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Abstract 

The relation between MS and logM0 is examined using Harvard CMT M0, with 
both Prague

SM  and the improved surface wave magnitude scale t
SM  [1] applied to 

ISC data. Although t
SM  shows less scatter than Prague

SM , neither dataset supports a 
slope of MS against logM0 which tends to 1.0 towards smaller magnitudes. Instead, 
a good linear fit of slope 0.76 using t

SM  is found throughout the fitted range of 
M0 (2.0×1024 to 1.26×1027 dyne-cm), and this linearity extends down to 
M0=2.5×1023 dyne-cm. This suggests that previous proposals that MS data support 
a theoretical slope of 1.0 in the low range of magnitude which may be expected 
from established relationships, is not justified. 
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Introduction 

The objective of this article is to reassess the 
empirical relationship between surface-wave magnitude 
MS and seismic moment M0. This study was prompted 
by the introduction of a surface wave magnitude scale 
with improved distance correction ( t

SM ) [1]. Magni-
tude, especially MS, as a measure of earthquake strength, 
forms a basic dataset in seismology. However there is 
evidence of bias [2] in published M0 as Central Moment 
Tensor (CMT) solutions, nowadays seismologists 
consider the seismic moment as a more reliable measure 
of earthquake size. Seismic moment is in theory a direct 
measure of earthquake size, whereas all magnitude 
scales are empirical. MS is available for most significant 
earthquakes since about third decay of the twentieth 
century and some historical earthquakes, whereas 

routine estimates of M0 by the Harvard group are  
only available since about 1977 for earthquakes having 
body-wave magnitude mb of about 5 and greater. 
Therefore development of a reliable relationship 
between magnitude and seismic moment is of 
fundamental importance for integrating historical data 
into earthquake catalogues. 

Most global agencies such as the International 
Seismological Centre (ISC) and the National Earth-
quake Information Center of the US geological survey 
(NEIC) routinely determine MS using an empirical 
formula, the so-called “Prague formula” or “IASPEI 
formula” (International Association of Seismology and 
Physics of the Earth's Interior), given by 

Pr log( ) 1.66log 3.3maxS
AagueM
T

= + ∆+ , (1) 
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where A is half the peak-to-peak amplitude (on vertical 
component or resultant amplitude on two horizontal 
components) in microns, T is the wave period in 
seconds, and ∆ is the epicentral distance in degrees [3].  
Rezapour and Pearce [1] considered the theoretically-
known contribution of dispersion and geometrical sprea-
ding, and introduced a modified MS formula given by 

1log( ) log∆max 3

1 log(sin∆ ) 0.0046 ∆ 5.370,
2

AtM s T
= +

+ + +

 (2) 

They concluded that the t
sΜ  formula gives reduced 

bias for MS in comparison with the Prague formula, and 
that there is less scatter in logM0 for a given M0 when 

t
sΜ  is used. Ekström and Dziewonski [4], here referred 

to as ED88, presented evidence of systematic variations 
in MS due to tectonic setting; they also fitted an 
analytical relationship to the MS versus logM0 values.  

In the CMT Catalogue the prime location 
information is that of the NEIC PDE (Preliminary 
Determination of Epicenters). Here the NEIC epicentral 
location and origin time (in the ISC Bulletin) were 
compared with those in the CMT Catalogue. Those 
epicentral estimates whose absolute values of 
differences are 2.0≤  degree in both latitude and 
longitude and absolute value of differences in origin 
times are 5≤  seconds are assumed to be the same 
earthquake. 6,553 earthquakes with available MS and M0 
were selected in this way, for the time period from 1978 
to 1993.  

In this paper the relationship between seismic 
moment M0 and two MS scales, ague

SM Pr  (ISC) and t
sΜ  

are compared using M0 values obtained from the CMT 
Catalogue for the above dataset and the conclusions of 
ED88 are reexamined. 

