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1. Introduction and Preliminaries 
Throughout this paper S  will denote a semigroup. 

We refer the reader to [1] and [2] for basic results, 
definitions and terminology relating to semigroups. If 
S  is a semigroup, then )S(E  is the set of all 
idempotent elements of S.  If ),S(Ef,e ∈  then fe ≤  
if and only if .efeef ==  If 0≠== ffeef  implies 
that ,fe =  then e  is called a primitive idempotent. A 
semigroup without zero is called simple if it has no 
proper ideals, It is called completely simple if it is 
simple and has a primitive idempotent. A semigroup S  
is called left (uniquely) solvable if for all a, Sb∈  there 
exists (a unique) Ss∈  such that .bsa =  Analogously 
right (uniquely) solvable semigroups are defined. An 
element a  of a semigroup S  is called regular if there 
exists x  in S  such that .aaxa =  The semigroup S  is 
called regular if all of its elements are regular. If every 
element of S  lies in a subgroup of S,  then S  is called a 
completely regular semigroup. S  is called a rectangular 
band if for S,ba, ∈ a aba = . If EGS ×≅  where G  is a 

group and E  is a rectangular band, then S  is called a 
rectangular group. 

2. Results 
Definition 2.1.  A semigroup S  is called -R right 
cancellative if for all Scb,a, ∈ , bcac =  implies that 

bRa  and S  is called -L left cancellative if cb  ca =  
implies that aLb . -R left cancellative and -L right 
cancellative are defined similarly ( R  and L  are 
Green’s equivalences). 

A semigroup S  is called weakly -R cancellative 
( -L cancellative) if for all Scb,a, ∈ , bcac =  and 

cbca =  imply that aRb ( aLb ). It is obvious that -R  
right (left) cancellativity ( -L left (right) cancellativity) 
implies weak -R cancellativity ( -L cancellativity). 

Note that every weakly -R cancellative non trivial 
semigroup has no zero element, otherwise for a non zero 
element S,s∈  00s0 =  and 00,0s =  imply that sR0  
which is a contradiction. Similarly, it can be shown that 
every weakly -L cancellative non trivial semigroup has 
no zero element, too. 
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Lemma 2.2.  Let S  be a semigroup. If S  is weakly 
-R cancellative, then every idempotent is primitive. 

 
Proof.  Suppose that S  is weakly -R  cancellative and 
let E(S)fe, ∈ , with f.e ≤  Then feef e == , and so 

efee =  and feee = . Thus eRf,  and so there exist 
Syx, ∈  such that f,ex =  and efy = . Consequently, 

=ex  ef,eex =  which implies that ef,f =  and so 
f.e =  

Note that Lemma 2.2 is also valid for weak 
-L cancellativity. By Theorems 3.3.3 and 4.1.2, Howie 

in [1], gave equivalent conditions of a completely 
simple semigroup. Now we give eight more equivalent 
conditions. 
 
Theorem 2.3.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is completely simple. 
(2)  S  is completely regular and -R right 

cancellative. 
(3)  S  is completely regular and -L left cancellative. 
(4)  S  is regular and -R right cancellative. 
(5)  S  is regular and -L left cancellative. 
(6)  S  is completely regular and weakly -R  

cancellative. 
(7)  S  is completely regular and weakly -L  

cancellative. 
(8)  S  is regular and weakly -R cancellative. 
(9)  S  is regular and weakly -L cancellative. 

 
Proof.  (1)⇒ (2). 

By ([1, Theorem 4.1.2]), every completely simple 
semigroup is completely regular. By ([1, Theorem 
3.3.1]), every completely simple semigroup is 
isomorphic to a Rees matrix semigroup P].;I,M[G; Λ  
Thus it suffices to show that P];I,M[G; Λ  is -R right 
cancellative. Suppose that, 

),g, )(i,,g ,(i  )g, )(i,,g ,(i 222111 λλλλ =  

For ),g ,(i 111 λ , ),g ,(i 222 λ , )g, (i, λ P];I,M[G; Λ∈ . 
Then )g,pg ,(i i11 1

λλ  = )g,pg ,(i i22 2
λλ  and so 21 ii = , 

i1 1
pg λ i2 2

pg λ= . If 2
-1
1i

-1 ggpx 11λ=  and y =  

2 2

-1 -1
2 1 ip g gλ , then ),g ,(i 111 λ  )x, ,(i 21 λ  = ),g ,(i 221 λ ,  

and ),g ,(i 221 λ  )y, ,(i 11 λ  = ),g ,(i 111 λ  Thus 
R),g ,(i 111 λ ),g ,(i 222 λ  and so S  is -R right 

cancellative. 

