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Abstract

A latent variable Markovian model is proposed for longitudinal binary
responses with dropout. In this model responses can easily be modeled
using probit, logit or any other link. Dropout model is parameterized
in such a way that parameters can be dynamically changed on time.
Some residuals are also presented. These residuals can be used in the
presence of informative dropout. The model is aso used in an
application where the existence of side effects of using fluvoxamine (a
treatment for deregulation of serotonin in the brain) is the response of
interest.

Keywords: Longitudinal data with binary responses; Informative
dropout; Transition model; Pearson residuals; Non-
stationary process.

1. Introduction

In a panel or longitudinal study each subject is measured at several

occasions. So, in these studies we have the vector of
Y, = (Y-, Yir) Which its elements are responses for the ith subject

(i=1,...,n) on occasions t=1,...,T. In these studies two aspects of
analysis are important (i) the effect of some covariates, which may
change on time, on the responses and (ii) taking into account the
correlations between the responses of the same subject.

Often some of the subjects withdraw from the survey before the
study is complete and do not return. Subjects that do not stay in the
study are said to have dropped out. In dropout, variables of the study
can be arranged so that Y, ,...,Y;; are missing when Y ismissing, for

ij+10t"

j=1...T-1. For example in aclinical trial, some subjects dropout of the
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study for different reasons, for examples side effects of drugs or
curing of disease. If this dropout is related in some way to their
current response then it is inappropriate to restrict the analysis to the
complete sequences or to just the observed components of the
sequences. In order to establish whether dropout is informative in this
way an attempt must be made to jointly model the dropout and
response Processes.

Little and Rubin (2002) and Diggle and Kenward (1994, hereafter
DK) make important distinctions between the various types of dropout
mechanism. DK (1994) defined a dropout process as completely
random (CRD) if the dropout mechanism is dependent neither on the
current value of the response (Y,) nor on the previous value of the

response (Y, , ), and as random dropout (RD) if it isdependenton Y, , ,
but not on Y, . Dropout is defined as informative (ID) if it is dependent

on the current value of response (see also Little, 1995).

In this paper atransition model is presented by using the concept of
latent variable for longitudinal binary response with dropout. The non-
response model is similar in nature to the model of the DK (1994) and
the Molenberghs et a. (1997) model in which the dropout
probabilities are functions of the previous and current responses. We
extend this approach by alowing the coefficients of parameters in
dropout probabilities to change on time. If the data contain enough
information to enable us to estimate a model with these additional
features, then we will be able to provide more insight into the dropout
mechanism.

In the next Section the 4 waves of the Fluvoxamine data
(Molenberghs et al., 1997) as motivation are discussed. In Section 3
the transition model is presented. In this section we also give the
likelihood, noting that the joint likelihood of the proposed model does
not have a closed form. In section 4 we discuss how to look at the
residuals to find any inconsistency between data and the model. In
section 5, we illustrate our extended model on the 3 waves of the
Fluvoxamine data (Molenberghs et a. 1997) where we find a form of
non-stationary uninformative dropout. In Section 6 we give a brief
conclusion.
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2. Empirical illustration: Fluvoxamine data

The example is a 4-wave study of the side effects of using
Fluvoxamine (a psychiatric drug). In the original data (discussed in
Molenberghs and Lesaffre, 1994, Lesaffre et al., 1996, Molenberghs et
a., 1997, and Michiels and Molenberghs, 1997) severity of side
effects is an ordina response with: (0) no side effect, (1) no
significant interference with functionality of patient, (2) significant
interference with functionality of patient and (3) side-effect surpasses
therapeutic effect. We shal focus on a dichotomized version
(present/absent) of side effects at four periods. A total of 315 subjects
were initially recruited into the study. The extent of the side effects
was obtained at weeks 2, 4, 8 and 12 after starting the trial. Also
obtained were the sex, age, initial severity (scale 1 to 7), and duration
of actual mental disease for each subject.

