Contra-?[‡]**Continuous Functions between Topological Spaces**

Saeid Jafari Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, Denmark Takashi Noiri Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501 Japan (received: 1/9/2000 ; accepted:4/3/2001)

Abstract

In this paper, we apply the notion of α -open sets in topological spaces to present and study contra- α -continuity as a new generalization of contra-continuity (Dontchev, 1996).

Key words: ?^{*}*Closed, Contra-*?^{*}*Closed, ?*^{*}*Compact, strongly S-closed, contra-*?^{*}*Acontinuity.*

1. Introduction

In 1996, Dontchev (Dontchev, 1996) introduced a new class of functions called contra-continuous functions. Recently, Dontchev and Noiri (Dontchev and Noiri, 1999) introduced and studied, among others, a new weaker form of this class of functions called contrasemicontinuous functions. They also introduced the notion of RC-continuity (Dontchev and Noiri, 1999) which is weaker than contracontinuity and stronger than ?-Continuity (Tong, 1998). The present authors (Jafari and Noiri, 1999) introduced and studied a new class of functions called contra-super-continuous functions which lies between classes of RC-continuous functions and contra-continuous functions.

This paper is devoted to introduce and investigate a new class of functions called contra-?econtinuous functions which is weaker than contra-continuous functions and stronger than both contra-semicontinuous functions and contra-precontinuous functions (Jafari and Noiri, 2001).

2. Preliminaries

Throughout this paper, all spaces X and Y (or (X,ι) and (Y, σ)) are topological spaces. A subset A is said to be *regular open* (resp. *regular closed*) if A = Int(CI(A)) (resp. A=CI(Int(A))) where CI(A) and Int(A) denote the closure and interior of A.

Definition 2.1. A subset A of a space is called:

(1) ? *open* (Abd El-Monsef et al., 1983) if $A \subset CI(Int(CI(A)))$,

(2) preopen (Mashhour et al., 1982) if $A \subset Int(CI(A))$,

(3) semi-open (Levine, 1963) if $A \subset CI(Int(A))$,

(4) ?-open (Njåstad, 1965) if A⊂ Int(CI(Int(A))),

The complement of a preopen (resp. semi-open, ?-open, ?-open) set is said to be preclosed (resp. semi-closed, ?(closed, ?(closed) The collection of all closed (resp. preopen, semi-open, ?±open and ?±open) subsets of X will be denoted by C(X) (resp. PO(X), SO(X), ?(X), $\widehat{\mathcal{P}}(X)$). It is shown in (Njåstad, 1965) that $\widehat{\mathcal{P}}(X)$ (or ι^{α}) is a topology for X and it is stronger than the given topology on X. By α CI(A), we denote the closure of a subset A with respect to $\mathcal{P}(X)$. We set C(X, x)={ $V \in C(X)$ | $x \in V$ } for $x \in X$. We define similarly PO(X, x) SO(X, x), $\alpha(X, x)$ and $\mathcal{O}(X, x)$. Recall that a subset A of X is said to be generalized closed (briefily g-closed (Levine, 1970)) (resp. ?á generalized closed (briefly ag-closed) (Maki et al., 1994) if $CI(A) \subseteq U$ (resp. $\alpha CI(A) \subseteq U$) whenever $A \subseteq U$ and U is open. Recall that a subset A of X is called NDB-set (Dontchev, preprint), if it has nowhere dense boundary. A subset A of X is called ?4open if it is the union of regular open sets. The complement of a ?Fopen set is called ?Fclosed. Equivalently, $A \subset X$ is called ? Klosed (Velicko, 1968) if $A = Cl_{?}(A)$, where $Cl_{2}(A) = \{x \in X \mid Int(CI(U)) \cap A \neq \emptyset, U \text{ is an open set and } x \}$ \in U}. A subset A of X is called ? *generalized closed* (Dontchev and Ganster, 1996) if $Cl_2(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.

Definition 2.2. A function $f: X \to Y$ is called *perfectly continuous* (Noiri, 1984) (resp. RC-*continuous* (Dontchev & Noiri, 1999) if for each open set V of Y, $f^{-1}(V)$ is clopen (resp. regular closed) in X.

