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Abstract 
A latent variable Markovian model is proposed for longitudinal binary 
responses with dropout. In this model responses can easily be modeled 
using probit, logit or any other link. Dropout model is parameterized 
in such a way that parameters can be dynamically changed on time. 
Some residuals are also presented. These residuals can be used in the 
presence of informative dropout. The model is also used in an 
application where the existence of side effects of using fluvoxamine (a 
treatment for deregulation of serotonin in the brain) is the response of 
interest. 
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1. Introduction 
In a panel or longitudinal study each subject is measured at several 
occasions. So, in these studies we have  

),...,( 1 iTii YYY =  which its elements are responses for the ith subject 
(i=1,...,n) on occasions t=1,...,T. In these studies two aspects of 
analysis are important (i) the effect of some covariates, which may 
change on time, on the responses and (ii) taking into account the 
correlations between the responses of the sa

the vector of

me subject. 

,...,1+  a is

Often some of the subjects withdraw from the survey before the 
study is complete and do not return. Subjects that do not stay in the 
study are said to have dropped out. In dropout, variables of the study 
can be arranged so that Y re missing when ijY   missing, for 
j=1...T-1. For example in a clinical trial, some subjects dropout of the 

iTij Y
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study for different reasons, for examples side effects of drugs or 
curing of disease. If this dropout is related in some way to their 
current response then it is inappropriate to restrict the analysis to the 
complete sequences or to just the observed components of the 
sequences. In order to establish whether dropout is informative in this 
way an attempt must be made to jointly model the dropout and 
response processes. 

Little and Rubin (2002) and Diggle and Kenward (1994, hereafter 
DK) make important distinctions between the various types of dropout 
mechanism. DK (1994) defined a dropout process as completely 
random (CRD) if the dropout mechanism is dependent neither on the 
current value of the response ( ) nor on the previous value of the 
response ( ), and as random dropout (RD) if it is dependent on , 
but not on . Dropout is defined as informative (ID) if it is dependent 
on the current value of response (see also Little, 1995). 

tY

1−tY 1−tY

tY

In this paper a transition model is presented by using the concept of 
latent variable for longitudinal binary response with dropout. The non-
response model is similar in nature to the model of the DK (1994) and 
the Molenberghs et al. (1997) model in which the dropout 
probabilities are functions of the previous and current responses. We 
extend this approach by allowing the coefficients of parameters in 
dropout probabilities to change on time. If the data contain enough 
information to enable us to estimate a model with these additional 
features, then we will be able to provide more insight into the dropout 
mechanism. 

In the next Section the 4 waves of the Fluvoxamine data 
(Molenberghs et al., 1997) as motivation are discussed. In Section 3 
the transition model is presented. In this section we also give the 
likelihood, noting that the joint likelihood of the proposed model does 
not have a closed form. In section 4 we discuss how to look at the 
residuals to find any inconsistency between data and the model. In 
section 5, we illustrate our extended model on the 3 waves of the 
Fluvoxamine data (Molenberghs et al. 1997) where we find a form of 
non-stationary uninformative dropout. In Section 6 we give a brief 
conclusion. 
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2. Empirical illustration: Fluvoxamine data 
The example is a 4-wave study of the side effects of using 
Fluvoxamine (a psychiatric drug). In the original data (discussed in 
Molenberghs and Lesaffre, 1994, Lesaffre et al., 1996, Molenberghs et 
al., 1997, and Michiels and Molenberghs, 1997) severity of side 
effects is an ordinal response with: (0) no side effect, (1) no 
significant interference with functionality of patient, (2) significant 
interference with functionality of patient and (3) side-effect surpasses 
therapeutic effect. We shall focus on a dichotomized version 
(present/absent) of side effects at four periods. A total of 315 subjects 
were initially recruited into the study. The extent of the side effects 
was obtained at weeks 2, 4, 8 and 12 after starting the trial. Also 
obtained were the sex, age, initial severity (scale 1 to 7), and duration 
of actual mental disease for each subject. 

