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Abstract 

This paper is concerned with the problem of finding a lower bound for certain 
matrix operators such as Hausdorff and Hilbert matrices on sequence spaces lp(w) 
and Lorentz sequence spaces d(w,p), which is recently considered in [7,8], similar 
to [13] considered by J. Pecaric, I. Peric and R. Roki. Also, this study is an 
extension of some works which are studied before in [1,2,7,8]. 
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Introduction 

We study the lower bounds of certain matrix 
operators on ( )pl w  and Lorentz sequence spaces 

( , )d w p  considered in [1-4] and [12] on pl  spaces and 
in [7] and [8] on ( )pl w  and ( , )d w p  for certain matrix 
operators such as Cesaro, Copson and Hilbert operators. 
The problem of finding an upper bound of such matrices 
on weighted sequence spaces considered by authors in a 
companion paper [11]. 

Let 0 ,p< < ∞  pl  be the normed linear space of all 

sequences with finite norm ,
p

x  where 

1/

1

( ) .p p
np

n

x x
∞

=

= ∑  

If ( )nw w=  is a decreasing non-negative sequence, 
we define the weighted sequence space ( )pl w  as 
follows: 

( )pl w = {  ( )nx  :  
1

p
n n

n
w x

∞

=

< ∞∑  }, 

with norm 
,

,
p w

x  which is defined as follows: 

1

,
1

( ) .p p
n np w

n
x w x

∞

=

= ∑  

Also, if ( )nw w=  is a decreasing non-negative 

sequence such that lim 0n nw→∞ =  and 
1

,n
n

w
∞

=

= ∞∑  then 

the Lorentz sequence space ( , )d w p  is defined as 
follows: 

( , )d w p = {  ( )nx  :  *

1

( )p
n n

n

w x
∞

=

< ∞∑  }, 

where *( )nx  is the decreasing rearrangement of ( )nx . 

In fact ( , )d w p  is the space of null sequences x  for 

which *x  is in ( ),pl w  with norm *
( , ) ,

.
d w p p w

x x=  

Let B  be a matrix with non-negative entries. We 
consider lower bounds of the form 

, , ( , ) ( , )
( ),

p w p v d w p d v p
Bx L x Bx L x≥ ≥  

valid for every non-negative sequence ,x  where L  is a 
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constant which does not depend on .x  We seek the 
largest possible value of ,L  and denote the best lower 
bound by , ,p v wL  for matrix operator from ( )pl v  into 

( ).pl w  Also it is denoted by , ( )p wL B  and ( , ) ( )d w pL B  
on ( )pl w  and ( , ),d w p  respectively. We shall use all 
above notations when 1.p <  

In Section 2, we generalize two techniques obtained 
by Bennett in section 7 of [1] and deduce a lower bound 
for Hausdorff matrix. In section 3, we generalize 
Theorem 1 of [7] for matrix operator from ( )pl v  into 

( )pl w  and deduce a lower bound for the Hilbert and 
Copson matrices. 

Throughout this paper, we denote the transpose 
matrix of B  by ,tB  and we denote by *p  the 

conjugate exponent of ,p  so that * .1
pp p= −  

In a similar way, the first author considered the norm 
of some operators on weighted sequence spaces in [9] 
and [10]. 

Hausdorff Matrix 

In this section we consider the Hausdorff matrix 
operator ,( ) ( ),j kH hμ =  with entries of the form: 

,j kh =

1
1

1

0 ,

j j k a if k jkk

if k j

⎧ −⎛ ⎞ −⎪⎜ ⎟Δ ≤ ≤⎪⎜ ⎟−⎝ ⎠⎨
⎪

>⎪⎩

 

where Δ  is the difference operator; that is 

1k k ka a a +Δ = −  

and ( )ka  is a sequence of real numbers, normalized so 
that 1 1.a =  

If 
1 1

0
( )k

ka dθ μ θ−= ∫            ( 1, 2, ),k =  

where μ  is a probability measure on [0,1],  then for all 
, 1, 2, ,j k =  

1 11 (1 ) ( ) 101,
0 .

