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Abstract
We shall first introduce a new biharmonic Poisson kernel for the unit disk in
the complex plane, and then proceed to study the boundary behavior of the
potentials (biharmonic functions) related to this kernel function.
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0 - Introduction
We denote by D the unit disk and by T the unit circle in the complex
plane. A locally integrable function u defined on the unit disk D is said
to be biharmonic provided that 2∆ u =0; here the symbol ∆ stands for
the Laplacian, and the mentioned equation is interpreted in the sense of
distributions. The biharmonic Green function for the operator 2∆ in the
unit disk is the function
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We mention that for fixed ∈?® D , the biharmonic Green function
solves the following boundary value problem
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where the notation )( zn∂ denotes the inward normal derivative (in the
sense of distributions) with respect to the variable z ∈ T .
We define the biharmonic Poisson kernel F (?‡, z ) for the unit disk
by the following relation
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We shall see that for fixed ?‡on the boundary of the region, F (?‡, z)
is a biharmonic function in the z variable, moreover, F (?‡, z) enjoys
the properties of a kernel function. Using this kernel function, we
consider its relevant potentials to generate a class of biharmonic
functions in the unit disk. More precisely, given f 1L∈ (T ), we define
the F-integral of f by

,),()(),()]([)( DzdfzFzfFzu
T
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where ?@?@?@?@ dd 1)2()( −= , for ?‡?‡ ie= , stands for the normalized arc
length measure on the unit circle.

We intend to study the boundary behavior of the biharmonic function
][ fFu = when the variable approaches the boundary of the unit disk.

We shall see that Fatou's theorem concerning the existence almost
everywhere of nontangential limits is valid in this situation, so that from
this perspective, the biharmonic Poisson kernel resembles the usual
(harmonic) Poisson kernel.

It is desirable to have some words on the origin of the biharmonic
Poisson kernel ),( zF ?� . Indeed, it was appeared in a Riesz-type
representation formula found by the current author and Hedenmalm in
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[AH ]. To give a brief account on the origin of our biharmonic Poisson
kernel, we need some more notations.
We write dxdyzdA 1)( −=?ˆ for the normalized Lebesgue area measure
on the unit disk. We also write ru for the dilation of u by r ,

10 << r : )()( rzuzur = . In this way, we may think of ru as a function
on the unit circle T .
For a ∞C -smooth function u on the closed unit disk D , the Poisson-
Jensen formula, which is an immediate consequence of Green's
formula, represents u as

∫∫ ∈+∆=
TD

DzduzPdAuzGzu .),()(),()()(),()( ?Ž?Ž?Ž?Ž?Ž?Ž?Ž (0 −1)

Here ),( ?jzG stands for the Green function for Laplace operator in the
unit disk
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and ),( ?|zP denotes the Poisson kernel for the unit disk:
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A function [ [∞+∞−→ ,: Du is said to be subharmonic if it is
upper semicontinuous and satisfies the sub-mean value inequality

.10,),()()( ∫ −<≤∈+≤
T

zrDzdrzuzu ?×?×?×

The Poisson-Jensen representation formula (0−1) is valid in the context
of subharmonic functions u under the growth assumption

∫ +∞<+
<≤ Tr zdrzu ,)()(sup 10 ?‡
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where the superscript + stands for the positive part of the function u .
It follows under these assumptions that the Poisson-Jensen
representation formula (0−1) generalizes to

∫ ∫ ∈+=
D T

DzdzPdzGzu ,),(),()(),()( ?K?K?K?K?K?K

where ?‡is a positive Borel measure on D with
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and ?‡ is a finite real-valued Borel measure on T . The measure ?‡
corresponds to the Laplacian u∆ , and ?‡corresponds to the boundary
values of u .

Let u be a locally integrable real-valued function on the unit disk.
The function u is said to be super-biharmonic provided that u2∆ is a
locally finite positive Borel measure on D ; in other words, 02 ≥∆ u in
the sense of distributions.
We want to find a representation formula, analogous to (0−1), for a
class of super-biharmonic functions. Let us first review the smooth
case. Suppose that u is a ∞C -smooth function on D . Applying
Green's formula twice we obtain the representation
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A computation shows that
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where
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We shall refer to ),( zH ?˜ as the harmonic compensator; it is
harmonic in its first argument and is biharmonic in its second argument.
Observe that ),( zH ?¤ is not symmetric in its arguments. Another
computation shows that the function
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Being biharmonic in its second argument, the function ),( zF ?Ã will be
referred to as the biharmonic Poisson kernel. Note that in terms of the
above kernels, (0−2) assumes the form
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For a possibly non-smooth function u , it is natural to ask when we
have the representation formula

