Contra-α-Continuous Functions between Topological Spaces

Saeid Jafari
Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, Denmark

Takashi Noiri
Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501 Japan
(received: 1/9/2000; accepted: 4/3/2001)

Abstract
In this paper, we apply the notion of α-open sets in topological spaces to present and study contra-α-continuity as a new generalization of contra-continuity (Dontchev, 1996).

Keywords: α-open, α-closed, contra-α-closed, α-compact, strongly S-closed, contra-α-continuity.

1. Introduction
In 1996, Dontchev (Dontchev, 1996) introduced a new class of functions called contra-continuous functions. Recently, Dontchev and Noiri (Dontchev and Noiri, 1999) introduced and studied, among others, a new weaker form of this class of functions called contra-semicontinuous functions. They also introduced the notion of RC-continuity (Dontchev and Noiri, 1999) which is weaker than contra-continuity and stronger than α-continuity (Tong, 1998). The present authors (Jafari and Noiri, 1999) introduced and studied a new class of functions called contra-super-continuous functions which lies between classes of RC-continuous functions and contra-continuous functions.

This paper is devoted to introduce and investigate a new class of functions called contra-α-continuous functions which is weaker than contra-continuous functions and stronger than both contra-semicontinuous functions and contra-precontinuous functions (Jafari and Noiri, 2001).
2. Preliminaries

Throughout this paper, all spaces X and Y (or (X, t) and (Y, σ)) are topological spaces. A subset A is said to be regular open (resp. regular closed) if $A = \text{Int}(\text{CI}(A))$ (resp. $A = \text{CI}(\text{Int}(A))$) where $\text{CI}(A)$ and $\text{Int}(A)$ denote the closure and interior of A.

Definition 2.1. A subset A of a space is called:

1. \mathcal{R}-open (Abd El-Monsef et al., 1983) if $A \subseteq \text{CI}(\text{Int}(\text{CI}(A)))$,
2. preopen (Mashhour et al., 1982) if $A \subseteq \text{Int}(\text{CI}(A))$,
3. semi-open (Levine, 1963) if $A \subseteq \text{CI}(\text{Int}(A))$,
4. \mathcal{P}-open (Njåstad, 1965) if $A \subseteq \text{Int}(\text{CI}(\text{Int}(A)))$.

The complement of a preopen (resp. semi-open, \mathcal{P}-open) set is said to be preclosed (resp. semi-closed, \mathcal{P}-closed). The collection of all closed (resp. preopen, semi-open, \mathcal{P}-open and \mathcal{P}-open) subsets of X will be denoted by $C(X)$ (resp. $\text{PO}(X)$, $\text{SO}(X)$, $\mathcal{P}(X)$, $\mathcal{P}\text{O}(X)$).

It is shown in (Njåstad, 1965) that $\mathcal{P}\text{O}(X)$ (or $\alpha\text{CI}(A)$) is a topology for X and it is stronger than the given topology on X. By $\alpha\text{CI}(A)$, we denote the closure of a subset A with respect to $\mathcal{P}\text{O}(X)$. We set $C(X, x) = \{ V \in C(X) \mid x \in V \}$ for $x \in X$. We define similarly $\text{PO}(X, x)$, $\text{SO}(X, x)$, $\alpha(X, x)$ and $\mathcal{P}\text{O}(X, x)$. Recall that a subset A of X is said to be generalized closed (briefly g-closed (Levine, 1970)) (resp. \mathcal{P}-generalized closed (briefly \mathcal{P}g-closed) (Maki et al., 1994) if $\text{CI}(A) \subseteq U$ (resp. $\alpha\text{CI}(A) \subseteq U$) whenever $A \subseteq U$ and U is open. Recall that a subset A of X is called NDB-set (Dontchev, preprint), if it has nowhere dense boundary. A subset A of X is called \mathcal{P}-open if it is the union of regular open sets. The complement of a \mathcal{P}-open set is called \mathcal{P}-closed. Equivalently, $A \subseteq X$ is called \mathcal{P}-closed (Velicko, 1968) if $A = \text{Cl}_t(A)$, where $\text{Cl}_t(A) = \{ x \in X \mid \text{Int}(\text{CI}(U)) \cap A \neq \emptyset, U$ is an open set and $x \in U \}$. A subset A of X is called \mathcal{P}-generalized closed (Dontchev and Ganster, 1996) if $\text{Cl}_t(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.