Definition 2.3. A function f: $X \rightarrow Y$ is called *precontinuous* (Mashhour *et al.*, 1982) (resp. *semi-continuous* (Levine, 1963), ?ý *continuous* (Abd El-Monsef *et al.*, 1983) if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in PO(X, x)$ (resp. $U \in SO(X, x)$, $U \in ?O(X, x)$) such that $f(U) \subset V$.

Definition 2.4. A function $f : X \to Y$ is called *contra-supercontinuous* (Jafari & Noiri, 1999) if for each $x \in X$ and each closed set V of Y containing f(x), there exists a regular open set U in X containing x such that $f(U) \subset V$.

Definition 2.5. A function $f: X \to Y$ is called *contra-?-continuous* (resp. *contra-continuous* (Dontchev, 1996), *contra-semicontinuous* (Dontchev & Noiri, 1999), *contra-precontinuous* (Jafari & Noiri, 2001) if $f^{-1}(V)$ is ?-closed (resp. closed, semi-closed, preclosed) in X for each open set V of Y.

Remark 2.1. Every contra-continuous function is contra- α -continuous but not conversely as the following example shows.

Example 2.1. Let $X = \{a, b, c\}$, $= \{X, \emptyset, \{a\}\}$ and $\sigma = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$. Then the identity function $f : (X,) \rightarrow (X, \sigma)$ is contra-?-continuous but not contra-continuous.

3. Some properties

Definition 3.1. Let A be a subset of a space (X,). The set $\cap \{U \in | A \subset U\}$ is called the *kernel* of A (Mrsevic, 1986) and is denoted by Ker (A).

Lemma 3.1. The following properties hold for subsets A, B of a space X:

(1) $x \in \text{Ker}(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$.

(2) $A \subset \text{Ker}(A)$ and A = Ker(A) if A is open in X.

(3) $A \subset B$, then $Ker(A) \subset Ker(B)$.

Theorem 3.1. The following are equivalent for function $f : X \rightarrow Y$: (1) f is contra-?-continuous;

(2) for every closed subset F of Y, $f^{-1}(F)$?t?t(X);

(3) for each $x \in X$ and each $F \in C(Y, f(X))$, there exists $U \in ? \mathcal{Y}X, x)$ such that $f(U) \subset F$;

(4) $f(?Cl(A)) \subset \text{Ker}(f(A))$ for every subset A of X;

(5) $\operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Ker}(B))$ for every subset B of Y.

Proof. The implications (1) \Leftrightarrow (2) and (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (2): Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in ?\&X, x$ such that $f(U_x) \subset F$. Therefore, we obtain $f^{-1}(F) = ?\bigvee_{k} U_x | x \in f^{-1}(F) \} \in ?\bigvee_{k}$.

(2) ⇒ (4): Let A be any subset of X. Suppose that $y \notin \text{Ker}(f(A))$. Then by Lemma 3.1 there exists $F \in C(X, y)$ such that $f(A) \cap F = \emptyset$. Thus, we have $A \cap f^{-1}(F) = \emptyset$ and ? $\mathbb{Cl}(A) \cap f^{-1}(F) = \emptyset$. Therefore, we obtain $f(?\mathbb{Cl}(A))$? $\exists F = \emptyset$ and $y \notin f(?\mathbb{Cl}(A))$. This implies that $f(?\mathbb{Cl}(A)) \subset \text{Ker}(f(A))$.

(4) \Rightarrow (5): Let B be any subset of Y. By (4) and Lemma 3.1 we have $f(\mathcal{Cl}(f^{-1}(B))) \subset \text{Ker}(B)$ and $\mathcal{Cl}(f^{-1}(B)) \subset f^{-1}(\text{Ker}(B))$.

 $(5) \Rightarrow (1)$: Let V be any open set of Y. Then, by Lemma 3.1 we have $?Cl(f^{-1}(V) \subset f^{-1}(Ker(V)) = (f^{-1}(V) \text{ and } ?Cl((f^{-1}(V)) = f^{-1}(V))$. This shows that $f^{-1}(V)$ is ?+closed in X.