The data were previously analyzed by Lesaffre et a. (1996) and
Molenberghs et al. (1997), who used the data for weeks 2, 4 and 12.
Molenberghs et al. (1997) used a marginal model for the responses
and a multivariate Dale distribution to take into account the
correlation between the responses of the same individual. Ther
analysis finds that non-response is dependent on the previous, but not
on the current value of the response, i.e. dropout is at random (RD).

We use the data for all four visits, but, as we use a transition model,
to avoid initial condition problem (Heckman, 1981) we fix the initial

response a week 2 (Y,) and use it as an explanatory variable. The

transition model can easily be used to an arbitrary number of periods.
Table 1 shows the different patterns of missing responses (responses
at weeks 4, 8 and 12) and their frequencies for the 259 individuals
without any missing covariate data at weeks 2, 4, 8 and 12.

Table 1. Different patterns of missing data for Fluvoxamine data
('O'=0Observed, 'M'=Missed)

Pattern Frequency
000 216
OOM 17
OMM 26




134 Ganjali, M., and Rezaee Ghahrodee, Z., 11JS, 5 (Math.), 2004
#

3. The general transition latent variable model with dropout

Let Y, =(Y,...Y;;) be the vector of binary responses for the ith
individual (i=1,...,n). The joint general transition (Markovian latent
variable) model of order g (the number of previous responses in the
model for response at time t) for the responses and the dropout latent
variable model where the first response is observed for all individuals
are:

q

Y= BIXy + D& Vi + & for t=1,.,T (1a)
i1

Riic =& W, +7y Yiej tVaYi T v for t=2,..T (1b)

where &, for t=1...2T-1 are uncorrelated errors, which are distributed
with means 0. In the following, we shall call the equations (1a) and
(1b) as system 1. When t=1 we assume that y,, is a predetermined

observed value. If we assume normal distributions for these errors we
have probit models for response and dropout mechanisms and if we
assume logistic distributions for errors we have logit models. So
sensitivity of the model parameters to different distributions for errors
can easily be obtained.

Thevectors X, and W, fort=1,2,.... T and t'=2,...,T are
explanatory variables and the vectors of parametersare § and &
which include a constant value. « 's are the parameters for feedback
effects. We suppose that responset ismissingi.e. R, =0 if R'i <0
fort=23,..., T and that if R, =0 then R, =0 for t'=t+1,...,T. The
binary responsesy;,, for t=1,2,...,T are given by

y - 1 if y, <0
"o if y 20

For simplicity dropout models include the effect of the current and
previous values of the responses (y, andy,,) rather than the
complete history and the current values of responses(y;,..., Y,) -

The response indicators are
)1 if R >0
"0  Otherwise.
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In this model we are able to identify informative dropout process.
Informative dropout (ID) occurs when one of y,, for t=2...T is non-

zero. We have random dropout (RD) if all of y, fort=2..T are zero
and at least one of y, for different values of t is non-zero. We have
completely random dropout (CRD) if al of y,, and y, for t=2..T are

zero.

The dropout model in system (1) similar to the DK (1994) model
depends on previous and current responses, but it extends the DK
(1994) and Molenberghs et al. (1997) models as this model let the
dropout models have different parameters (y's are depend on time).

So, regressor parameterization is extended to improve the model's
flexibility. This makes the dropout processes to be non-stationary.

Model of DK and system (1) can be compared for sequences of
length 3. The first order transition model which has the same dropout
model as DK and Molenberghs et a. (1997) is:

V=B X, +tay,  +te&,, for =123, (2a,2b,2c)
R, =EW ,+ 7Y +7Y i+ & (2d)
RUs=EW ,+7Y i +72Y s+ 6 (2¢)
whereg; for j=1,...5 are uncorrelated errors, which are distributed
with means 0.