The data were previously analyzed by Lesaffre et al. (1996) and 
Molenberghs et al. (1997), who used the data for weeks 2, 4 and 12. 
Molenberghs et al. (1997) used a marginal model for the responses 
and a multivariate Dale distribution to take into account the 
correlation between the responses of the same individual. Their 
analysis finds that non-response is dependent on the previous, but not 
on the current value of the response, i.e. dropout is at random (RD). 

We use the data for all four visits, but, as we use a transition model, 
to avoid initial condition problem (Heckman, 1981) we fix the initial 
response at week 2 ( ) and use it as an explanatory variable. The 
transition model can easily be used to an arbitrary number of periods. 
Table 1 shows the different patterns of missing responses (responses 
at weeks 4, 8 and 12) and their frequencies for the 259 individuals 
without any missing covariate data at weeks 2, 4, 8 and 12. 

0Y

 
 

Table 1. Different patterns of missing data for Fluvoxamine data 
 ('O'=Observed, 'M'=Missed) 

 
Frequency Pattern 

216 OOO 
17 OOM 
26 OMM 
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3. The general transition latent variable model with dropout 
Let  be the vector of binary responses for the ith 
individual (i=1,...,n). The joint general transition (Markovian latent 
variable) model of order q (the number of previous responses in the 
model for response at time t) for the responses and the dropout latent 
variable model where the first response is observed for all individuals 
are: 

),...,( 1 iTii YYY =

 (1b)                      T2,...,for   t      

(1a)                       T1,...,for   ty
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where tε  for t=1...2T-1 are uncorrelated errors, which are distributed 
with means 0. In the following, we shall call the equations (1a) and 
(1b) as system 1. When t=1 we assume that  is a predetermined 
observed value. If we assume normal distributions for these errors we 
have probit models for response and dropout mechanisms and if we 
assume logistic distributions for errors we have logit models. So 
sensitivity of the model parameters to different distributions for errors 
can easily be obtained. 

0iy

The vectors and  for t=1,2,...,T and itX tiW ′ t ′=2,...,T are 
explanatory variables and the vectors of parameters are β  and ξ  
which include a constant value. α  's are the parameters for feedback 
effects. We suppose that response t is missing i.e. 0=iR  if  
for t=2,3,...,T and that if 

0* <iR
0=tR  then 0=′tR  for t'=t+1,...,T. The 

binary responses , for t=1,2,...,T are given by ity
*

*
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For simplicity dropout models include the effect of the current and 
previous values of the responses (  and ) rather than the 
complete history and the current values of responses . 
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In this model we are able to identify informative dropout process. 
Informative dropout (ID) occurs when one of t2γ  for t=2...T is non-
zero. We have random dropout (RD) if all of t2γ  for t=2...T are zero 
and at least one of t1γ  for different values of t is non-zero. We have 
completely random dropout (CRD) if all of t1γ  and t2γ  for t=2...T are 
zero. 

The dropout model in system (1) similar to the DK (1994) model 
depends on previous and current responses, but it extends the DK 
(1994) and Molenberghs et al. (1997) models as this model let the 
dropout models have different parameters (γ ′s are depend on time). 
So, regressor parameterization is extended to improve the model's 
flexibility. This makes the dropout processes to be non-stationary. 