j j kk d if k j
h kj k

if k j

θ θ μ θ
⎧ −⎛ ⎞ −−⎪⎜ ⎟ − ≤ ≤∫⎪⎜ ⎟= −⎨⎝ ⎠
⎪
⎪ >⎩

 

The Hausdorff matrix contains some famous classes 
of matrices. These classes are as follows: 

i)  Choice 1( ) (1 )d dαμ θ α θ θ−= −  gives Cesaro 
matrix of order ;α  

ii)  Choice ( ) intd po evaluation atμ θ θ α= =  
point evaluation at gives Euler matrix of order ;α  

iii)  Choice 
1log( )

( )
( )

d d
αθ

μ θ θ
α

−

=
Γ

 gives Holder 

matrix of order ;α  
iv)  Choice 1( )d dαμ θ αθ θ−=  gives Gamma matrix 

of order .α  
The Cesaro, Holder and Gamma matrices have non-

negative entries whenever 0α >  and also the Euler 
matrix, when 0 1.α≤ ≤  

The following lemma is the key to the rest of this 
paper. 
 
Lemma 2.1.  Let 0p ≥  and ( ),i jB b=  be a matrix 

with non-negative entries. The following condition is 
equivalent to the statement that Bx  is decreasing for 
every decreasing non-negative sequence x  in 

( , ) :d w p  

(1) , ,
1

n

i n i j
j

r b
=

= ∑  decreases with i  for each ,n  and 

( ), 1i n n
r

∞

=
 is bounded for each .i  

Proof.  Let ( , )x d w p∈  be a decreasing non-negative 
sequence and .y Bx=  If (1) holds, by Abel summation, 
we have 

, , 1
1 1

( ).i i j j i j j j
j j

y b x r x x
∞ ∞

+
= =

= = −∑ ∑  

It follows that Bx  is decreasing. The converse is 
deduced from the fact that ,i i ny r=  when 

1 .nx e e= + + □ 
The above lemma shows that for a matrix B  with 

condition (1), we have 

, ( , )( ) ( ).p w d w pL B L B=  

In this section, we are seeking a lower bound for the 
Hausdorff matrix(general form) and also for the Cesaro, 
Holder and Gamma matrices. 

 
Proposition 2.2.  Let ( ),n kB b=  be an upper-triangle 
matrix with non-negative entries and 0 1.p< ≤  If 

,sup 0,n k
n k n

b R
∞

=

= >∑  
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,
1

inf ,
k

n kk n
b C

=

=∑  

then 
1 1

, ( ) .
p

p p
p wL B R C

−

≥  
Proof.  Suppose x  is a non-negative sequence. 
Applying Holder's inequality, we have 

1 1/
, , ,

1 1/
, ,

1 1/
,

( )

( ) ( )

( ) .

p p p p
n k k k n k n k k k

k n k n

p p p
n k n k k k

k n k n

p p p
n k k k

k n

b w x b b w x

b b w x

R b w x

∞ ∞
−

= =

∞ ∞
−

= =

∞
−

=

=

≤

≤

∑ ∑

∑ ∑

∑

 

Since B  is an upper-triangle matrix with non-
negative entries and w  is decreasing, then we have 

1 1
, ,

1 1 1

1 1/
,

1

,
1

,
1 1

1

( ) ( )

( )

( )

( )

.

p p p p
n n k k n n k k

n k n k n

p p p
n k k k

n k n

p
n k k k

n k n

k
p

k k n k
k n

p
k k

k

R w b x R w b x

R b w x

b w x

w x b

C w x

∞ ∞ ∞ ∞
− −

= = = =

∞ ∞
−

= =

∞ ∞

= =

∞

= =

∞

=

=

≥

≥

=

≥

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

 

Hence 1
, ,

p pp
p w p w

Bx R C x−≥  and so we have the 

desired conclusion.□ 
In the following statement, we seek lower bound for 

the quasi-Hausdorff matrix when sequences are non-
negative. Recall that transpose of a Hausdorff matrix 
which is called a quasi-Hausdorff matrix. 