The extended model is

V=B X+ Y, +E for t=1,2,3, (3a,3b,3c)
R*izzégléNiz+7’12Yi1+722yi2+‘9i4! (3d)
RYa=EW 47y 12+ 72Y i+ Eis (3¢

where the dropout models have different parameters and the feedback
effect let to be changed with time. Note also that responses in DK
(1994) model are continuous (Y i are continuous observed variables)
and DK used a multivariate normal distribution for the responses. So,
they used a marginal model for responses not a transition model (see,
Diggleet a, 1994).
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3.1 The likelihood function
If we just observe the first response, the likelihood for the general
transition model of order 1is:
L; =f (yilvRiz :O|yio)
(4

= lef Vio Vi)t (VirlYid) PRi2=0]Yi1, Vi),

y,=0
where for ssimplicity we suppress dependence on covariates in this
equation. If responses of the ith individual are observed until time
T, (T, <T) andindividua dropout at thistime, the likelihood is:

Li=f(Vin iz Yir, 2 lYio) PRz =L Rip . =L Ry, =010, Y100 Yir, 1)

1 T; Ti-1 (ES)
= Z{[Hf (Vi |yit—1)][l_[ p(Rij :1|yij—1’yij)]p(RiTl :OlyiT,—l’yiTl ¥
yr, =0 t=1 j=2
and the likelihood for an individual with complete responsesis:
L=f(YinYizaYir 1Yio)P(Riz=L....R; 5 =LR;; =1]Yi0:Vi1sen Yir )
(6)

:[Hf (yit |yit—1)][H p(Rij :1|yij—l’yij -
t=1 j=2
The overall likelihood is the product of the individuals likelihood, i.e,
L=]]L - Thislikelihood can easily be extended and written for any

i=1
value of .

This likelihood does not have a closed form for parameter estimates
and should be solved by a numerical agorithm. We use NAG (1996)
routine EO4UCF to find the parameter estimates. EO4UCF is a
FORTRAN routine to minimize a smooth function (minus logarithm
of likelihood in our work) subject to constraints using a sequential
quadratic programming (SQP, Fletcher, 2000) method. In this routine
all unspecified derivatives are approximated by finite differences.

4. Residuals
For the transition model of order 1 the Pearson residuals may be found

by:

Y —EC Y0 X
X

)
TNV Y X ) Y
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This can not be evaluated for missing responses and does not use the
information coming from dropout mechanism. These residuals (r;, in

equation 7) can be modified to consider the dropout mechanism. For
this, predicted value at time t should be evaluated given the condition
that response at time t is observed (R, =1). So residuals could be

found by
_ylt E(Yltlyltl’ it :Lxlt)

to Vet YR =1X)
_ Yit _Hit
- [Hit (1_Hit )]1/2

(8)

where
pr(Yn _1|R _:Ly|t—1’xlt)
pr(YIt _l'th _1|ylt—l’xlt)
pr(th 1|y|,t 1’ )
_ pr(Rit =1|yit zl’yi,t—l’xit)pr(Yit =1|yi,t—1’xit)
=— ,
Zpr(Rit :llyit = J ’yi,t—l’x it)pr(Yit :j |yi,t—1’x it)
j=0
The estimated Pearson residuals (f,) can be found by using
the maximum likelihood estimates of the parametersin system (1).

5. Model and results for Fluvoxamine data
In this section, we give some mode fits to the Fluvoxamine data of

section 2. Let Y, =(Y,;,Y,,,Y;3) be the vector of binary responses for
the ith individual (i=1...259) on weeks 4, 8 and 12 and Y,, be the
response on week 2. Also, let Y'i=(Y"i1,Y"i2,Y"is) be the
corresponding vector of latent variables for Y;. At first we use
following model for Fluvoxamine data (Model 1):
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Vi =B Xty t & (%)
Y ia=B X+ Y0+ Ay iyt Eins (9b)
Y ia=BX sty io+ Ay ist Ay i0+ &g (90)
R, =EW 7Y +72Y 2+ &4 (9d)
Ris=EW 5+ 7Y 12 +7:Y 5+ &5 (%)

The vector of X ontimet includes 1, sex, age, initial severity (SEVE)
and logarithm of duration (INDUR) and the vector of W include 1 and
logarithm of duration. We use probit link for all responses and
dropout models. We aso fit RD mode (y,=0) and CRD
model (7, = 0,7, =0) . Theseresults are given in table 2.