Definition 2.2. A function $f : X \to Y$ is called perfectly continuous (Noiri, 1984) (resp. \mathcal{R}c-continuous (Dontchev & Noiri, 1999) if for each open set V of Y, $f^{-1}(V)$ is clopen (resp. regular closed) in X.

Definition 2.3. A function $f: X \to Y$ is called *precontinuous* (Mashhour *et al.*, 1982) (resp. *semi-continuous* (Levine, 1963), *?-continuous* (Abd El-Monsef *et al.*, 1983) if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in \mathcal{P}(X, x)$ (resp. $U \in \mathcal{S}(X, x)$, $U \in ?\mathcal{P}(X, x)$) such that $f(U) \subset V$.

Definition 2.4. A function $f: X \to Y$ is called *contra-super-continuous* (Jafari & Noiri, 1999) if for each $x \in X$ and each closed set V of Y containing $f(x)$, there exists a regular open set U in X containing x such that $f(U) \subset V$.

Definition 2.5. A function $f: X \to Y$ is called *contra-?-continuous* (resp. *contra-continuous* (Dontchev, 1996), *contra-semi-continuous* (Dontchev & Noiri, 1999), *contra-precontinuous* (Jafari & Noiri, 2001) if $f^{-1}(V)$ is *?-closed* (resp. closed, semi-closed, preclosed) in X for each open set V of Y.

Remark 2.1. Every contra-continuous function is contra-?-continuous but not conversely as the following example shows.

Example 2.1. Let $X = \{a, b, c\}$, $\mathcal{A} = \{X, \varnothing, \{a\}\}$ and $\sigma = \{X, \varnothing, \{b\}, \{c\}, \{b, c\}\}$. Then the identity function $f: (X, \sigma) \to (X, \mathcal{A})$ is contra-?-continuous but not contra-continuous.

3. Some properties

Definition 3.1. Let A be a subset of a space (X, σ). The set $\cap \{U \in \mathcal{A} \mid A \subset U\}$ is called the kernel of A (Mrsevic, 1986) and is denoted by $\text{Ker}(A)$.

Lemma 3.1. The following properties hold for subsets A, B of a space X:
1. $x \in \text{Ker}(A)$ if and only if $A \cap F \neq \varnothing$ for any $F \in C(X, x)$.
2. $A \subset \text{Ker}(A)$ and $A = \text{Ker}(A)$ if A is open in X.
3. $A \subset B$, then $\text{Ker}(A) \subset \text{Ker}(B)$.

Theorem 3.1. The following are equivalent for function $f: X \to Y$:
1. f is contra-?-continuous;
(2) for every closed subset F of Y, $f^{-1}(F)$ is a closed subset of X;
(3) for each $x \in X$ and each $F \in C(Y, f(X))$, there exists $U \in \mathcal{F}(X, x)$ such that $f(U) \subset F$;
(4) $f(\overline{\text{Cl}(A)}) \subset \text{Ker}(f(A))$ for every subset A of X;
(5) $\overline{\text{Cl}(f^{-1}(B))} \subset f^{-1}(\text{Ker}(B))$ for every subset B of Y.

Proof. The implications (1) \iff (2) and (2) \implies (3) are obvious.

(3) \implies (2): Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in \mathcal{F}(X, x)$ such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = \{ U_x | x \in f^{-1}(F) \} \in \mathcal{F}(X)$.