Model of DK and system (1) can be compared for sequences of 
length 3. The first order transition model which has the same dropout 
model as DK and Molenberghs et al. (1997) is: 

 
* '

1
* '

2 2 2 1 1 2 2 4
* '

3 2 2 1 2 2 3 5

,         for   t 1,2,3,                           (2a,2b,2c) 

,                                              (2d) 

,        

it t it it it

i i i i i

i i i i i
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R W y y

R W y y
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ξ γ γ ε

ξ γ γ ε

−= + + =

= + + +

= + + +                                       (2e) 

  

where jε for j=1,...,5 are uncorrelated errors, which are distributed 
with means 0. 
The extended model is 

  
* '

1
* '

2 2 2 12 1 22 2 4
* '

3 3 3 13 2 23 3 5

,         for   t 1,2,3 ,                           (3a,3b,3c) 

,                                              (3d) 

,  

it t it t it it

i i i i i

i i i i i

y X y

R W y y

R W y y

β α ε

ξ γ γ ε

ξ γ γ ε

−= + + =

= + + +

= + + +                                             (3e)
 

where the dropout models have different parameters and the feedback 
effect let to be changed with time. Note also that responses in DK 
(1994) model are continuous ( are continuous observed variables) 
and DK used a multivariate normal distribution for the responses. So, 
they used a marginal model for responses not a transition model (see, 
Diggle et al, 1994). 

ity*
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The likelihood function 3.1 
If we just observe the first response, the likelihood for the general 
transition model of order 1 is: 

2

1 2 0

1

2 1 1 0 2 1 2
0

( , 0 | )

( | ) ( | ) ( 0 | , )

i i i i

i i i i i i i
y

L f y R y

f y y f y y p R y y
=

,

= =

= =∑
    (4) 

where for simplicity we suppress dependence on covariates in this 
equation. If responses of the ith individual are observed until time 

 and individual dropout at this time, the likelihood is: )( TTT ii <
1 2 1 0 2 1 0 1 1
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(5) 

and the likelihood for an individual with complete responses is: 
 

1 2 0 2 1 0 1

1 1
1 2

( , ,..., | ) ( 1,..., 1, 1| , ,..., )

[ ( | )][ ( 1| , )].

i i i iT i i iT iT i i iT
  (6) 

The overall likelihood is the product of the individuals likelihood, i.e, 

∏
=

=
n

i
iLL

1

. This likelihood can easily be extended and written for any 

value of q. 
This likelihood does not have a closed form for parameter estimates 

and should be solved by a numerical algorithm. We use NAG (1996) 
routine E04UCF to find the parameter estimates. E04UCF is a 
FORTRAN routine to minimize a smooth function (minus logarithm 
of likelihood in our work) subject to constraints using a sequential 
quadratic programming (SQP, Fletcher, 2000) method. In this routine 
all unspecified derivatives are approximated by finite differences. 

  
4. Residuals 
For the transition model of order 1 the Pearson residuals may be found 
by: 

, 1

, 1

( | ,
 ( | ,
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This can not be evaluated for missing responses and does not use the 
information coming from dropout mechanism. These residuals (  in 
equation 7) can be modified to consider the dropout mechanism. For 
this, predicted value at time t should be evaluated given the condition 
that response at time t is observed (

itr

1=itR ). So residuals could be 
found by 

, 1

, 1

1/ 2

( | , 1,
( | , 1, )

[ (1 )]

it it i t it it

it i t it it

it it

it it
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y

−

−

)
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=

=
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The estimated Pearson residuals  can be found by using 
the maximum likelihood estimates of the parameters in system (1). 

)ˆ( itr

 
5. Model and results for Fluvoxamine data  
In this section, we give some model fits to the Fluvoxamine data of 
section 2. Let ),,( 321 iiii YYYY =  be the vector of binary responses for 
the ith individual (i=1...259) on weeks 4, 8 and 12 and  be the 
response on week 2. Also, let  be the 
corresponding vector of latent variables for . At first we use 
following model for Fluvoxamine data (Model I): 

0iY
),,( 3

*
2

*
1

**
iiii YYYY =

iY
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* '
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,                         
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i i i i i

i i i i i

R W y y

R W y y

ξ γ γ ε

ξ γ γ ε

= + + +

= + + +

a

 

The vector of X on time t includes 1, sex, age, initial severity (SEVE) 
and logarithm of duration (lnDUR) and the vector of W include 1 and 
logarithm of duration. We use probit link for all responses and 
dropout models. We also fit RD model )0( 2 =γ  and CRD 
model )0,0( 21 == γγ . These results are given in table 2. 