The values of minus logarithm of likelihood (-logL) in the table 2
show that dropout is at random (RD). Dropout depends on the
previous response, but not on the current response. Table 2 also shows
that some of the explanatory variables have no significant effect on
the responses.

With considering Model | as full model and using a backward
approach, we remove some of these variables (see table 3) to find a
more parsimonious model. We compare two models M, and M,

(with L, and L, aslikelihoods evaluated at the ML estimates for each
model) with M, aspecial case of M, using:

G?=-2(logL, —logL,),
which has an approximate chi-square null distribution (i. e. under
the assumption that model M, isthe true model) with d.f. equal to the

difference between number of parametersin two models. For example
intable 3, () compares a model with assumption of no sex effects on
al responses (a= M) with model | (M) and (b) compares a model
with assumption of no sex and severity effects on all responses (b =

M, ) with amodel with assumption of no sex effects on all responses

(now a= M,) and so on.
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Table 2: Results for the responses and dropout models

Model 1 RD Model CRD Model

Par Est. Se. Est. Se. Est. Se.
ﬁ01 -1.474 0.716 -1.474 0.700 -1.474 | o0.697
ﬂll(AGE) 0.007 0.007 0.007 0.007 0.007 0.007
1321 (SEX) 0.161 0.194 0.161 0.194 0.161 0.194

1831 (I n DUR) -0.034 0.076 -0.034 0.076 -0.034 0.076
ﬂ41(SEVE) 0.003 0.122 0.003 0.120 0.003 0.120

ay (YO) 1.826 0.103 1.826 0.103 1.826 0.103
Lo -1.220 0.812 -1.181 0.800 | -1.181 | 0.814
ﬁlz (AG E) 0.016 0.008 0.015 0.008 0.015 0.008
,6’22 (SEX) 0.145 0.283 0.222 0.227 0.222 0.227

ﬂsz(ln DUR) 0.096 0.111 0.125 0.090 0.125 0.090
ﬂ42(SEVE) -0.222 0.151 -0.238 0.140 -0.238 0.143

aZO(YO) 0.283 0.263 0.302 0.263 0.302 0.264
a21(Yl) 1.715 0.301 1.791 0.254 1.791 0.255
Bos -1.985 1.058 -2.006 1.064 | -2.006 | 1.068
ﬂls(AGE) -0.003 0.011 0.000 0.010 0.000 0.010
ﬂ23 (SEX) 0.173 0.272 0.175 0.273 0.175 0.273

'Bsg(ln DUR) 0.201 0.119 0.212 0.114 0.212 0.114
ﬁ43 (SEVE) -0.001 0.175 0.002 0.177 0.002 0.178

g (Yo) 0.277 0.321 0.229 0.309 0.229 0.309
Oy (Y) 0.388 0.332 0.426 0.334 0.426 0.334
az(Y) 2.279 0.331 2.310 | 0.309 | 2.310 | 0.300
&, 1.846 0.172 1.839 0.165 1.669 0.144
51(' n DUR) -0.186 0.075 -0.166 0.064 -0.177 0.064
71 -0.746 0.607 -0.391 0.165 - -
Vs 0.549 1.006 - - - i

-logL 418.893 419.040 421.877
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Which has an approximate chi-square null distribution (i. e. under the
assumption that model M, is the true model) with d.f. equal to the

difference between number of parametersin two models. For example
in table 3, (a) compares a model with assumption of no sex effects on
al responses (a= M) with model |1 (M) and (b) compares a model

with assumption of no sex and severity effects on all responses (b =
M,) with a model with assumption of no sex effects on all responses

(now a= M,) and so on.

