E(X,S;), E(X,S,)
and E(X,S) are groups. By Lemma 2 we have E(X,S) = E(X,S;) E
E(X,S;) Thus E(X,S:) I E(X,S,) or E(X,S2) | E(X,Sy).

2. By Theorem 3, (X,S4), (X,S,) are A-distal therefore for each a1 A,
F(a, E(X,S1)), F(a, E(X,S;)) and F(a, E(X,S)) are groups (Sabbaghan
and Shirazi, 2001a, Theorem 18), moreover by Lemma 2, F(a, E(X,S))
=F(a, E(X,S1)) E F(a, E(X,S2)), Thus F(a, E(X,S1)) I F(a, E(X,S2)) or
F(a, E(X,S2)) I F(a, E(X,S))
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3. F(A, E(X,S1)), F(A, E(X,S)) and F(A, E(X,S)) are groups
(Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar
method described in (2).
4. F(A, E(X,S)), F(A, E(X,S)) and F(A, E(X,S)) are groups
(Sabbaghan and Shirazi, 2001a, Theorem 18), now use a similar
method described in (2).

Theorem 5. Let A be a nonempty subset of X, we have:
1. P(X,8) = UP (X,S).

i=1
2. PA(X,S) = UPA (X,S,)

i=1

3. _LnJﬁA(x,si)l’ P, (X,9)

4 1f Al |n M (X,S)CM (X,S). ThenP (X,S) = U P (X, S).

i=1

Proof. In all items we use Lemma 2 and (Sabbaghan and Shirazi,
2001b, Theorem 4).
1. P(X,S) = Px(X,S), so this is a special case of (2).

2. Letx,yl X:
T PaXS)
U $al A $pl F(a, E(X,S)) xp=yp

U s$al A $pl Fa, UEX,S)) xp=yp

i=1

$al A $pl U F(a, E(X, S))  xp=yp

U

U s$al A sil {II ..... n} $pl F(a, E(X,S))  xp=yp
U s$il {1,..n}  (xy)T PaX, S)

0 ()T U PaX, S).
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Therefore P (X, S) =J Pa (X, S).

i=1

3. For il {1,...,n}, if KT M xsp(A), then KE(X,S)is a closed right
ideal of E(X, S) and for each a1 A we have aKE(X,S)= aE(X, S),

thus there exists LT M xs(A) such that Li KE(X,S ) (Sabbaghan and
Shirazi, 2001a, Corollary 3). Let (x,y) T X, we have :

(x,y) 1 £JI3A (X, Si).

P &l {1,...n} T P,(X S)
b $il {1,..n} $KI Mxsy(A) "pl K xp=yp
b $il {1,...n} $KI Mxsy(A) "pT KE(X,S) xp=yp
b $il {1,...n} $KI Mxsy(A) "pl KE(X,S) xp=yp
P SLT Musy(A) "pT L xp=yp
P (xy)l P,(XS).

Therefore LnJ P,(X,S) 1 P, (X,S).

i=1

4. Letx,yT X, we have:
(xy) I P,(X, )

U $pl F(A E(X,S) xp=yp
$pl F(A, UE(X, S))  xp=yp

i=1

([a)

([a)

$pi U FA E(X.S)  xp=yp

$il {-1: ..... n} $pl F(A E(X,S)) Xxp=yp
$il {1,...n} (xy1 I3A X, S)

(x,y) 1 £JI3A (X, S).

([a) (e e
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Therefore P, (X, S) = P, (X, S).

i=1

Corollary 6. Let ?i: (X,S)® (Y,S) be an onto homomorphisms, A be a
nonempty subset of X and B be a nonempty subset of Y , then (with all
the factors and extensions being under ?3

a. “(Y,S) is a distal factor of (X,S)” if and only if “for each il {1,...,n},
(Y,S) is a distal factor of (X,S;)”.

b. “(Y,S) is an A-distal factor of (X,S)” if and only if “for each
il {1,...,n}, (Y.S)) is an A-distal factor of (X,S;)”.