Theorem 3.2. A function $f : (X,) \to (X, \sigma)$ is contra-?«continuous if and only if $f : (X, ^{\alpha}) \to (X, \sigma)$ is contra-continuous.

Recall that a subset of a topological space (X,) is called a ? *iset* if it is the intersection of open sets.

Theorem 3.3. A function $f : (X,) \rightarrow (X, \sigma)$ is contra-?-continuous if and only if inverse images of Λ -sets are closed.

Lemma 3.2. (Mashhour et al., 1983). Let $A \in PO(X)$ and $B \in ?(X)$, The $A \cap B \in ?(A)$.

Theorem 3.4. If f: $X \rightarrow Y$ is contra-?•continuous and $U \in PO(X)$, then f | U : U $\rightarrow Y$ is contra-?¢continuous.

Lemma 3.3. (Mashhour et al., 1983). If $A \in ?(Y)$, and $Y \in ?(X)$, Then $A \in ?(X)$.

Theorem 3.5. Let f: $X \rightarrow Y$ be a function and $\{U_i \mid i \in I\}$ be a cover of X such that $U_i \in ?YX$ for each $i \in I$. If $f \mid U_i : U_i \rightarrow Y$ is contra-?ý continuous for each $i \in I$, than f is contra-?‡continuous.

Proof. Suppose that F is any closed set of Y. We have

$$f^{-1}(F) = \bigcup_{i \in I} f^{-1}(F) \cap U_i = \bigcup_{i \in I} (f|U_i)^{-1}(F)$$

Since $f \mid U_i$ is contra-?zcontinuous for each $i \in I$, it follows that $f \mid (U_i)^{-1}(F) \in ?(U_i)$. Then, as a direct consequence of Lemma 3.3 we have $f^{-1}(F) \in ?(\mathbb{K})$ which means that f is contra-? Continuous.

Now we mention the following well-known result:

Lemma 3.4. The following properties are equivalent for a subset A of a space X:

(1) A is clopen;

(2) A is ?-closed and ?-open;

(3) A is ? Z closed and preopen.

Theorem 3.6. For a function f: $X \rightarrow Y$ the following continuous are equivalent:

(1) f is perfectly continuous;

(2) f is contra-?ècontinuous and ?ècontinuous;

(3) f is contra-? Écontinuous and precontinuous.

Proof. The proof follows immediately from Lemma 3.4.

Remark 3.1. In Theorem 3.6, (2) and (3) are decompositions of perfect continuity. The following example shows that contra-?-continuity and precontinuity (or ?-continuity) are independent of each other.

Example 3.1. The identity function on the real line with the usual topology is continuous and hence ? \doteq continuous and precontinuous. The inverse image of (0, 1) is not ? \doteq colosed and the function is not contra-?-continuous.

Example 3.2. Let (Z,κ) be the digital line (Khalimsky et al., 1990) and define a function f: $(Z,\kappa) \rightarrow (Z,\kappa)$ by f(n) = n + 1 for each $n \in Z$.

Then f is contra-?‡continuous. But $Int(Cl(f^{-1}({1}))) = \emptyset$ and $f^{-1}({1}) \notin PO(\mathbb{Z},\kappa)$, hence f is neither precontinuous nor ?¥continuous.

Theorem 3.7. Let Y be a regular space. For a function f: $X \rightarrow Y$, the following properties are equivalent:

- (1) f is perfectly continuous;
- (2) f is RC-continuous;
- (3) f is contra-continuous;
- (3) f is contra-?-continuous.

Proof. The following implications are obvious: perfect continuity \Rightarrow RC-continuity \Rightarrow contra-continuity \Rightarrow contra-? Econtinuity. We show the implication (4) \Rightarrow (1). Let x be an arbitrary point of X and V an open set of Y containing f(x). Since Y is regular, there exists an open set W in Y containing f(x) such that Cl(W) \subset V. Since f is contra-? j-continuous, so by Theorem 3.1 there exists U \in ? (X, x) such that f(U) \subset Cl(W). Then f(U) \subset Cl(W) \subset V. Hence, f is ? continuous. Since f is contra-? continuous and ?-continuous, by Theorem 3.6 f is perfectly continuous.