,),(),()(),()(),()( DzdzHdzFdzzu
TTD

∈++Γ= ∫∫∫ ?‡?ñ?ñ?ñ?ñ?ñ?ñ?ñ?ñ

where ?‡and ?‡are two real-valued finite Borel measures on T and
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?‡is a positive Borel measure on D with
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Clearly, u has to be super-biharmonic. Moreover, it can be seen that it
meets the growth conditions
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which assures that ?‡dur has at least one weak-star cluster point ?‡as
1→r , and
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It is a consequence of the second assumption (B) that the measure ?‡d
obtained from this limit process is unique: ?‡?‚ ddur → weak-star, as

1→r . It now makes sense to ask whether the conditions (A) and (B)
characterize the super-biharmonic functions u on D having the above
representation. The following theorem was proved in [AH].

Theorem (Abkar-Hedenmalm). For a locally integrable function
u on D , the following two conditions are equivalent:

ua)( has the representation
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and ?‡?�, are two finite real-valued Borel measures on T .

ub)( is super-biharmonic on D , and meets the growth conditions
(A) and (B).

As was pointed out earlier, the above theorem is the place where the
biharmonic Poisson kernel first appeared. In the next section we shall
return to the main line of development by considering the potentials
associated to the biharmonic Poisson kernel.

1. The Biharmonic Extension
In this section we study the kernel function ),( zF ?� , defined by (0−4),
in more detail. We denote by )(TC the space of continuous functions
on the unit circle T . It turns out that every )(TCf ∈ has a biharmonic
extension Bf to the closed unit disk; moreover, the function Bf is
continuous on D , and )()( zfrzBf → uniformly, as 1→r . We use
this fact to prove that the measure ?‡on T which is obtained as a
weak-star limit of ?‡dur has some kind of uniqueness property. We
first note that

,),(,0),( DTzzF ×∈> ?ñ?ñ (1 − 1)
and that
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The equality (1−2) follows from the following simple calculation:
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For T∈?~ , we let )(?~I be the arc on the unit circle with center ?‡and
length 0>?ì . For }0{\Dz ∈ , we write ||/* zzz = which belongs to
the unit circle. It follows from (0−4) that 0),( →zF ?e uniformly, as

1|| →z and )(\* ?‡ITz ∈ . Note that the Poisson kernel for the unit
disk satisfies the relations (1−1), (1−2) and this last property as well.

Let )(1 TLf ∈ . Recall the F -integral of f given by

∫ ∈=
T

DzdfzFzfF .),()(),()]([ ?Å?Å?Å?Å

Since ),( zF ?å , for fixed T∈?å , is biharmonic, it follows that ][ fF is
biharmonic in D . The following proposition shows that the F -
integrals of continuous functions behave well near the boundary of the
unit disk.

Proposition 1.1. Let )(TCf ∈ and Tz ∈ . Define the biharmonic
extension of f to the unit disk by
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Then Bf is continuous on D .

Proof. For a subset E of the complex plane, we write
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E
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Assume that )(TCf ∈ and that Dz ∈ . It follows from (1−1) and
(1−2) that
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=)( be a trigonometric polynomial on the unit

circle. It follows that for every such polynomial p , we have
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This implies that Bp is continuous on D . Since the trigonometric
polynomials are dense in )(TC , we can assume that 1}{ ≥nnp is a
sequence of such polynomials on T such that 0→−

Tn fp as
∞→n . It follows from (1−3) that
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Hence nBp converges uniformly to Bf on D . Since each nBp is

continuous on D , we see that Bf is a continuous function on the
closure of the unit disk.
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2. The Boundary Behavior of Potentials
Let ),( ?¼zP denote the Poisson kernel for the unit disk, and consider
the Poisson integral of )(1 TLf ∈ , that is

∫ ∈=
T

DzdfzPzfP .),()(),()]([ ?#?#?#?#

According to a theorem of Fatou, ][ fP has nontangential limits,
almost everywhere on the boundary (see [GA] or [RU]). We now
consider the F -integral of f given by )]([)( zfFzu = . The main
result of this paper is an analog of Fatou's theorem: the function u has
nontangential limit almost everywhere on the unit circle.