 
Theorem 2.3.  Let ( )H μ  be the Hausdorff matrix and 
0 1.p< ≤  Then 

1
1

,, 0
( ( )) ,

p
t p

p wp w
H x d xθ μ θ

−

≥ ∫  

for every non-negative sequence .x  This constant is the 
best possible choice. 
Proof.  Let ( )E α  be the Euler matrix of order .α  Since 

the row sums of ( )tE α  are all 1
α  and column sums 

are all 1, applying Proposition 2.2, we have 
1

, ( ( )) .
p

t p
p wL E α α

−

≥  

We now apply the Minkowski's inequality to get: 

1/
,,

1 1

1 1/
,0

1 1

1 1/
,0

1 1

1

,0

1
1

0 ,

( ( ) )

( ( ( ) ( )) )

( ( ( ) ) ) ( )

( ) ( )

( ( )) .

t t p p
n n k kp w

n k

t p p
n n k k

n k

t p p
n n k k

n k

t

p w

p
p

p w

H x w H x

w E x d

w E x d

E x d

d x

α μ α

α μ α

α μ α

α μ α

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

−

=

=

≥

=

≥

∑ ∑

∑ ∑∫

∑ ∑∫

∫

∫

 

This completes the proof of the above inequality. 
Therefore for any real number 0,α >  we have 

,

t

p w
H x

α+
≥

1
1

0 ,
( ( )) ,

p
p

p w
d x

α
θ μ θ

−

+∫  ( )I  

for all non-negative sequence x  in ( ).pl w  We show 

that the above constant is the best possible. Let 1
p

ρ >  

and n  be a fixed integer such that .n ρ≥  We define x  
by 

0

.

if k n

k

x k nk if k n
k

n

ρ

<⎧
⎪
⎪ −⎛ ⎞
⎪⎜ ⎟⎪⎜ ⎟= ⎨ −⎝ ⎠ ≥⎪

⎛ ⎞⎪
⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

 

Since 

( ) ( 1 ) ,
( 1)

p
k

k nx k
k n
ρ ρ −− + −

= ≈
+

 

when ,k →∞  it follows that 
p

x < ∞  and 
p

x →∞  

when 1 .
p

ρ →  Since w  is decreasing and also for all 

,k  ,kw α α+ ≥  then we have 

1/ 1/
1,

( ) .p p
p p w p

x x w x
α

α α
+

≤ ≤ +  
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So 
,p w

x
α+
< ∞  and 

,p w
x

α+
→ ∞  when 1 .

p
ρ →  

Moreover, for all m n>  we have 
1 1

0
( ) ( ).t

m mH x x dρθ μ θ−= ∫  

Hence 

( )( ),, 1

( )( )
1

( ) sup 11 ,,

11( ( ))0 ,

p n ptH x w h xm k m kp w m k m

ptw H xm mm n

p pn w h xk mk m

ppd x p w

α
α

α

α

ρθ μ θ α

∞
= +∑ ∑

+ = =

∞
+ +∑

= +

≤ + +

−
∫ +

 

and also 

1 , 1
,

,

,

1 1

0

( )sup
( )

( ( )) .

p p
k m

k mt
p w p

p w

p

n w h x
L H

x

d

α

α

ρ

α

θ μ θ

+

+

−

+
≤

+ ∫

 

If 1 ,
p

ρ →  then 

1
1

, 0
( ) ( ).

p
t p

p wL H dα θ μ θ
−

+ ≤ ∫  

Therefore 
1

1

, 0
( ) ( )

p
t p

p wL H dα θ μ θ
−

+ = ∫  

and the constant in ( )I  is best possible. Hence for all 
m  there is a non-negative sequence ( ),m py l w∈  such 
that 

1
1,

0
,

1( ) .
t p

m p w p

m p w

H y
d

y m
α

α

θ μ θ
−

+

+

< +∫  

Since 
, ,

,t t
m mp w p w

H y H y
α+

≤  we have 

, ,

, ,

t t
m mp w p w

m mp w p w

H y H y

y y
α

α α

+

+ +

≥  

                       

, ,

, ,

,
,

,

.