Corollary 3.1. If a function f: $X \rightarrow Y$ is contra-?⁻continuous and Y is regular, then f is continuous.

Remark 3.2. The converse of corollary 3.1 is not true. Example 3.1 shows that continuity does not necessarily imply contra-?-continuity even if the range is regular.

Recall that a space X is said to be *rim-compact* if each point of X has a base of neighborhoods with compact frontiers.

Lemma 3.5 (Noiri (1976), Theorem 4]). Every rim-compact Hausdorff space is regular.

Corollary 3.2. If a function f: $X \rightarrow Y$ is contra-?4continuous and Y is rim-compact Hausdorff, then f is continuous.

Definition 3.2. A function f: $X \rightarrow Y$ is called *contra-?*g-continuous* if the preimage of every open subset of Y is ?*g*-closed.

Recall that a space X is $T_{1/2}$ - *space* (Levine, 1961) if every generalized closed set is closed.

Lemma 3.6 (Dontchev, 1997). For a space X the following conditions are equivalent:

(1) X is $T_{\frac{1}{2}}$ - space.

(2) Every ?g-closed subset of X is ?cclosed.

Theorem 3.8. If a function f: $X \rightarrow Y$ is contra-? \mathfrak{g} -continuous and X is $T_{\frac{1}{2}}$ - space, then f is contra-? \mathfrak{f} continuous.

Recall that a function f: $X \rightarrow Y$ is *NDB-continuous* (Dontchev, preprint) if the preimage of every open set is an NDB-set

Lemma 3.7 (Dontchev, preprint) For a subset A of a space X the following conditions are equivalent:

(1) A is ?/closed..

(2) A is a preclosed NDB-set.

Theorem 3.9. For a function f: $X \rightarrow Y$, the following conditions are equivalent:

(1) f is contra-?+continuous.

(2) f is contra- precontinuous and NDB-continuous.

Definition 3.3. A function f: $X \rightarrow Y$ is said to be

(1) *I.c.*? *Continuous* if for each $x \in X$ and each closed set F of Y containing f(x), there exists an ? Lopen set U in X containing x such that Int[f(U)] \subset F.

(2) (?, *s*)-open if $f(U) \in SO(Y)$ for every $U \in ?(X)$.

Theorem 3.10. If a function f: $X \rightarrow Y$ is I.c.?•continuous and (?; s)-open, then f is is contra-?¢continuous.

Proof. Let x be an arbitrary point of X and $V \in C(Y, f(x))$. By hypothesis f is I.c.?4continuous which implies the existence of a set U \in ?[X, x) such that int[f(U)] \subset V. Since f is (?Fs)-open, then f(U) \in SO(Y). It follows that f(U) \subset Cl(Int(f(U))) \subset Cl(V) and therefore f is contra-?]-continuous.

Definition 3.4. A filter base A is said to be ?t*convergent* (Jafari, 2001) (resp. *c-convergent*) to a point x in X if for any $U \in ?(X, x)$ (resp. $U \in C(X, x)$), there exists $B \in \Lambda$ such that $B \subset U$.

Theorem 3.11. A function f: $X \rightarrow Y$ is contra-?Æontinuous if and only if for each point $x \in X$ and each filter base Λ in X ?@onverging to x, the filter base $f(\Lambda)$ is c-convergent to f(x).

Proof. Necessity. Let $x \in X$ and Λ be any filter base in X ?converging to x. Since f is contra-?; continuous, then for any $V \in C(Y, f(x))$, there exists $U \in ?(X, x)$ such that $f(U) \subset V$. Since Λ is ?* converging to x, there exists a $B \in A$ such that $B \subset U$. This means that $f(B) \subset V$ and therefore the filter base $f(\Lambda)$ is c-convergent to f(x). Sufficiency. Let $x \in X$ and $V \in C(Y, f(x))$. If we take Λ to be the set

of all sets U such that $U \in ?(X, x)$, then Λ will be a filter base which ?N converges to x. Thus, there exists $U \in \Lambda$ such that $f(U) \subset V$.