(2)⇒ (1). 

Since S  is completely regular, then S  is regular and 
that S  is -R right cancellative, then S  has no zero. 
Also by Lemma 2.2, every idempotent is primitive. 
Thus by ([1, Theorem 3.3.3]), S  is completely simple. 

(1)⇔ (3). 

It is similar to (1)⇔ (2). 

(1)⇒ (4). 

Since (1) implies (2) and that every completely 
regular semigroup is regular, then we are done. 

(4)⇒ (1). 

Since S  is -R right cancellative, then S  has no 
zero. Also by Lemma 2.2, every idempotent element is 
primitive. Hence by ([1, Theorem 3.3.3]), S  is 
completely simple. 

(1)⇔ (5). 

It is similar to (1)⇔ (4). 

(1)⇒ (6). 

By ([1, Theorem 4.1.2]), and ([1,Theorem 3.3.3]), 
every completely simple semigroup is completely 
regular and weakly cancellative. As every weakly 
cancellative semigroup is weakly -R cancellative, then 
we are done. 

(6)⇒ (1). 

Since by Lmma 2.2, every idempotent element is 
primitive and that every completely regular semigroup 
is regular, then by ([1, Theorem 3.3.3]), S  is a 
completely simple semigroup. 

(1)⇔ (7). 

It is similar to (1)⇔ (6). 

(1)⇒ (8).  

Since every completely regular semigroup is regular, 
and that (1)⇒ (6), then we are done. 

(8)⇒ (1). 

By Lemma 2.2, every idempotent element is 
primitive and so by ([1,Theorem 3.3.3]), S  is a 
completely simple semigroup. 

(1)⇔ (9). 

It is similar to (1)⇔ (8). 
In Theorem 2.3, if we substitute -R left cancellative 

and -L right cancellative, for -R right cancellative and 
-L left cancellative, respectively, then we will have the 

following theorems: 
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Theorem 2.4.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is completely regular and left cancellative. 
(2)  S  is completely regular and -R left 

cancellative. 
(3)  S  is regular and left cancellative. 
(4)  S  is regular and -R left cancellative. 
(5)  S  is isomorphic to a Rees matrix semigroup 

P];I,M[G; Λ , with |I| = 1. 
 
Proof.  Implications (1)⇒ (2), (2)⇒ (4) and (3)⇒ (4) 
are obvious. 

(4)⇒ (5). 

By Lemma 2.2, every idempotent is primitive. Thus 
by ([1, Theorem 3.3.3]), S  is completely simple. Thus 
by ([1, Theorem 3.3.1]), S  is isomorphic to a Rees 
matrix semigroup P];I,M[G; Λ . We claim that |I| = 1. 

Suppose that ,pp  x i
-1

i 12 λλ=  for Ii ,i 21 ∈  and Λ∈λ . 

Then, 

).x, ,)(ie, ,(i  )e, ,)(ie, ,(i 2111 λλλλ =  

Since S  is -R left cancellative, then 
)x, ,)R(ie, ,(i 21 λλ , and so there exists 

∈)y, ,(i 00 λ P];I,M[G; Λ  such that 

).x, ,(i  )y, ,)(ie, ,(i 2001 λλλ =  

Thus ),x,i(),yp,i( i λλλ 201 0
= , which implies that 

21 ii = , and so |I| = 1 as required. 

(5)⇒ (3). 

By ([1, Theorems 3.3.1, 3.3.3]), S  is regular. We 
show that S  is left cancellative. Since S  is isomorphic 
to a Rees matrix semigroup P];I,M[G; Λ , then it 
suffices to show that P];I,M[G; Λ  is left cancellative. 
Thus we suppose that 

),g)(i,g,(i,),g)(i,g, (i, 2211 λλλλ = , 

for ),g(i,),g, (i, 11 λλ  and ∈),g(i, 22 λ P];I,M[G; Λ . 
Then, ) ,ggp(i,),ggp (i, 22i11i λλ λλ = , which implies 

that 21 λλ = , 2i1i ggp  ggp λλ = . Thus 21 gg =  and so 

),g(i,),g (i, 2211 λλ = . 