( )

t
mm p w p w

m mp w p w

m p w t
p w

m p w

H yy

y y

y
L H

y

α

α

+

+

=

≥

 

and 
1

1,
, 0

,

1( ) ( ) .
p

m p w t p
p w

m p w

y
L H d

y m
α

θ μ θ
−

+

≤ +∫  

If 0,α →  since 
,

,
p w

y
α+
< ∞  we have 

,p w
y

α+
→  

,p w
y  and so 

1
1

, 0

1( ) ( ) .
p

t p
p wL H d

m
θ μ θ

−

≤ +∫  

Now, if ,m →∞  we have 

1
1

, 0
( ) ( ).

p
t p

p wL H dθ μ θ
−

≤ ∫  

Therefore 
1

1

, 0
( ) ( ).

p
t p

p wL H dθ μ θ
−

= ∫  

This establishes the proof of the theorem.□ 
In the following corollary we state one result of 

Theorem 2.3 on ( , ).d w p  
 

Corollary 2.4.  Let ( )H μ  be the Hausdorff matrix 
satisfying condition (1) of Lemma 2.1. If 0 1,p< ≤  
then 

1
1

( , )( , ) 0
( ( ))

p
t p

d w pd w p
H x d xθ μ θ

−

≥ ∫  

for all decreasing non-negative sequence .x  
Proof.  Applying Lemma 2.1 and Theorem 2.3, we 
deduce the statement.□ 
 
Example.  We denote Gamma matrix of order 2 by 

(2).Γ  If ( ),(2)t
i jbΓ =  is the transpose of the Gamma 

matrix, then we have 

1
( 1)

2,
0 .

i
if j i

j jbi j
if j i

⎧
≥⎪

⎪ += ⎨
⎪
⎪ <⎩
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Since ,
22 ,

1i n
ir

n
= −

+
 it is clear that 

1, , 2.i n i nr r+ ≤ ≤  

Hence ,i nr  decreases with i  for each n  and 

, 1( )i n nr ∞
=  is bounded for each .i  Therefore (2)tΓ  

satisfies condition (1) of Lemma 2.1. Applying 
Corollary 2.4, we deduce that 

( , )
2( (2)) .

1
t

d w p
pL

p
Γ ≥

+
 

In the following statement, we find a lower bound for 
a quasi-Hausdorff matrix when sequences are non-
negative. 
 
Proposition 2.5.  Let 0 , 1p q< <  and B  be a matrix 
with non-negative entries. Then 

, ,q w p w
Bx L x≥  

for all non-negative ,x  if and only if 

** ,,

t
q wp w

B y L y≥  

for all non-negative ,y  where * *,p q  are the conjugate 
exponents of p  and ,q  respectively. 
Proof.  Suppose u  is a sequence with non-negative 
entries. First we show that 

*

,

t ,

inf{ , : v 

  is a non-negative sequence and v  1}

t w

w

u u v= < >

≥
 ( )I  

for 0 1t< <  or 0,t <  where 
1

, .k k k
k

u v w u v
∞

=

< >= ∑  

Let v  be a non-negative sequence such that 
*t ,

 v  1.
w
≥  Then applying Holder's inequality, we 

deduce that: 

*

* *

*

1

1 1

1

1/ 1/

1 1

, ,

,

,

( ) ( )

.

k k k
k

t t
k k k

k

t t t t
k k k k

k k

t w t w

t w

u v w u v

w u v

w u w v

u v

u

∞

=

∞ +

=

∞ ∞

= =

< > =

=

≥

=

≥

∑

∑

∑ ∑
 

Hence 
,

inf , .
t w

u v u< >≥  

We divide the proof of the converse inequality into 
two cases as follows: 

Case 1. If 0,u >  we take 

*

1

,

, .t k
k k k

t w

v
v u v

v
−= =  

Hence *

1

, ,

t

t w t w
v u −=  and 

,
,

t w
u v u< >=  and so 

that 

,
inf , .

t w
u v u< >≤  

Case 2. If some 0,ku =  we consider (i), (ii). 
(i) For 0,t <  

,
0

t w
u =  and set 

*1/

1 .