(2) \implies (4): Let A be any subset of X. Suppose that $y \notin \text{Ker}(f(A))$. Then by Lemma 3.1 there exists $F \in C(X, y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and $\overline{\text{Cl}(A)} \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(\overline{\text{Cl}(A)}) \cap F = \emptyset$ and $y \notin f(\overline{\text{Cl}(A)})$. This implies that $f(\overline{\text{Cl}(A)}) \subset \text{Ker}(f(A))$.

(4) \implies (5): Let B be any subset of Y. By (4) and Lemma 3.1 we have $f(\overline{\text{Cl}(f^{-1}(B))}) \subset \text{Ker}(B)$ and $\overline{\text{Cl}(f^{-1}(B))} \subset f^{-1}(\text{Ker}(B))$.

(5) \implies (1): Let V be any open set of Y. Then, by Lemma 3.1 we have $\overline{\text{Cl}(f^{-1}(V))} \subset f^{-1}(\text{Ker}(V)) = f^{-1}(V)$ and $\overline{\text{Cl}(f^{-1}(V))} = f^{-1}(V)$. This shows that $f^{-1}(V)$ is \mathcal{F}-closed in X.

Theorem 3.2. A function $f : (X, \mathcal{A}) \to (X, \sigma)$ is contra-\mathcal{F}-continuous if and only if $f : (X, \mathcal{A}) \to (X, \sigma)$ is contra-continuous.

Recall that a subset of a topological space (X, \mathcal{A}) is called a \mathcal{F}-set if it is the intersection of open sets.

Theorem 3.3. A function $f : (X, \mathcal{A}) \to (X, \sigma)$ is contra-\mathcal{F}-continuous if and only if inverse images of \mathcal{A}-sets are closed.

Lemma 3.2. (Mashhour et al., 1983). Let $A \in \mathcal{PO}(X)$ and $B \in \mathcal{F}(X)$. Then $A \cap B \in \mathcal{F}(A)$.

Theorem 3.4. If $f : X \to Y$ is contra-\mathcal{F}-continuous and $U \in \mathcal{PO}(X)$, then $f|_U : U \to Y$ is contra-\mathcal{F}-continuous.

Lemma 3.3. (Mashhour et al., 1983). If $A \in \mathcal{F}(Y)$, and $Y \in \mathcal{F}(X)$, then $A \in \mathcal{F}(X)$.

Theorem 3.5. Let \(f: X \to Y \) be a function and \(\{ U_i \mid i \in I \} \) be a cover of \(X \) such that \(U_i \in \mathcal{K}(X) \) for each \(i \in I \). If \(f \mid U_i: U_i \to Y \) is contra-\(\mathcal{K} \)-continuous for each \(i \in I \), then \(f \) is contra-\(\mathcal{K} \)-continuous.

Proof. Suppose that \(F \) is any closed set of \(Y \). We have

\[
 f^{-1}(F) = \bigcup_{i \in I} f^{-1}(F) \cap U_i = \bigcup_{i \in I} (f \mid U_i)^{-1}(F)
\]

Since \(f \mid U_i \) is contra-\(\mathcal{K} \)-continuous for each \(i \in I \), it follows that \(f \mid (U_i)^{-1}(F) \in \mathcal{K}(U_i) \). Then, as a direct consequence of Lemma 3.3 we have \(f^{-1}(F) \in \mathcal{K}(X) \) which means that \(f \) is contra-\(\mathcal{K} \)-continuous.

Now we mention the following well-known result:

Lemma 3.4. The following properties are equivalent for a subset \(A \) of a space \(X \):
1. \(A \) is clopen;
2. \(A \) is ?-closed and ?-open;
3. \(A \) is ?-closed and preopen.

Theorem 3.6. For a function \(f: X \to Y \) the following continuous are equivalent:
1. \(f \) is perfectly continuous;
2. \(f \) is contra-\(\mathcal{K} \)-continuous and ?-continuous;
3. \(f \) is contra-\(\mathcal{K} \)-continuous and precontinuous.