(5)⇒ (1). 

Since by ([1,Theorems 3.3.1,4.1.2]), S  is completely 
regular, then by (5)⇒ (3), it is obvious. 

Similarly we have, 

Theorem 2.5.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is completely regular and right cancellative. 
(2)  S  is completely regular and -L right 

cancellative. 
(3)  S  is regular and right cancellative. 
(4)  S  is regular and -L right cancellative. 
(5)  S  is isomorphic to a Rees matrix semigroup 

P];I,M[G; Λ  with |Λ | = 1. 
By ([1, page 62, Exercise 11]), every cancellative 

regular semigroup is a group. Thus by Theorems 2.4, 
and 2.5 we have, 
 
Corollary 2.6.  For any (completely) regular semigroup 
S  the following statements are equivalent: 

(1)  S  is -L right and -R left cancellative. 
(2)  S  is isomorphic to a Rees matrix semigroup 

P];I,M[G; Λ  with |Λ | = |I| = 1. 
(3)  S  is a group. 

 
Definition 2.7.  A semigroup S  is called a right group 
if it is right simple S)S(R ×=  and left cancellative. 

By ([1, page 61, exercise 6]), and ([2, I, 3.19, 3.22]), 
it can easily be seen that: 
 
Theorem 2.8.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is a right group. 
(2)  S  is left cancellative and has no proper right 

ideal. 
(3)  EGS ×≅  where G  is a group and E  is a right 

zero semigroup. 
(4)  S  is right uniquely solvable. 
Now see four more equivalent conditions for right 

groups in the following theorem: 
 
Theorem 2.9.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is a right group. 
(2)  S  is right inverse and -R right cancellative. 
(3)  S  is right inverse and -L left cancellative. 
(4)  S  is right inverse and weakly -R cancellative. 
(5)  S  is right inverse and weakly -L cancellative. 

 
Proof.  (1)⇒ (2). 

Suppose that S  is a right group. Then by Theorem 
2.8, EGS ×≅ , where G  is a group and E  is a right 
zero sem-igroup. It is obvious that S  is regular and also 

E1E(S) G ×= . If )e,(1e G ′=  and )f,(1f G ′=  are 
idempotents, then 
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e)e,(1)efe,(1)e,(1)f,)(1e,(1efe GGGGG =′=′′′=′′′= . 

Also 

e.)e,(1)ef,(1)e,)(1f,(1fe GGGG =′=′′=′′=  

Thus feefe = , and so by ([2, I, 3.39]), S  is right 
inverse. Suppose that bc,ac =  for ),e,(ga 11=  
=b )e,(g 22  and e) (g,c = . Then 1 1(g ,e )(g,e) =  

2 2(g ,e )(g,e) , and so gggg 21 = , which implies that 

21 gg = . Now we have )e,(g 11 )e,(1 2G  = )e,(g 21  
= )e,(g 22  and )e,(g)e,(g)e,)(1e ,(g 11121G22 == . 
Hence aRb  and so S  is -R right cancellative. 

(2)⇒ (1). 

Since S  is right inverse, then by ([2, I, 3.38]), S  is 
orthodox. Also by Theorem 2.3, S is completely simple. 
Thus by ([1, page 139, Exercise 10]), EGS ×≅ , where 
G  is a group and E  is a rectangular band. Now we 
show that E  is right zero. Suppose that 

)e,(1e G ′= , E1E(S))f,(1f GG ×=∈′= . Then 
E(S)efe∈  and eefe ≤ . Hence by Le-mma 2.2, eefe = , 

that is, )e,(1)e,)(1f,)(1e,(1 GGGG ′=′′′  and so 
),e ,(1)efe ,(1 GG ′=′′′  which implies that .eefe ′=′′′  Since 

S  is right inverse, then feefe = , and so efefe ′′=′′′ . 
Thus e  ef ′=′′  and hence E  is right zero which implies 
by Theorem 2.8, that S  is a right group. 

(1)⇔ (3). 

It is similar to (1)⇔ (2). 