0

n

t
k

for n k

v
for n k

w

≠⎧
⎪⎪= ⎨

=⎪
⎪⎩

 

(ii) For 0 1,t< <  we set 

*

1

1/

0

( ) 0
2

t
k k

k t
kk

k

u for u

v
for u

w
ξ

−⎧ >
⎪

= ⎨
=⎪

⎩

 

and 
* ,

,k
k

t w

v
v

v
=  where ε  is positive. 

Hence * ,
1,

t w
v =  * *, 1/

,

1
( )tt w t

t w

v
uε −

≥
+

 and also 

*1/
, ,

, ( ) .t t t
t w t w

u v u uε −< >≤ +  

So that 
*1/

, ,
inf , ( ) .t t t

t w t w
u v u uε −< >≤ +  

In which if ε  tends to zero, we have 

,
inf , .

t w
u v u< >≤  

This completes the proof of ( ).I  
Applying ( )I  twice, we deduce that: 

*, , ,

*, ,

* , ,

,1 1 1

1 1

1 1

inf inf inf ,

inf inf ,

inf inf ,

p w p w q w

p w q w

q w p w

q wx x y

t

x y

t

y x

Bx Bx y

x B y

x B y

≥ ≥ ≥

≥ ≥

≥ ≥

= < >

= < >

= < >
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                           *
* ,

,1
inf
q w

t

p wy
B y

≥
=  

and so we have the statement.□ 
In the following statement, we are seeking a lower 

bound of the Hausdorff matrix when sequences are non-
negative. 
 
Corollary 2.6.  Let 0p <  and ( )H μ  be the Hausdorff 
matrix. Then 

1
1

,, 0
( ( ))t p

p wp w
H x d xθ μ θ

−

≥ ∫  

for every non-negative sequence .x  This constant is the 
best possible choice. 
Proof. Since *0 1,p< <  applying Theorem 2.3 and 

Proposition 2.5, we establish the statement.□ 
 
Corollary 2.7.  Suppose 0 1p< ≤  and ( )H μ  is the 
Hausdorff matrix. Then 

1
1

0
( ( ))

p
t p

pp
H x d xθ μ θ

−

≥ ∫  

for every non-negative sequence .x  This constant is the 
best possible choice. 
Proof.  By taking 1nw =  for all n  in the Theorem 2.3, 

we have the above inequality.□ 
 
Corollary 2.8.  If 0p >  and ( )H μ  is the Hausdorff 
matrix, then 

1
1,

0
1 1 1

( ) ( ( ))
n

pn k p pp
n k k

n k kk

h
w d w x

x
θ μ θ

∞ ∞
− −

= = =

≤∑ ∑ ∑∫  

for every non-negative sequence, and this constant is 
best possible. 
Proof.  Let y  be a sequence with non-negative entries. 
Since 0,p− <  applying Corollary 2.6, we have 

1
1

,, 0
( ( )) .t p

p wp w
H y d yθ μ θ

−−
≥ ∫  

Hence 

1
1

, 0
1 1 1

( ) ( ( )) .
n

pp pp
n n k k k k

n k k
w h y d w yθ μ θ

∞ ∞
−− −

= = =

≤∑ ∑ ∑∫  

By replacing ky  by 1

kx
 for 1, 2, ,k =  we get the 

required result.□ 

Lower Bound for Matrix Operators  
on d(w,p) and lp(w) 

In this part of the study, we generalize Theorem 1 of 
[7] for matrix operators from ( )pl v  into ( )pl w  and 
deduce a lower bound for the Hilbert, Copson and 
Gamma matrices. 
 
Lemma 3.1.  [7, Lemma 2]. Let 1p ≥ . Suppose that 

( )ja , ( )jx  are non-negative sequences and that ( )jx  

is decreasing which tends to 0. Let 
1

n

n j
j

A a
=

= ∑ (with 

0 0A = ) and 
1

.
n

n j j
j

B a x
=

= ∑  Then 

(i) 1 1( )p p p p p
n n n n nB B A A x− −− ≥ −  for all n . 