Proof. The proof follows immediately from Lemma 3.4.

Remark 3.1. In Theorem 3.6, (2) and (3) are decompositions of perfect continuity. The following example shows that contra-\(\mathcal{K} \)-continuity and precontinuity (or ?-continuity) are independent of each other.

Example 3.1. The identity function on the real line with the usual topology is continuous and hence ?-continuous and precontinuous. The inverse image of \((0, 1)\) is not ?-closed and the function is not contra-\(\mathcal{K} \)-continuous.

Example 3.2. Let \((\mathbb{Z}, \kappa)\) be the digital line (Khalimsky et al., 1990) and define a function \(f: (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa) \) by \(f(n) = n + 1 \) for each \(n \in \mathbb{Z} \).
Then f is contra-\neg-continuous. But $\text{Int}(\text{Cl}(f^{-1}(\{1\})) = \emptyset$ and $f^{-1}(\{1\}) \notin \text{PO}(Z,\kappa)$, hence f is neither precontinuous nor \neg-continuous.

Theorem 3.7. Let Y be a regular space. For a function $f: X \to Y$, the following properties are equivalent:
1. f is perfectly continuous;
2. f is RC-continuous;
3. f is contra-continuous;
4. f is contra-\neg-continuous.

Proof. The following implications are obvious: perfect continuity \Rightarrow RC-continuity \Rightarrow contra-continuity \Rightarrow contra-\neg-continuity. We show the implication (4) \Rightarrow (1). Let x be an arbitrary point of X and V an open set of Y containing $f(x)$. Since Y is regular, there exists an open set W in Y containing $f(x)$ such that $\text{Cl}(W) \subset V$. Since f is contra-\neg-continuous, so by Theorem 3.1 there exists $U \in \mathcal{O}(X, x)$ such that $f(U) \subset \text{Cl}(W)$. Then $f(U) \subset \text{Cl}(W) \subset V$. Hence, f is \neg-continuous. Since f is contra-\neg-continuous and \neg-continuous, by Theorem 3.6 f is perfectly continuous.

Corollary 3.1. If a function $f: X \to Y$ is contra-\neg-continuous and Y is regular, then f is continuous.

Remark 3.2. The converse of corollary 3.1 is not true. Example 3.1 shows that continuity does not necessarily imply contra-\neg-continuity even if the range is regular. Recall that a space X is said to be rim-compact if each point of X has a base of neighborhoods with compact frontiers.

Lemma 3.5 (Noiri (1976), Theorem 4]). Every rim-compact Hausdorff space is regular.

Corollary 3.2. If a function $f: X \to Y$ is contra-\neg-continuous and Y is rim-compact Hausdorff, then f is continuous.

Definition 3.2. A function $f: X \to Y$ is called contra-\neg g-continuous if the preimage of every open subset of Y is \neg-g-closed.
Recall that a space X is $T_{1/2}$-space (Levine, 1961) if every generalized closed set is closed.

Lemma 3.6 (Dontchev, 1997). For a space X the following conditions are equivalent:
1. X is $T_{1/2}$-space.
2. Every g-closed subset of X is γ-closed.

Theorem 3.8. If a function $f: X \to Y$ is contra-g-continuous and X is $T_{1/2}$-space, then f is contra-γ-continuous.

Recall that a function $f: X \to Y$ is NDB-continuous (Dontchev, preprint) if the preimage of every open set is an NDB-set.

Lemma 3.7 (Dontchev, preprint) For a subset A of a space X the following conditions are equivalent:
1. A is γ-closed.
2. A is a preclosed NDB-set.

Theorem 3.9. For a function $f: X \to Y$, the following conditions are equivalent:
1. f is contra-γ-continuous.
2. f is contra-precontinuous and NDB-continuous.