4. Contra-?-closed graphs

We begin with the following notion:

Definition 4.1. The graph G(f) of a function f: $X \rightarrow Y$ is said to be *contra*? *aclosed* if for each $(x, y) \in (X \times Y)$ - G(f), there exist $U \in ?AX, x$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 4.1. The graph G(f) of a function f: $X \rightarrow Y$ is said to be contra-?-closed in X×Y if and only if for each (x, y) \in (X×Y) - G(f), there exist U \in ?(X, x) and V \in C(Y, y) such that f(U) \cap V = \emptyset .

Theorem 4.1. If f: $X \rightarrow Y$ is contra-?Æontinuous and Y is Urysohn, then G(f) is contra-?Æolosed in X×Y.

Proof. Let $(x, y) \in (X \times Y)$ - G(f), then $y \neq f(x)$ and there exist open sets V, W such that $f(x) \in V$, $y \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since f is contra-? continuous, there exists $U \in ? \nmid X, x$ such that $f(U) \subset Cl(V)$. Therefore, we obtain $f(U) \cap Cl(W) = \emptyset$. This shows that G(f) is contra-?-closed

Theorem 4.2. If f: $X \rightarrow Y$ is ?tcontinuous and Y is T_i , then G(f) is contra-? \forall closed in X×Y.

Proof. Let $(x, y) \in (X \times Y)$ - G(f), then $f(x) \neq y$ and there exists an open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is ?Æontinuous, there exists $U \in ?(X, x)$ such that $f(U) \subset V$. Therefore, we obtain $f(U) \cap (Y-V) = \emptyset$ and $Y-V \in C(Y, y)$. This shows that G(f) is contra-? \emptyset closed X×Y.

Definition 4.2. A space X is said to be ?;*compact* (Maheshwari & Thakur, 1985) (resp. *strongly S*-closed (Dontchev, 1996)) if every ?^{*} open (resp. closed) cover of X has a finite subcover.

A subset A of a space X is said to be ?*Acompact relative to* X (Noiri & Di Maio, 1988) if every cover of A by ?£open sets of X has a finite subcover. A subset A of a space X is said to be *strongly S-closed* if the subspace A is strongly S-closed.

Theorem 4.3. If f: $X \rightarrow Y$ has a contra-?(closed graph, then the inverse image of a strongly S-closed set K of Y is ?bclosed in X.

Proof. Assume that K is a strongly S-closed set of Y and $x \notin f^{-1}(K)$. For each $k \in K$, $(x, k) \notin G(f)$. By Lemma 4.1, there exist $U_k \in ?\emptyset X$, x) and $V_k \in C(Y, k)$ such that $f(U_k) \cap V_k = \emptyset$. Since $\{K \cap V_k \mid k \in K\}$ is a closed cover of the subspace K, there exists a finite subset $K_1 \subset K$ such that $k \subset U\{V_K \mid k \in K_1 k \in K_1\}$. Set $U = \cap \{U_k \mid k \in K_1\}$, then $U \in ?\{X, x\}$ and $f(U) \cap K = \emptyset$. Therefore $U \cap f^{-1}(K) = \emptyset$ and hence $x \notin ?\mathbb{C}l(f^{-1}(K))$. This shows that $f^{-1}(K)$ is ? \mathbb{N} closed in X.

Theorem 4.4. Let Y be a strongly S-closed space. If a function f: $X \rightarrow Y$ has a contra-? closed graph, then f is contra-? continuous.