(ii) If 
1

j j
j

a x
∞

=
∑  is convergent, then 

1
1 1

( ) ( ).
n

p p p p
j j n n n

j n
a x A x x

∞

+
= =

≥ −∑ ∑ □ 

Theorem 3.2.  Suppose ( ),i jA a=  is a matrix operator 

from ( )pl v  into ( )pl w  with non-negative entries. Let 

, ,
1

,
n

i n i j
j

r a
=

= ∑  ,
1

n
p

n i i n
i

S w r
=

= ∑  and 1 .n nV v v= + +  

Then 

, , ( ) inf .p n
p v w n

n

S
L A

V
=  

Proof.  Denote the stated infimum by .C  Let x  be in 
( )pl v  such that 1 2 0x x≥ ≥ ≥  and ( ).y A x=  By 

Lemma 3.1, we have 

, 1
1

( ).p p p p
i i n n n

n
y r x x

∞

+
=

≥ −∑  

Hence 

, 1
1 1 1

1 ,
1 1

1
1

1
1

1

( )

( )

( )

( )

.

p p p p
i i i n n n

i i n

p p p
n n i i n

n i

p p
n n n

n

p p
n n n

n

p
n n

n

w y r x x

x x w r

S x x

C V x x

C v x

∞ ∞ ∞

+
= = =

∞ ∞

+
= =

∞

+
=

∞

+
=

∞

=

= −

= −

= −

≥ −

=

∑ ∑∑

∑ ∑

∑

∑

∑
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Therefore 

, ,
,p p

p w p v
Ax C x≥  

hence 

, , ( ) .p
p v wL A C≥  

To show that the constant C  is the best possible, we 
take 1 2 1nx x x= = = =  and 0kx =  for all 

1.k n≥ +  Then 

, ,
, .p p

n np v p w
x V Ax S= =  

Therefore 

, , ( ) .p
p v wL A C= □ 

 
Note 1.  In the same way, one shows that if A  is 
regarded as an operator from ( )pl v  into ( ),pl w  where 

1,p q≥ ≥  then its lower bound is 
1/

1/inf ( ).
q

n
pn

n

S
V  

 

Note 2.  In the case 1p = , the sequence ( )n

n

S
V  also 

determines the norm; in fact, 
1, ,

sup ( ),n
nv w

n

SA V=  

see [11]. 

Write ,
1

.p
n i i n

i
u w a

∞

=

= ∑  Since 1,n n nv V V −= −  we have 

the following statement. 
 
Proposition 3.3.  If A  satisfies the conditions of 
Theorem 3.2 and ( ),i ja  decreases with j  for each ,i  

then 

, , ( ) inf[ ( 1) ] .p p p n
p v w n

n

u
L A n n

v
≥ − −  

Proof.  See Proposition 1 of [7].□ 
We recall that the Hilbert operator H  is defined by 

the matrix 

,
1 .i ja

i j
=

+
 

In the following statement, we consider the lower 
bound of .H  
 

Theorem 3.4.  Suppose that 1
nw

nα=  and 1
nV n α−=  

with 0 1α≤ ≤  and let 1.p ≥  Then 

, ,
1

1( ) .
( 1)

p
p v w p

i
L H

i iα

∞

=

=
+∑  

Proof.  We have 1 1( 1) .nv n nα α− −= − −  Since 
1 1( 1) ( 1) ,n n n n nα α α α− − − −− = − ≤ −  hence .nv n α−≤  

Also 1 1( 1) ( 1)p p p pn n n n n− −− = − ≥ −  and 

1( 1) .p p pn n n −− − ≥  Therefore 1( 1)p p
p

n

n n n
v

α+ −− −
≥  

and so 

1( 1)inf inf .
p p

p
n nn n

n

n n u n u
v

α+ −− −
≥  

If 1 ,p
n nC n uα+ −=  a small change in the proof of ([6], 

Theorem 13) shows that 1nC C≥  for all ;n  hence 

1 1inf .nn
C C u= =  Thus , , 1( ) .p

p v wL H u≥  Since 1 ,p v
e  

1=  and 1 1,
,

p w
He u=  we have , , 1( ) .p

p v wL H u≤  

Therefore 

, , 1
1

1( ) .
( 1)

p
p v w p

i
L H u

i iα

∞

=

= =
+∑ □ 

Corollary 3.5.  We have ( ) ( 1).p
pL H pξ= −  

Proof.  If 0,α =  then 1n nw v= =  and applying the 

pervious theorem, we have the statement.□ 
If ,n nw v=  we obtain a lower bound for matrix 

operator on ( , )d w p  and ( )pl w  which is considered in 
[7]. 
 