Definition 3.3. A function $f: X \to Y$ is said to be
1. I.c.-γ-continuous if for each $x \in X$ and each closed set F of Y containing $f(x)$, there exists an γ-open set U in X containing x such that $\text{Int}[f(U)] \subseteq F$.
2. (γ, s)-open if $f(U) \in SO(Y)$ for every $U \in \gamma(X)$.

Theorem 3.10. If a function $f: X \to Y$ is I.c.γ-continuous and (γ, s)-open, then f is is contra-γ-continuous.

Proof. Let x be an arbitrary point of X and $V \in C(Y, f(x))$. By hypothesis f is I.c.γ-continuous which implies the existence of a set $U \in \gamma(X, x)$ such that $\text{int}[f(U)] \subseteq V$. Since f is (γ, s)-open, then $f(U) \in SO(Y)$. It follows that $f(U) \subseteq \text{Cl}(\text{Int}(f(U))) \subseteq \text{Cl}(V)$ and therefore f is contra-γ-continuous.
Definition 3.4. A filter base Λ is said to be β-convergent (Jafari, 2001) (resp. c-convergent) to a point x in X if for any $U \in \beta(X, x)$ (resp. $U \in C(X, x)$), there exists $B \in \Lambda$ such that $B \subset U$.

Theorem 3.11. A function $f: X \rightarrow Y$ is contra-β-continuous if and only if for each point $x \in X$ and each filter base Λ in X β-converging to x, the filter base $f(\Lambda)$ is c-convergent to $f(x)$.

Proof. Necessity. Let $x \in X$ and Λ be any filter base in X β-converging to x. Since f is contra-β-continuous, then for any $V \in C(Y, f(x))$, there exists $U \in \beta(X, x)$ such that $f(U) \subset V$. Since Λ is β-converging to x, there exists a $B \in \Lambda$ such that $B \subset U$. This means that $f(B) \subset V$ and therefore the filter base $f(\Lambda)$ is c-convergent to $f(x)$.

Sufficiency. Let $x \in X$ and $V \in C(Y, f(x))$. If we take Λ to be the set of all sets U such that $U \in \beta(X, x)$, then Λ will be a filter base which β-converges to x. Thus, there exists $U \in \Lambda$ such that $f(U) \subset V$.

4. Contra-β-closed graphs

We begin with the following notion:

Definition 4.1. The graph $G(f)$ of a function $f: X \rightarrow Y$ is said to be contra-β-closed if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in \beta(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 4.1. The graph $G(f)$ of a function $f: X \rightarrow Y$ is said to be contra-β-closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in \beta(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \emptyset$.

Theorem 4.1. If $f: X \rightarrow Y$ is contra-β-continuous and Y is Urysohn, then $G(f)$ is contra-β-closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$, then $y \neq f(x)$ and there exist open sets V, W such that $f(x) \in V$, $y \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since f is contra-β-continuous, there exists $U \in \beta(X, x)$ such that $f(U) \subset Cl(V)$. Therefore, we obtain $f(U) \cap Cl(W) = \emptyset$. This shows that $G(f)$ is contra-β-closed.
Theorem 4.2. If \(f: X \to Y \) is \(\tau \)-continuous and \(Y \) is \(T_1 \), then \(G(f) \) is contra-\(\tau \)-closed in \(X \times Y \).

Proof. Let \((x, y) \in (X \times Y) - G(f) \), then \(f(x) \neq y \) and there exists an open set \(V \) of \(Y \) such that \(f(x) \in V \) and \(y \not\in V \). Since \(f \) is \(\tau \)-continuous, there exists \(U \in \tau(X, x) \) such that \(f(U) \subseteq V \). Therefore, we obtain \(f(U) \cap (Y - V) = \emptyset \) and \(Y - V \in C(Y, y) \). This shows that \(G(f) \) is contra-\(\tau \)-closed in \(X \times Y \).