Proof. Suppose that Y is strongly S-closed and G(f) is contra-?9 closed. First, we show that an open set of Y is strongly S-closed. Let V be an open set of Y and $\{H_{?\ddagger} \mid \alpha \in \nabla\}$ be a cover of V by closed sets $H_{?\ddagger}$ of V. For each $\alpha \in \nabla$, there exists a closed set $K_{?\ddagger}$ of X such that $H_{?\ddagger}$ $K_{?\ddagger} \cap V$. Then, the family $\{K_{?\ddagger} \mid \alpha \in \nabla\} \cup (Y-V)$ is a closed cover of Y. Since Y is strongly S-closed, there exists a finite subset $\nabla_{\circ} \subset \nabla$ such that $Y = U \{K_{?\ddagger} \mid \alpha \in \nabla_\circ\} \cup (Y-V)$. Therefore we obtain $V = (U \{H_{?\ddagger} \mid \alpha \in \nabla_\circ\})$. This shows that V is strongly S-closed. For any open set V, by Theorem 4.3 $f^{-1}(V)$ is ?‡closed in X and f is contra-?‡ continuous.

5. Covering properties

Theorem 5.1. If f: $X \rightarrow Y$ is contra-? Scontinuous and K is ? Scompact relative to X, then f(K) is strongly S-closed in Y.

Proof. Let $\{H_{?\ddagger} | \alpha \in \nabla\}$ be any cover of f(K) by closed sets of the subspace f(K). For each $\alpha \in \nabla$, there exists a closed set $K_{?\ddagger}$ of n Y such that $H_{?\ddagger} K_{?\ddagger} \cap f(K)$. For each $x \in K$, there exists $\alpha(X) \in \nabla$ such that $f(x) \in K_{?\ddagger x}$ and by theorem 3.1 there exists $U_x \in \alpha(X, x)$ such that $f(U_x) \subset K_{?\ddagger x}$. Since the family $\{U_x | x \in K\}$ is a cover of K by ?Expensets of X, there exists a finite subset K_0 of K such that $K \subset U\{U_x | x \in K_\circ\}$. Therefore, we obtain $f(K) \subset U\{f(U_x) | x \in K_\circ\}$ which is a subset of $\cup \{K_{?\ddagger x} | \alpha \in K_\circ\}$. Thus, $f(K) = \cup \{H_{?\ddagger x} | x \in K_\circ\}$ and hence f(K) is strongly S-closed.

Corollary 5.1. If f: $X \rightarrow Y$ is a contra-?\continuous surjection and X is ?Fcompact, then Y is strongly S-closed.

Definition 5.1. A topological space X is said to be

(1) S-closed (Thompson, 1976) if for every semi-open cover $\{V_{?\ddagger} | \alpha \in \nabla \}$ of X, there exists a finite subset $\nabla \circ$ of ∇ such that $X = \bigcup \{Cl(V_?) | \alpha \in \nabla \circ\}$, equivalently if every regular closed cover of X has a finite subcover,

(2) *nearly compact* (Singal & Mathur, 1969) if every regular open cover of X has finite subcover,

(3) almost compact (Singal & Mathur, 1969) if for every open over $\{V_{2\ddagger} | \alpha \in \nabla\}$ of X, there exists a finite subset ∇_{\circ} of ∇ such that $X = \bigcup \{Cl(V_{2\ddagger}) | \alpha \in \nabla_{\circ}\},\$

(4) *mildly compact* (Staum, 1974) if every clopen cover f X has a finite subcover.

Remark 5.1. For the spaces defined above, we have the following implications:

?•compact \Rightarrow compact \Rightarrow nearly compact

Strongly S-closed \Rightarrow S-closed \Rightarrow almost compact \Rightarrow mildly compact

Theorem 5.2. If f: $X \rightarrow Y$ is contra-? \acute{a} continuous ? \acute{a} continuous surjection and X is an S-closed space, then Y is compact.

Proof. Let $\{V_{?\ddagger} | \alpha \in \nabla\}$ be any open cover of Y. Then $\{f^{-1}(V_{?\ddagger} | \alpha \in \nabla)\}$ is a cover of X. Since f is contra-? Acontinuous ? Acontinuous, $f^{-1}(V_{?\ddagger} | \alpha \in \nabla)\}$ is closed and ? \hat{i} open in X for each $\alpha \in \nabla$. This implies that $\{f^{-1}(V_{?\ddagger} | \alpha \in \nabla)\}$ is a regular closed cover of the S-closed space X. We have $X=\cup\{f^{-1}(V_{?\ddagger} | \alpha \in \nabla_{\circ}\}\}$ for some finite ∇_{\circ} of ∇ . Since f is surjective, $Y=\cup\{V_{?\ddagger} | \alpha \in \nabla_{\circ}\}$. This shows that Y is compact.