The values of minus logarithm of likelihood (-logL) in the table 2 
show that dropout is at random (RD). Dropout depends on the 
previous response, but not on the current response. Table 2 also shows 
that some of the explanatory variables have no significant effect on 
the responses. 

With considering Model I as full model and using a backward 
approach, we remove some of these variables (see table 3) to find a 
more parsimonious model. We compare two models  and  
(with  and  as likelihoods evaluated at the ML estimates for each 
model) with  a special case of , using: 

0M 1M

0L 1L

0M 1M
 

),log(log2 10
2 LLG −−=  

which has an approximate chi-square null distribution (i. e. under 
the assumption that model  is the true model) with d.f. equal to the 
difference between number of parameters in two models. For example 
in table 3, (a) compares a model with assumption of no sex effects on 
all responses (a = ) with model I ( ) and (b) compares a model 
with assumption of no sex and severity effects on all responses (b = 

) with a model with assumption of no sex effects on all responses 
(now a = ) and so on. 

0M

0M 1M

0M

1M
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Table 2: Results for the responses and dropout models 
 

CRD Model RD Model Model I  
Se. Est. Se. Est. Se. Est. Par 

0.697 -1.474 0.700 -1.474 0.716 1.474- 01β 
0.007 0.007 0.007 0.007 0.007 0.007 )(11 AGEβ 
0.194 0.161 0.194 0.161 0.194 0.161 )(21 SEXβ 
0.076 -0.034 0.076 -0.034 0.076 -0.034 )(ln31 DURβ 
0.120 0.003 0.120 0.003 0.122 0.003 )(41 SEVEβ 
0.193 1.826 0.193 1.826 0.193 1.826 )( 010 Yα 
0.814 -1.181 0.800 -1.181 0.812 -1.220 02β 
0.008 0.015 0.008 0.015 0.008 0.016 )(12 AGEβ 
0.227 0.222 0.227 0.222 0.283 0.145 )(22 SEXβ 
0.090 0.125 0.090 0.125 0.111 0.096 )(ln32 DURβ 
0.143 -0.238 0.140 -0.238 0.151 -0.222 )(42 SEVEβ 
0.264 0.302 0.263 0.302 0.263 0.283 )( 020 Yα 
0.255 1.791 0.254 1.791 0.301 1.715 )( 121 Yα 
1.068 -2.096 1.064 -2.096 1.058 -1.985 03β 
0.010 0.000 0.010 0.000 0.011 -0.003 )(13 AGEβ 
0.273 0.175 0.273 0.175 0.272 0.173 )(23 SEXβ 
0.114 0.212 0.114 0.212 0.119 0.201 )(ln33 DURβ 
0.178 0.002 0.177 0.002 0.175 -0.001 )(43 SEVEβ 
0.309 0.229 0.309 0.229 0.321 0.277 )( 030 Yα 
0.334 0.426 0.334 0.426 0.332 0.388 )( 131 Yα 
0.309 2.310 0.309 2.310 0.331 2.279 )( 232 Yα 
0.144 1.669 0.165 1.839 0.172 1.846 0ξ 
0.064 -0.177 0.064 -0.166 0.075 -0.186 )(ln1 DURξ 
- - 0.165 -0.391 0.607 -0.746 

1γ 
- - - - 1.006 0.549 

2γ 
421.877 419.040 418.893 -logL 
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Which has an approximate chi-square null distribution (i. e. under the 
assumption that model  is the true model) with d.f. equal to the 
difference between number of parameters in two models. For example 
in table 3, (a) compares a model with assumption of no sex effects on 
all responses (a = ) with model I ( ) and (b) compares a model 
with assumption of no sex and severity effects on all responses (b = 

) with a model with assumption of no sex effects on all responses 
(now a = ) and so on. 