Definition 4.2. A space \(X \) is said to be \(\tau \)-compact (Maheshwari & Thakur, 1985) (resp. strongly \(S \)-closed (Dontchev, 1996)) if every \(\tau \)-open (resp. closed) cover of \(X \) has a finite subcover.

A subset \(A \) of a space \(X \) is said to be \(\tau \)-compact relative to \(X \) (Noiri & Di Maio, 1988) if every cover of \(A \) by \(\tau \)-open sets of \(X \) has a finite subcover. A subset \(A \) of a space \(X \) is said to be strongly \(S \)-closed if the subspace \(A \) is strongly \(S \)-closed.

Theorem 4.3. If \(f: X \to Y \) has a contra-\(\tau \)-closed graph, then the inverse image of a strongly \(S \)-closed set \(K \) of \(Y \) is \(\tau \)-closed in \(X \).

Proof. Assume that \(K \) is a strongly \(S \)-closed set of \(Y \) and \(x \not\in f^{-1}(K) \). For each \(k \in K \), \((x, k) \not\in G(f) \). By Lemma 4.1, there exist \(U \subseteq \tau(X, x) \) and \(V \subseteq C(Y, k) \) such that \(f(U) \cap V = \emptyset \). Since \(\{K \cap V \mid k \in K\} \) is a closed cover of the subspace \(K \), there exists a finite subset \(K_1 \subseteq K \) such that \(k \subseteq U \cap \{V \mid k \in K_1\} \). Set \(U = \cap \{U_k \mid k \in K_1\} \), then \(U \subseteq \tau(X, x) \) and \(f(U) \cap K = \emptyset \). Therefore \(U \cap f^{-1}(K) = \emptyset \) and hence \(x \not\in C(f^{-1}(K)) \). This shows that \(f^{-1}(K) \) is \(\tau \)-closed in \(X \).

Theorem 4.4. Let \(Y \) be a strongly \(S \)-closed space. If a function \(f: X \to Y \) has a contra-\(\tau \)-closed graph, then \(f \) is contra-\(\tau \)-continuous.

Proof. Suppose that \(Y \) is strongly \(S \)-closed and \(G(f) \) is contra-\(\tau \)-closed. First, we show that an open set of \(Y \) is strongly \(S \)-closed. Let \(V \) be an open set of \(Y \) and \(\{H \mid \alpha \in \nabla\} \) be a cover of \(V \) by closed sets \(H \) of \(V \). For each \(\alpha \in \nabla \), there exists a closed set \(K_\alpha \) of \(X \) such that \(H_\alpha = K_\alpha \cap V \). Then, the family \(\{K_\alpha \mid \alpha \in \nabla\} \cup (Y - V) \) is a closed cover of \(Y \). Since \(Y \) is strongly \(S \)-closed, there exists a finite subset \(\nabla^* \subseteq \nabla \) such
that $Y = U \{ K_{\alpha} \mid \alpha \in \mathcal{V} \} \cup (Y - V)$. Therefore we obtain $V = (U \{ H_{\alpha} \mid \alpha \in \mathcal{V} \})$. This shows that V is strongly S-closed. For any open set V, by Theorem 4.3 $f^{-1}(V)$ is $?-\alpha$-closed in X and f is contra-$?-\alpha$-continuous.

5. Covering properties

Theorem 5.1. If $f: X \rightarrow Y$ is contra-$?-\alpha$-continuous and K is $?-\alpha$-compact relative to X, then $f(K)$ is strongly S-closed in Y.