(1)⇒ (4). 

Since every -R right cancellative is weakly 
-R cancellative, then by (1)⇒ (2) we are done. 

(4)⇒ (1). 

Since S  is right inverse, then S  is regular and so by 
Theorem 2.3, S is completely simple. Hence by 
Theorem 2.3, S  is -R right cancellative. Now by 
(2)⇒ (1) S  is a right group. 

(1)⇔ (5). 

It is similar to (1)⇔ (4). 
Note that in Theorem 2.9, if we substitute left inverse 

for right inverse, then we have a similar theorem for left 
groups. 

By ([1, page 139, Exercise 10]), and ([1, page 236, 
Exercise 10]), it can be shown that 
 
Theorem 2.10.  For any semigroup S  the following 

statements are equivalent: 
(1)  S  is rectangular group. 
(2)  S  is completely simple and orthodox. 
(3)  S  is completely regular and satisfies the law 

xxxyyx -1-1-1 = . 
(4)  S  is orthodox and E(S)  is rectangular band. 
Now see four more equivalent conditions for 

rectangular groups in the following theorem: 
 
Theorem 2.11.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is a rectangular group. 
(2)  S  is orthodox and -R right cancellative. 
(3)  S  is orthodox and -L left cancellative. 
(4)  S  is orthodox and weakly -R cancellative.  
(5)  S  is orthodox and weakly -L cancellative. 

 
Proof.  (1)⇒ (2). 

By Theorem 2.10, S  is orthodox and completely 
simple. Thus by Theorem 2.3, S  is -R right 
cancellative. 

(2)⇒ (1). 

Since S  is orthodox, then S  is regular. Also by 
Theorem 2.3, S is completely simple. Thus by Theorem 
2.10, S is a rectangular group. 

(1)⇔ (3). 

It is similar to (1)⇔ (2). 

(1)⇒ (4). 

Since every -R right cancellative is weakly 
-R cancellative, then by (1)⇒ (2) we are done. 

(4)⇒ (1). 

The same argument as (2)⇒ (1) can be used. 

(1)⇔ (5). 

It is similar to (1)⇔ (4). 
By ([1, Theorem 1.1.3]), and ([1, page 38, Exercise 

4]), we have 
 
Theorem 2.12.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is a rectangular band. 
(2)  S  is idempotent semigroup and for all 

S,cb,a, ∈  ac  abc = . 
(3)  There exist a left zero semigroup L  and a right 

zero semigroup R  such that RLS ×≅ . 
(4)  S  is isomorphic to a semigroup of the form 
BA× , where A  and B  are non-empty sets and where 
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multiplication is given by )b,(a)b,)(ab,(a 212211 = . 
(5)  For all Sb a, ∈ , baab =  implies that ba = . 
Now see four more equivalent conditions for 

rectangular band in the following theorem: 
 
Theorem 2.13.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is a rectangular band. 
(2)  S  is a band and -R right cancellative. 
(3)  S  is a band and -L left cancellative. 
(4)  S  is a band and weakly -R cancellative. 
(5)  S  is a band and weakly -L cancellative. 

 
Proof.  (1)⇒ (2). 

By Theorem 2.12, every rectangular band is a band. 
Now we suppose that f,efe 21 =  for S.f,e ,e 21 ∈  Since 
S  is a rectangular band, then 111 efee = , and 

222 e  fee = . Thus )(feee 121 = , )(fee  e 212 = , and so 

21Ree . Hence, S  is -R right cancellative. 

(1)⇒ (4). 

Since every -R right cancellative is weakly 
-R cancellative, then by (1)⇒ (2), it is obvious. 

(4)⇒ (1). 

Suppose that Sf e, ∈ . Since S  is a band, then we 

have, ef)(ef 2 =  and fe(fe)2 = , that is, efe.f  e.f=  
and f.e  f.efe = . Since S  is weakly -R cancellative, 
then from the above equalities we have efeRe . Thus 
there exists Sx∈  such that eefex = , which implies 
that  

eefexex)(efef(efex) efe 2 ==== .  

Hence S  is a rectangular band. 

(1)⇔ (5). 

It is similar to (1)⇔ (4). 

(2)⇒ (1). 

Since every -R right cancellative is weakly 
-R cancellative, then by (4)⇒ (1), it is obvious. 