Let us fix a real number 1>?ñ . For T∈?ó , we define

{ }.|)|1(||:)( zzDz −<−∈=Ω ?ù?ù?ù?‡

Now, the time is ripe to state the main result of this paper; a Fatou
theorem for biharmonic functions associated to the biharmonic Poisson
kernel.

Theorem 2.1. Let )(1 TLf ∈ and let ][ fFu = . Then u has
nontangential limit for almost every Tz ∈ ; that is

.),()(lim )( Teveryalmostforfzuz ∈=→∋Ω ?‡?•?‡?S?‡

Before we prove the theorem, we need a lemma which is key to the
proof of our theorem. Exploiting the notations of Theorem 2.1, we
define the nontangential maximal function of u at ?‡by
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For a subset E of the unit circle, the notation E stands for the one-
dimensional Lebesgue measure of E .
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Lemma 2.2. Let )(1 TLf ∈ and ][ fFu = . Let *
?Su be the

nontangential maximal function of u at T∈?â . Then for every positive
number ?‡we have
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Let us postpone the proof of Lemma 2.2 and manage to deduce Fatou's
theorem form this Lemma.

Proof of Theorem 2.1. We can assume that f is real-valued (the same
argument can be applied to the real and imaginary parts of f ). Put
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It is clear that f?‡ is nonnegative, moreover,
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This implies that for every 0>?0 we have
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On the other hand, by Chebyshev's inequality (see [GA] or [RU])



Abkar, A., IIJS, 6 (Math.),
2005
?‡?ƒ?ƒ

.2
2

|)(|: )(1 TLffT
?•

?�?Þ?Þ ≤






 >∈ (2 − 2)

Combining the relations (2−1) and (2−2), we obtain
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We now assume that g is a continuous function which approximates
the function f in the )(1 TL -norm; that is 2

)(1 ?‡<−
TL

gf . Since g is

continuous, we conclude that 0)( =?�?�g , hence gff −=?�?� . We now
apply the above estimate to the function gf − to get
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from which it follows that 0=f?‡ almost everywhere on the unit circle
T . In other words,

.),()(lim )( Teveryalmostforfzuz ∈=→∋Ω ?‡?—?‡?h?‡

We now turn to the proof of the lemma.

Proof of Lemma 2.2. Recall the Hardy-Littlewood maximal function
of )(1 TLf ∈ defined by

∫=
?‡
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where ?‡I is an arc centered at T∈?t . Our first objective is to show
that

.),()43()(* TMfu ∈+≤ ?c?c?c?c?‡ (2 − 3)

We assume temporarily that (2—3) holds and use the well-known fact
that the operator Mff α is weak- 1L (see [RU]), meaning that for
every ?‡positive
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Hence the lemma follows if we verify that (2−3) holds. To this end, we
may assume that 1=?> . Fix a point 0

00
?—ierz = with the condition that

?�?�≤|| 0 . Recall the usual (harmonic) Poisson kernel
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Since )(
0

?‡zP is a decreasing function of ],0[ ?ù?ù∈ , it follows that for
?Ê?Ê?Ê ≤< |||| 0 we have
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On the other hand, for |||| 0?‡?µ≤ , the above supremum is attained
when 0?‡=t , and its value is
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Let us look at the biharmonic Poisson kernel ),( 0zeF i?¸ as a function
of ?‡for fixed 0

00
?#ierz = . For this, we write
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As a matter of fact, there is the following interesting relation between
the Poisson kernel and the biharmonic Poisson kernel
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The function )(
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?‡zΦ is an even function on the interval ?‡?u?u ≤≤− ,
it dominates )(

0
?‡zF , and it is a decreasing function of ?‡?F≤≤0 .

Indeed,
0zΦ is the least decreasing majorant of

0zF .
Since |)(| fMMf = , we may assume that 0≥f . Suppose that

0zΦ is an increasing limit of a finite combination of characteristic
functions of the intervals ),( kk ?‡?·− . More precisely, there is a sequence
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It follows from the monotone convergence theorem that
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To have an upper bound for the )(1 TL -norm of
0zΦ , we first note that

for ?•?•?• ≤< |||| 0 , we have |)(|)(
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The second thing we need to know is the following estimate (see
[GM]):
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It follows from the definition of
0zΦ that
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Now we use (2−4) to obtain
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Since 0z was arbitrarily chosen in )1(?‡Ω , we conclude that
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This completes the proof of Lemma 2.2.
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