0M

0M 1M

0M

1M
 

Table 3: A backward selection approach to obtain a parsimonious model 
 

P-value d.f. 2G  -2logL Removed par. (var.) 

0.500 3 2.368 839.154 (a)Sex from Model I 
0.574 3 1.989 841.143 (b)Seve from (a) 
0.179 3 4.907 846.050 (c)Second and Higher order effects from (b) 
0.969 2 0.063 846.113 (d)Age at Periods 1 and 3 from (c) 
0.199 1 1.648 847.761 (e)lnDur at period 1 and 2 from (d) 

 
Table 3 shows that age, sex, lnDUR and SEVE have no significant 
effect on , sex, lnDUR, SEVE and  have no significant effect on 

, and , age, sex, SEVE and  also have no significant effect on 
. 

1Y 0Y

2Y 0Y 1Y

3Y
    To see whether dropout model parameters have different effect on 
time, we let the parameters in dropout models change on time (see 
model in system 3, extended model). Results (with removing non 
significant covariates) are given in table 4. We find a significant time 
varying effect of previous responses on dropout models. Previous 
outcome shows no effect on dropout model in period three, but it is 
strongly significant on the dropout model in period two. We also find 
a time varying duration of disease effect on dropout models. Duration 
of disease has a negative effect on the dropout model in period 2, but 
it has no significant effect on the dropout model in period 3. 
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Table 4: Results for the extended model 

Extended model  
Se. Est. Par. Se. Est. Par. 

0.291 2.166 02ξ 0.151 -
1.166 01β 

0.107 -
0.331 )( 010 Yα )(ln12 DURξ 0.189 1.819  

0.325 -
1.156  0.345 -

2.066 02β )( 112 Yγ 

1.003 1.463 )( 222 Yγ 0.007 0.015 )(12 AGEβ 
0.229 1.585 03ξ 0.222 1.717 )( 121 Yα 
0.111 -

0.016 13ξ 0.269 -
1.820 03β 

0.994 -
0.131 )( 213 Yγ 0.109 0.216 )(ln43 DURβ 

1.200 -
0.131 )( 232 Yα )( 323 Yγ 0.253 2.652  

   421.660 -logL 
 

Results in table 4 also show a first order effect of responses. 
Individuals who have side effect on previous response are more likely 
to have side effect on current response. There is also age effect on 
response in period two. The older the individual is the more likely is 
her/him to have the side effects on period two. Response in period 1 
have negative effect on dropout on time two which means individuals 
who have side effects on time 1 are more likely to dropout on time 2. 
Using dropout model on time 3, we find that the probability of 
dropout on time 3 (given observing the response on time 2) is 
independent of, , and lnDUR and it is 0.073. 2Y 3Y
 Residuals for the first response do not show any outliers. Residuals 
for the second response (using equation 7) show 4 individuals as 
outliers and residuals for the third response show 7 individual as 
outliers. To check for sensitivity of the results to different 
distributions for the errors in dropout and response models, we use 
logit link for all dropout and response models. However, our main 
interpretations are the same as what we find using probit link. 
 
6. Conclusion  
We use a transition model for longitudinal binary response with 
informative dropout. The model is so flexible to be used with different 
distributions for measurement errors in the model. In this model 
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dropout model parameters, in contrast with the DK model, let change 
on time. For Fluvoxamine data (Molenberghs et al. 1997) we find a 
form of non-stationary uninformative dropout. We obtain that dropout 
model on time 2 is dependent on previous outcome, but, on time 3, it 
is not dependent on this variable. In these data, response on time t is 
strongly dependent on the response on time t-1, but not on the other 
responses (a first order model is sufficient) . Some residuals are also 
presented which, in the case of informative dropout, can provide a 
better performance than the usual Pearson residuals. For further work 
the model can be extended to be used for longitudinal ordinal response 
with dropout. 
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