(1)⇔ (3). 

It is similar to (1)⇔ (2). 
 
Theorem 2.14.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is a group. 
(2)  S  is clifford and -R right cancellative. 

(3)  S  is clifford and -L left cancellative. 
(4)  S  is an inverse semigroup and -R right 

cancellative. 
(5)  S  is an inverse semigroup and -L left 

cancellative. 
(6)  S  is clifford and weakly -R cancellative. 
(7)  S  is clifford and weakly -L cancellative. 
(8)  S  is an inverse semigroup and weakly 
-R cancellative. 
(9)  S  is an inverse semigroup and weakly 
-L cancellative. 

 
Proof.  (1)⇒ (6). 

It is obvious. 

(6)⇒ (1). 

Since S  is Clifford, then S  is regular and so 
Ø E(S)≠ . Now suppose that E(S)f e, ∈ . Then fe  ef =  

and so E(S)  is a subsemigroup of S . Thus ef)(ef 2 = , 

fe(fe)2 = , that is, efefef =  and fe  fefe = . Since S  is 
weakly -R cancellative, then fRfef . Thus there exists 

Sx∈  such that f,fefx =  which implies that 

ffefxfx(fe) fe(fefx)fef 2 ==== . 

But feef =  and so fef = . Similarly ef,e =  and so 
fe = . Thus |E(S)| = 1 and hence by ([1, page 62, 

Exercise 11]), S  is a group. 

(1)⇒ (2). 

It is obvious. 

(2)⇒ (1). 

Since every -R right cancellative semigroup is 
weakly -R cancellative, then by (6)⇒ (1) it is obvious. 

(1)⇔ (3). 

It is similar to (1)⇔ (2). 

(1)⇒ (4). 

It is obvious. 

(4)⇒ (1). 

Since every -R right cancellative semigroup is 
weakly -R cancellative and for an inverse semigroup S  
and all E(S)f e, ∈ , fe,ef =  then the argument is the 
same as in (6)⇒ (1). 

(1)⇔ (5). 

It is similar to (1)⇔ (4). 
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(1)⇔ (7). 

It is similar to (1)⇔ (6). 

(1)⇒ (8). 

It is obvious. 

(8)⇒ (1). 

Since for an inverse semigroup S  and for every 
E(S)f e, ∈ , feef = , then the same argument as in 

(6)⇒ (1) can be used. 

(1)⇔ (9). 

It is similar to (1)⇔ (8). 
Note that in Theorem 2.14, we can substitute -R left 

and -L right cancellative for -R right and -L left 
cance- llative, respectively. 
 
Theorem 2.15.  For any semigroup S  the following 
statements are equivalent: 

(1)  S  is right zero. 
(2)  S  is rectangular band and -R left cancellative. 
(3)  S  is a band, -R right and -R left cancellative. 
(4)  S  is a band, -L left and -R left cancellative. 
(5)  S  is a band and -R left cancellative. 
(6)  S  is a band, weakly -L cancellative and -R left 

cancellative. 
 
Proof. 

(1)⇒ (2). It is obvious that S  is a rectangular band. 
Let 21 fefe = , for Sf ,e ,e 21 ∈ . Since S  is right zero, 
then 21 ee = , and so 21Ree . Thus S  is -R left 
cancellative. 

(2)⇒ (1). 

Let Sfe, ∈ . Since S  is rectangular band, then 
eefe = , that is, ee  efe = . Since S  is -R left cancell-

ative, then feRe  and so there exists Sx∈  such that 
e  fex = . Thus efe =  and hence S  is right zero. 

(2)⇔ (3) 

and (2)⇔ (4) are obvious by Theorem 2.13. 

(1)⇒ (5). 

It follows by (1)⇒ (2). 

(5)⇒ (1). 

Let Sfe, ∈ . Since S  is -R left cancellative, then 
ef  eef = , implies that fRef  and so there exists Sx∈  

such that f  efx = . Thus f  ef =  and hence S  is right 
zero. 

Implication (1)⇔ (6) is obvious by (1)⇔ (2) and 
Theorem 2.13. 

Note that Theorem 2.15, is also valid for left zero 
semigroups if we substitute -L right cancellative for 

-R left cancellative. 
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