Corollary 3.6.  Suppose ( ),i jA a=  is a matrix operator 

from ( )pl w  into itself with non-negative entries. We 

write , ,
1

,
n

i n i j
j

r a
=

= ∑  ,
1

n
p

n i i n
i

S w r
=

= ∑  and 

1 .n nW w w= + +  Then 

, ( ) inf .p n
p w n

n

S
L A

W
= □ 

As we stated in section two the Hausdorff matrix is 
contained the famous Cesaro and Gamma matrices. We 
denote the Cesaro matrix of order α  by ( )C α  and the 
Gamma matrix of order α  by ( ).αΓ  If 2,α =  choice 

( ) 2(1 )d dμ θ θ θ= −  gives (2)C  with entries: 

1
1

( 1), 2
0

n k
if k n

n nan k
if k n

− +⎧
≤⎪⎪ += ⎨

⎪
⎪ >⎩
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and ( ) 2d dμ θ θ θ=  choice gives (2)Γ  with entries: 

1
( 1)

, 2

0 .

k
if k n

n nan k

if k n

⎧
≤⎪

⎪ += ⎨
⎪
⎪ >⎩

 

If tA  is the transpose matrix of ,A  ( )tC α  is called 
the Copson matrix of order .α  For 1,α =  (1) (1).CΓ =  

Hence for 1
nw

nα=  where 0 1,α< ≤  applying [8] we 

have 

1, 1,
1( (1)) ( (1)) .t t

w wL L C
α

Γ = =  

In the following statement, we find lower bound of 
(2)tC  and (2)tΓ  on 1( ).l w  It is enough to consider the 

sequence ( )n

n

s
w

 instead of ( ),n

n

S
W

 because of the well-

known fact listed in the following lemma. 

Lemma 3.7.  If n

n

s
m M

w
≤ ≤  for all ,n  then 

n

n

S
m M

W
≤ ≤  for all .n  

Proof.  Elementary.□ 

Proposition 3.8.  Let 0 1.α< ≤  If 1 ,nw
nα=  then 

1, ( (2)) 1.t
wL C =  

Proof.  We show that 1

1

n

n

s s
w w

≥  for all .n  Therefore 

applying Lemma 3.7, we have 1
1

1

.n

n

S S
s

W W
≥ =  If we 

apply Corollary 3.6, then 

1, ( (2)) 1.t
wL C =  

We now show the first inequality. For all ,n  we have 

1

1

1

1 1
1 ( 1)
2

2 ( ( 1) ( 2) 1)
( 1) 2 3

2 ( ( 1) ( 2) 1)
( 1)

1 ,

n
pn

p
kn

p p
p

p p

s n kn
w k n n

n nn n n
n n

n n n
n n

s

=

+

− +
=

+

= + − + − + +
+

≥ + − + − + +
+

= =

∑

 

the desired inequality.□ 

Proposition 3.9.  Let 1 .nw
n

=  Then 

1, ( (2)) 1.t
wL Γ =  

Proof.  We show that 1

1

n

n

s s
w w

≥  for all .n  Therefore 

applying Lemma 3.7, we have 1
1

1

.n

n

S S
s

W W
≥ =  If we 

apply Corollary 3.6, then 
1, ( (2)) 1.t

wL Γ =  
We now show the first inequality. For all ,n  we have 

1

1

1
1 ( 1)
2

2
1

1 ,

n
n

kn

s kn
w k n n

n
n

s

=

=
+

=
+

≥ =

∑

 

the required inequality.□ 
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