Corollary 5.2. (Dontchev, 1996). Contra-continuous ?^ocontinuous images of S-closed spaces are compact.

Theorem 5.3. If f: $X \rightarrow Y$ is contra-?-continuous precontinuous surjection and X is mildly compact, then Y is compact.

Proof. Let $\{V_{?\ddagger} | \alpha \in \nabla\}$ be any open cover of Y. Since f is contra-?continuous precontinuous, by Theorem $3.4\{f^{-1}(V_{?\ddagger} | \alpha \in \nabla)\}$ is a clopen cover of X and there exists a finite subset ∇_{\circ} of ∇ such that shows that Y is compact.

Corollary 5.3. (Dontchev 1996). The image of an almost compact space under contra-continuous, nearly continuous (= precontinuous) function is compact.

6. Connected spaces

Theorem 6.1. Let X be connected and Y be T_1 . If f: X \rightarrow Y is contra-?q continuous, then f is constant.

Proof. Since Y is T_{I} - space, $\Omega = \{f^{-l}(\{y\}) \mid y \in Y\}$ is a disjoint ?) open partition of X. If $|\Omega| \ge 2$, then there exists a proper ?²open ?² closed set W. By Lemma 3.4, W is clopen in the connected space X. This is a contradiction. Therefore $|\Omega| = 1$ and hence f is constant.

Corollary 6.1. (Dontchev and Noiri, 1999). Let X be connected and Y be T_1 . If f: X \rightarrow Y is contra-continuous, then f is constant.

Theorem 6.2. If f: $X \rightarrow Y$ is a contra-? Continuous precontinuous surjection and X is connected, then Y has an indiscrete topology.

Proof. Suppose that there exists a proper open set V of Y. Then, since f is contra-?-continuous precontinuous, $f^{-1}(V)$ is ?-closed and preopen in X. Therefore, by Lemma 3.4 $f^{-1}(V)$ is clopen in X and proper. This shows that X is a connected which is a contradiction.

Theorem 6.3. If f: $X \rightarrow Y$ is contra-? Continuous surjection and X is connected, then Y is connected.

Proof. Suppose that Y is not connected. There exist nonempty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore, V_1 and V_2 are clopen in Y. Since f is contra-?-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are ?aclosed and ?aopen in X and hence clopen in X by Lemma 3.4. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This shows that X is not connected.

A space (X, \cdot) is said to be *hyperconnected* (Steen & Seebach, 1970) if the closure of every open set is the entire set X. It is well-known that every hyperconnected space is connected but not conversely.

Remark 6.1. In Example 2.1, (X,) is hyperconnected and f: $(X,) \rightarrow (X, \sigma)$ is a contra-?-continuous surjection, but (X, σ) is not hyperconnected. This shows that contra-?-fcontinuous surjection do not necessarily preserve hyperconnectedness.

A function f: $X \rightarrow Y$ is said to be *weakly continuous* (Levine, 1961) if for each point $x \in X$ and each open set V of Y containing f(x), there exists an open set U containing x such that $f(U) \subset Cl(V)$. It is shown in (Noiri, (1974), Theorem 3] that if f: $X \rightarrow Y$ is a weakly continuous surjection and X is connected, then Y is connected. However, it turns out that contra-? Econtinuity and weak continuity are independent of each other. In Example 2.1, the function f is contra-?-continuous but not weakly continuous. The following example shows that not every weakly continuous function is contra-?-continuous.

Example 6.1. Let $X = \{a, b, c, d\}$ and $= \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}, \{b, c, d\}\}$. Define a function f: $(X,) \rightarrow (X,)$ as follows: f(a) = c, f(b) = d, f(c) = b and f(d) = a. Then f is weakly continuous (Neubrunnova, 1980). However, f is not contra-?-continuous since $\{a\}$ is a closed set of (X,) and $f^{-1}(\{a\}) = \{d\}$ is not ?-open in (X,).