c.Let Al | M (X,5) CM  (X.S), then “(Y,S) is an A™ distal factor
i=1

of (X,S)” if and only if “for each i {L,....n}, (¥,S) is an A®)distal

factor of (X,S;)”.

d. “(X,S) is a distal extension of (Y,S)” if and only if “for each

il {1,...,n}, (X,S) is a distal extension of (Y,S;)”.

e. “(X,S) is a B-distal extension of (Y,S)” if and only if “for each

il {1,...,n}, (X,S) is a B-distal extension of (Y,S;)”.

f. Let 2EB) | M (X.S) CM_ (X,S), then “(X,S) is a B®distal
i=1

extension of (Y, S)” if and only if “for each il {1,...,n}, (X, S) is a

B distal extension of (Y, S;)”.

Proof. Use Theorem 5.

Note 7. Let Ay, ..., A, be nonempty subsets of X. We have:
11f UAT M (X.S) and for each j 1 {1,....n}, (X,8) is A @distal,

i=1

then (x.8) is J A® distal
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2. 1F JAT M (X.S)and for each j1 {1,...,n}, (X.S) is Aj(mdistal,

i=1

then (X,S) is U Ai(ﬁ)distal.
i=1
(Compare with Theorem 3).

Proof. In (1) and (2) we have (by (Sabbaghan and Shirazi, 2001a,
Theorem 18) and Lemma 2):

e I (FUALEXS) = U I (FUALEXS))

j=1 i=1

| U3 (Fa B = U e

= =

So J(F( LnJAi E(X,9)) = J(F( LnJAi E(X,S)))) = {e}. Therefore (X, S) is

U A® distal in (1) and (x.9) is 1) A @distal in (2).

i=1 i=1

Theroem 8. Let A be a nonempty subset of X, we have:
1. E(X,So) I E(X,S).

2. If (X,S) is distal, then (X,Sy) is distal.

3. If (X,S) is A-distal, then (X,Sy) is A-distal.

4.1 (x,5) is A% distal and A?B1_ (X,So), then (X,S,) is A®distal.

5.1 (X,S) is A( )dlstal and A?M (X,Sp), then (X,Sp) is A( )distal.
6. Let Z be a closed invariant subset of (X,S), then Z is a closed
invariant subset of (X, So) and hixs)(Z) £ hx s,y (2).

7.P(X, So) I P(X,S), Pa(X, So) I Pa(X,S)and P,(X,So) I P,(X,S),
Proof. Take S=SE S, and use Lemma 2, Theorem 3 and Theorem 5.

Corollary 9. Let (X,S) be distal, then for eachs1 S — {e}and eachm
N, There exists a net {m-}q ¢ in N such that lim sMi=g M
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Proof. Let mi NandsT S—{e}, by Theorem 8 (X, {s| KT N}E{e})
is distal, therefore E(X,{s| k T N}E{e}) is a group, so there exists a
net {m-}4 cin N E{0} such that lim s™=s ™ (s%=e), since s * e we

can take m.J N (d G.

Corollary 10. Let ?= (X,S)® (Y,S) be an onto homomorphism and let
A be a nonempty subset of X and B be a nonempty subset of Y, then
(with all the factors and extensions being under ?Yy/

a. 1T (Y,Sp) is a proximal factor of (X,Sy), then (Y,S) is a proximal factor
of (X,S).

b. If (Y,So) is an A-proximal factor of (X,Sp), then (Y,S) is an A-
proximal factor of (X,S).

c. If (Y,Sp) is an A(M)proximal factor of (X,Sp), then (Y,S) is an
AE) proximal factor of (X,S).

d. If (X,Sp) is a proximal extension of (Y,Sy), then (X,S) is a proximal
extension of (Y,S).

e. If (X,Sp) is a B-proximal extension of (Y,So), then (X,S) is a B-
proximal extension of (Y,S).

fIF(X,Sp) Is a B(®) proximal extension of (Y,Sy), then (X,S) is a B(®)
proximal extension of (Y,S).

Proof. Use Theorem 8.