Table 3: A backward selection approach to obtain a parsimonious model

Removed par. (var.) -2logL G2 d.f. P-value

(a)Sex from Model 1 839.154 2.368 3 0.500

(b)Seve from (a) 841.143 1.989 3 0.574

(c)Second and Higher order effects from (b) 846.050 4.907 3 0.179
(d)Age at Periods 1 and 3 from (c) 846.113 0.063 2 0.969
(e)InDur at period 1 and 2 from (d) 847.761 1.648 1 0.199

Table 3 shows that age, sex, INDUR and SEVE have no significant
effect on Y,, sex, INDUR, SEVE and Y, have no significant effect on
Y,, and Y,, age, sex, SEVE and Y, aso have no significant effect on
Y,.

To see whether dropout model parameters have different effect on
time, we let the parameters in dropout models change on time (see
model in system 3, extended model). Results (with removing non
significant covariates) are given in table 4. We find a significant time
varying effect of previous responses on dropout models. Previous
outcome shows no effect on dropout model in period three, but it is
strongly significant on the dropout model in period two. We also find
atime varying duration of disease effect on dropout models. Duration
of disease has a negative effect on the dropout model in period 2, but
it has no significant effect on the dropout model in period 3.




A latent variable transition model for binary longitudinal data with... 141

Table 4: Results for the extended model

Extended model

Par. Est. Se. Par. Est. Se.
B 1.166 | 0-151 Eon 2.166 | 0.291
a0(Yo) 1.819 | 0.189 | £, (INDUR) | 33, | ©-107
P 2.066 | 0-345 712 (Y1) 1.156 | 0-325
S, (AGE) 0.015 | 0.007 V0 (Y,) 1.463 | 1.003
a5 (Y;) 1.717 | 0.222 Eos 1.585 | 0.229
Pos 1.820 | 0-269 Sia 0.016 | O-111
L (InDUR) 0.216 | 0.109 713(Y,) 0.131 | 0-994
a(Y,) 2.652 | 0.253 V03(Y3) 0.131 | 1-200
-logL 421.660

Results in table 4 also show a first order effect of responses.
Individuals who have side effect on previous response are more likely
to have side effect on current response. There is aso age effect on
response in period two. The older the individual is the more likely is
her/him to have the side effects on period two. Response in period 1
have negative effect on dropout on time two which means individuals
who have side effects on time 1 are more likely to dropout on time 2.
Using dropout model on time 3, we find that the probability of
dropout on time 3 (given observing the response on time 2) is
independent of, Y,, Y;and InNDUR and it is 0.073.

Residuals for the first response do not show any outliers. Residuals
for the second response (using equation 7) show 4 individuals as
outliers and residuals for the third response show 7 individual as
outliers. To check for sensitivity of the results to different
distributions for the errors in dropout and response models, we use
logit link for al dropout and response models. However, our main
interpretations are the same as what we find using probit link.

6. Conclusion

We use a transition model for longitudinal binary response with
informative dropout. The model is so flexible to be used with different
distributions for measurement errors in the model. In this model



142 Ganjali, M., and Rezaee Ghahrodee, Z., 11JS, 5 (Math.), 2004
#

dropout model parameters, in contrast with the DK model, et change
on time. For Fluvoxamine data (Molenberghs et al. 1997) we find a
form of non-stationary uninformative dropout. We obtain that dropout
model on time 2 is dependent on previous outcome, but, on time 3, it
is not dependent on this variable. In these data, response on time't is
strongly dependent on the response on time t-1, but not on the other
responses (a first order model is sufficient) . Some residuas are also
presented which, in the case of informative dropout, can provide a
better performance than the usual Pearson residuals. For further work
the model can be extended to be used for longitudinal ordinal response
with dropout.
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