References

- Abd El-Monsef, M.E., El-Deeb, S.N., and Mahmoud, R.A., (1983) ?∓ open sets and ?^ocontinuous mappings, Bull. Fac. Sci. Assiut Univ. 12 77-90.
- Dontchev, J., (1996) Contra-continuous functions and strongly Sclosed spaces, Internat. J. Math. Math. Sci. 19, 303-310.
- Dontchev, J., (1997) On some separation axioms associated with the ?:topology, Mem. Fac. Sci. Kochi Univ. Ser. A, Math. 18, 31-35.
- Dontchev, J., and Ganster, M., (1996) On ?4generalized closed sets T_{?‡} spaces Mem. Fac. Sci. Kochi Univ. Ser. A, Math. **17**, 15-31.
- Dontchev, J., and Noiri, T., (1999) *Contra-semicontinuous functions*, Math. Pannonica **10**, 159-168.
- Dontchev, J., On semi-preclosed functions, semi-preopen functions and a decomposition of semi-continuity (preprint).
- Hermann, R.A., (1979) *RC-convergence*, Proc. Amer. Math. Soc. **75**, 311-317.
- Jafari, S., and Noiri, T., (1999) *Contra-super-continuous functions*, Annales Univ. Sci. Budapest **42**, 27-34.
- Jafari, S., and Noiri, T., *On contra-percontinuous functions* (submitted).
- Jafari, S., Rare ?& continuity (submitted).

- Khalimsky, E.D., Kopperman, R., and Meyer, P.R., (1990) Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36, 1-17.
- Levine, N., (1961) A decomposition of continuity in topological spaces, Amer. Math. Monthly **68**, 44-46.
- Levine, N., (1963) Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70**, 36-41.
- Levine, N., (1970) Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, **19(2)**, 89-96.
- Maheshwari, S.N., and Thakur, S.S., (1985) On ?ecompact spaces, Bull. Inst. Sinica 13, 341-347.
- Maki, H., Devi, R., and Balachandran, K., (1994) Associated topology of generalized ?-closed sets and ?-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, math. **15**, 51-63.
- Mashhour, A.S., Abd El-Monsef, M.E., and El-Deeb, S.N., (1982) On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt **53**, 47-53.
- Mashhour, A.S., Hasanein, I.A., and El-Deeb, S.N., (1983) ?« *continuous and ?Vopen mapping*, Acta Math. Hungar. **41**, 213-218.
- Mrsevic, M., (1986) On pairwise R and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie **30** 978), 141-148.
- Neubrunnova, A., (1980) On transfinite convergence and generalized continuity, Math. Slovaca **30**, 51-56.
- Njastad, O., (1965) On some classes of nearly open sets, Pacific J. Math. 15, 961-970.
- Noiri, T., (1974) On weakly continuous mappings, Proc. Amer. Math. Soc. 46, 120-124.
- Noiri, T., (1976) Weak-continuity and closed graphs, Casopis Pest. Mat. 101, 379-382.
- Noiri, T., (1984) Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15, 241-250.
- Noiri, T., and Di Maio, G., (1988) *Properties of ?7compact spaces*, Suppl. Rend. Cire Mat. Palermo (2) 18, 359-369.
- Staum, R., (1974) *The algebra of bounded continuous functions into a nonarchimedian field*, Pacific J. Math. **50**, 169-185.

- Singal, M.K., and Mathur, A., (1969) *On nearly-compact spaces*, Boll. Un. Mat. Ital. (4) 2, 720-710.
- Steen, L.A. and Seebach, J.A., (1970) *Counterexamples in Topology*, Holt, Reinhart and winston, New York.
- Thompson, T., (1976) S-closed spaces, Proc. Amer. Math. Soc. 60, 335-338.
- Tong, J., (1998) On decomposition of continuity in topological spaces, Acta Math. Hungar. 54, 51-55.
- Velicko, N.V., (1968) *H-closed topological spaces*, Amer. Math. Soc. Transl. **78**, 103-118.