Proof. Let $\{ H_{\alpha} \mid \alpha \in \mathcal{V} \}$ be any cover of $f(K)$ by closed sets of the subspace $f(K)$. For each $\alpha \in \mathcal{V}$, there exists a closed set K_{α} of $n Y$ such that $H_{\alpha} \subseteq K_{\alpha} \cap f(K)$. For each $x \in K$, there exists $\alpha(x) \in \mathcal{V}$ such that $f(x) \in K_{\alpha(x)}$. Since the family $\{ U_{\alpha} \mid x \in K \}$ is a cover of K by $?-\alpha$-open sets of X, there exists a finite subset K_0 of K such that $K \subseteq U\{ U_{\alpha(x)} \mid x \in K \}$. Therefore, we obtain $f(K) \subseteq \bigcup \{ f(U_{\alpha(x)}) \mid x \in K \}$ which is a subset of $\bigcup \{ K_{\alpha(x)} \mid \alpha \in K \}$. Thus, $f(K) = \bigcup \{ H_{\alpha(x)} \mid x \in K \}$ and hence $f(K)$ is strongly S-closed.

Corollary 5.1. If $f: X \rightarrow Y$ is a contra-$?-\alpha$-continuous surjection and X is $?-\alpha$-compact, then Y is strongly S-closed.

Definition 5.1. A topological space X is said to be

1. **S-closed** (Thompson, 1976) if for every semi-open cover $\{ V_{\alpha} \mid \alpha \in \mathcal{V} \}$ of X, there exists a finite subset $\mathcal{V}^* \subseteq \mathcal{V}$ such that $X = \bigcup \{ \text{Cl}(V_{\alpha}) \mid \alpha \in \mathcal{V}^* \}$, equivalently if every regular closed cover of X has a finite subcover.

2. **nearly compact** (Singal & Mathur, 1969) if every regular open cover of X has finite subcover.

3. **almost compact** (Singal & Mathur, 1969) if for every open cover $\{ V_{\alpha} \mid \alpha \in \mathcal{V} \}$ of X, there exists a finite subset $\mathcal{V}^* \subseteq \mathcal{V}$ such that $X = \bigcup \{ \text{Cl}(V_{\alpha}) \mid \alpha \in \mathcal{V}^* \}$.

4. **mildly compact** (Staum, 1974) if every clopen cover of X has a finite subcover.
Remark 5.1. For the spaces defined above, we have the following implications:

\[\text{compact} \Rightarrow \text{nearly compact} \]

Strongly S-closed \(\Rightarrow \) S-closed \(\Rightarrow \) almost compact \(\Rightarrow \) mildly compact

Theorem 5.2. If \(f: X \rightarrow Y \) is contra-\(? \)-continuous and \(X \) is an S-closed space, then \(Y \) is compact.

Proof. Let \(\{ V_\alpha \mid \alpha \in \mathcal{V} \} \) be any open cover of \(Y \). Then \(\{ f^{-1}(V_\alpha) \mid \alpha \in \mathcal{V} \} \) is a cover of \(X \). Since \(f \) is contra-\(? \)-continuous, \(f^{-1}(V_\alpha) \) is \(? \)-closed and \(? \)-open in \(X \) for each \(\alpha \in \mathcal{V} \). This implies that \(\{ f^{-1}(V_\alpha) \mid \alpha \in \mathcal{V} \} \) is a regular closed cover of the S-closed space \(X \). We have \(X = \bigcup \{ f^{-1}(V_\alpha) \mid \alpha \in \mathcal{V} \} \) for some finite \(\mathcal{V}^* \) of \(\mathcal{V} \). Since \(f \) is surjective, \(Y = \bigcup \{ V_\alpha \mid \alpha \in \mathcal{V}^* \} \). This shows that \(Y \) is compact.

Corollary 5.2. (Dontchev, 1996). Contra-continuous \(? \)-continuous images of S-closed spaces are compact.

Theorem 5.3. If \(f: X \rightarrow Y \) is contra-\(? \)-continuous precontinuous surjection and \(X \) is mildly compact, then \(Y \) is compact.