Theorem 11. Let A be a nonempty subset of X.
p q
1. Letay, ..., @y, by, ..., by T Sbesuchthat S=(|J So &) E ({Jbi So),

i=1 i=1

then:

p q
a. E(X, S) = (UE(X, So) a) E (UbiE(X, So)).

i=1l i=1l
b. (X,S) is distal if and only if a; ,..., a,, b1 ,..., by are one to one and
(X,Sp) Is distal.



A Note on Transformation Semigroups 100

C. SUppose ay, ..., a,, by,..., byl F(A,S). Then (X,S) is A-distal if and
only ifay, ..., a,, bs,..., by are one to one and (X,So) is A-distal.

d. Suppose ai, ..., a, by..., bd F(AS) and A2M (X,S) C
M (X,So). Then (X,S) is A®distal if and only if a, ..., ap, by ..., b
are one to one and (X, Sy) is A(M)distal.

e. Suppose ai, ..., @, bi, ..., b F(AS) and A?a1  (X,S) C

M (X,So) . Then (X, S) is A@)distal if and only if &, ..., a,, b1 ,...,
by are one to one and (X, So) is A(E)distal.

2. Letsl Sbesuchthats™ S, then:

a. E(X, s'Ses) = st E(X, So)s.

b. (X, So) is distal if and only if (X, s'Ses) is distal.

c. Suppose sl F(A,S). Then (X, So) is A-distal if and only if (X, $"Ses) is
A-distal.

d. Suppose sl F(A,S) and A?8  (X,So) CM (X, 57Ss). Then (X,So)
is A% distal if and only if (X, s7S,s) is AZ)distal.

e. Suppose sl F(AS) and A?M (X, S)) G M ( X, 5'Sgs). Then
(X.S0) is A® distal if and only if (X, sSos) is A® distal,

Proof.
1

a. Let rl E(X,S), then there exists a net {s;}4 cI S such that Iolgp3 S TI.
There exists a subnet {s,, }17. of {S2}g cand {t, 7. [ So such that:
($il {1,....p3 "1TL Som 7?3 ai) Uil {1,....q3 "ITL
Sos. ?bit?%).

There exists a subnet {t,, }»zw of {t, }i1. such that "(EEL t, 1
By ' ? 7By

p q
E(X,So), therefore rT (|JE(X,So)ai) E (Ubi E(X,S0)).

i=1 i=1
b. If (X,S) is distal, then E(X,S) is a group, so ay, ..., &, b1, ..., by are
one to one, also (X,Sy) is distal by Theorem 8.
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Conversely suppose ay, ..., @, by, ..., by be one to one and (X,So) be

p
distal, then E(X,So) is a group, so the elements of (|JE(X,So)ai)

i=1

q
E (Ubi E(X,S0)) are one to one, thus by (a) the elements of E(X,S) are
i=1l
one to one and J(E(X,S)) ={e}. Therefore (X,S) is distal.
c. If (X,S) is A-distal and a T A, then F(a, E(X,S)), is group and ay, ...,
ap, by ,..., by T F(a, E(X, S)), s0 ay ,..., a, by ,..., by are one to one,
also (X,Sp) is A-distal by Theorem 8.
Conversely suppose & ,..., &, b1 ,..., bq be one to one and (X,So) is A-
distal, then for each a T A, then F(a, E(X, So)) is a group, so the

p q

elements of (|JF(a, E(X,So))a) E(Ubi F(a, E(X, So))) are one to one,
i=1l i=1l

thus the elements of F(a, E(X, S)), are one to one (by using (a) we

p q

have (UF(a E(X, So)a) E(Ubi F(a, E(X, S0))) = F(a, E(X, S)))
i=1l i=1l

and, J(F(a, E(X, S))) ={e}. Therefore (X, S) is A-distal.

d. Use a similar method described in (c).

e. Use a similar method described in (c).

2. Use a similar method described in (1).

Corollary 12.

If Sis a group and S, is a normal subgroup of S such that > is finite,
0

then (X,S) is distal if and only if (X,So) is distal.
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