Proof. Let \(\{ V_\alpha \mid \alpha \in \mathcal{V} \} \) be any open cover of \(Y \). Since \(f \) is contra-\(? \)-continuous precontinuous, by Theorem 3.4 \(\{ f^{-1}(V_\alpha) \mid \alpha \in \mathcal{V} \} \) is a clopen cover of \(X \) and there exists a finite subset \(\mathcal{V}^* \) of \(\mathcal{V} \) such that shows that \(Y \) is compact.

Corollary 5.3. (Dontchev 1996). The image of an almost compact space under contra-continuous, nearly continuous (= precontinuous) function is compact.

6. Connected spaces

Theorem 6.1. Let \(X \) be connected and \(Y \) be \(T_1 \). If \(f: X \rightarrow Y \) is contra-\(? \)-continuous, then \(f \) is constant.
Proof. Since Y is T_1-space, $\Omega = \{f^{-1}(\{y\}) \mid y \in Y\}$ is a disjoint open partition of X. If $|\Omega| \geq 2$, then there exists a proper open closed set W. By Lemma 3.4, W is clopen in the connected space X. This is a contradiction. Therefore $|\Omega| = 1$ and hence f is constant.

Corollary 6.1. (Dontchev and Noiri, 1999). Let X be connected and Y be T_1. If $f: X \to Y$ is contra-continuous, then f is constant.

Theorem 6.2. If $f: X \to Y$ is a contra-σ-continuous precontinuous surjection and X is connected, then Y has an indiscrete topology.

Proof. Suppose that there exists a proper open set V of Y. Then, since f is contra-σ-continuous precontinuous, $f^{-1}(V)$ is σ-closed and preopen in X. Therefore, by Lemma 3.4 $f^{-1}(V)$ is clopen in X and proper. This shows that X is a connected which is a contradiction.

Theorem 6.3. If $f: X \to Y$ is contra-σ-continuous surjection and X is connected, then Y is connected.

Proof. Suppose that Y is not connected. There exist nonempty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore, V_1 and V_2 are clopen in Y. Since f is contra-σ-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are σ-closed and σ-open in X and hence clopen in X by Lemma 3.4. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This shows that X is not connected.

A space (X, σ) is said to be hyperconnected (Steen & Seebach, 1970) if the closure of every open set is the entire set X. It is well-known that every hyperconnected space is connected but not conversely.

Remark 6.1. In Example 2.1, (X, σ) is hyperconnected and $f: (X, \sigma) \to (X, \sigma)$ is a contra-σ-continuous surjection, but (X, σ) is not hyperconnected. This shows that contra-σ-continuous surjection do not necessarily preserve hyperconnectedness.

A function $f: X \to Y$ is said to be weakly continuous (Levine, 1961) if for each point $x \in X$ and each open set V of Y containing $f(x)$, there exists an open set U containing x such that $f(U) \subseteq \text{Cl}(V)$. It is shown in
(Noiri, 1974, Theorem 3) that if \(f: X \to Y \) is a weakly continuous surjection and \(X \) is connected, then \(Y \) is connected. However, it turns out that contra-\(? \)-continuity and weak continuity are independent of each other. In Example 2.1, the function \(f \) is contra-\(? \)-continuous but not weakly continuous. The following example shows that not every weakly continuous function is contra-\(? \)-continuous.

Example 6.1. Let \(X = \{a, b, c, d\} \) and \(\mathcal{X} = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, c\}, \{b, c, d\}\} \). Define a function \(f: (X, \mathcal{X}) \to (X, \mathcal{X}) \) as follows: \(f(a) = c, f(b) = d, f(c) = b \) and \(f(d) = a \). Then \(f \) is weakly continuous (Neubrunnova, 1980). However, \(f \) is not contra-\(? \)-continuous since \(\{a\} \) is a closed set of \((X, \mathcal{X}) \) and \(f^{-1}(\{a\}) = \{d\} \) is not \(? \)-open in \((X, \mathcal{X}) \).

References

Jafari, S., Rare \(? \)-continuity (submitted).