Analysis 

Earliest studies have assumed a linear relation 
between surface-wave magnitude and the log of seismic 
moment. Under the hypothesis of constant stress drop, 
theoretical models predict that logM0 and MS are indeed 
related linearly: 

0log ,SM A BM= +  (3) 

The slope (B) commonly found in the literature [5-
10] is around 1.5. However, the data and the range of 
magnitudes used by different authors were slightly 
different. An attempt to obtain a relation between 

magnitude and seismic moment [7,11] resulted as: 

0
2 log 10 73
3SM M . ,= −  (4) 

where M0 is seismic moment in dyne-cm. The 
relationship between seismic moment and earthquake 
energy is simplified by the observation that the stress 
drop is quite similar for virtually all earthquakes of 
magnitudes exceeding about 3. A constant stress drop in 
low-magnitude seismic data has been reported from a 
deep borehole [12]. For dataset containing smaller and 
large earthquakes, has been showed that earthquakes are 
self-similar over magnitude range M~-2 to ~8 [12]. 
Other seismologists for smaller earthquakes all from the 
same region reported that stress drop appears to increase 
with increasing moment for earthquakes below a critical 
size about 2.0×1020 dyne-cm, becoming constant for 
earthquakes larger than critical size [13].  

The seismic moment represents the size of an 
earthquake only at a period much longer than the source 
process time (~source dimension / shear velocity), so it 
represent long-period end of the source spectrum [14]. 
For very large earthquake the corner frequency can fall 
below ~0.05 Hz (which used for MS determination). In 
equation (4) because a theoretical slope of 1.0 is only 
predicted from instantaneous moment release on source 
rupturing surface, a different slope is to be expected for 
real data. Moreover, it has been argued [5,15] that the 
slope should decrease towards larger magnitude on 
account of the decreasing corner frequency, since the 
magnitude estimates are derived at a standard 
frequency. 

ED88 chose to use a two-segment linear model, with 
a quadratic transition between the segments, to fit the 
global Ms versus logM0 data. They attempted to fit the 
averaged magnitude estimates for 2,341 earthquakes, to 
a hypothesized MS:logM0 relation. In their analytical 
relation between MS (as the dependent variable) and 
logM0 (as the independent variable) they imposed a 
slope of unity for small events, and 3

2  for moderate to 
large events. 

We use the above dataset of 6,553 earthquakes 
between 1978 and 1993. Magnitudes ( ague

SΜ Pr  and t
sΜ ) 

have been recomputed from amplitude and period 
measurements in the ISC Catalogue to two decimal 
places, and corresponding M0 values are taken from the 
CMT Catalogue. The individual data are plotted in 
Figures 1a and 1b for ague

SΜ Pr  and t
sΜ  respectively. 

The event magnitudes are averaged within each 0.1-
wide interval of logM0 units, and are plotted in Figures 
2a, and 2b. 
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Figure 1.  Distribution of Ms values against logM0 for 
individual data points 6,553. (a) for Prague

SΜ  values. (b) for 
t
SΜ  values. The relationship of Hanks and Kanamori [7] (our 

Equation 4) is shown by a thick dashed line in both graphs. 

 
There are some minor differences between this 

dataset (6,553 selected earthquakes) and that of ED88 
resulting from their use of NEIC rather than ISC data. 
They used NEIC

SΜ  values from events for which both 
hNEIC and hCMT are less than 50 km, whereas here data 
from events with hISC ≤ 60 km are used. Also, their data 
window was 1977-1987 whereas here 1978-1993 is 
used (consistent ISC MS determination began in 1978). 
Although we use the same lower M0 limit of 2.0×1024 
dyne-cm for fitting, because of saturation a more 
restrictive upper limit of M0=1.26×1027 dyne-cm is 
imposed, it seems the saturation in this dataset appears 
at this value. However, increasing the number of broad-
band and very broad-band seismic stations all over 
world and using surface wave measurements from these 
station without the IASPEI restriction in period to MS 
determination cases the saturation occurs at grater value. 

 

Figure 2.  Average SM values over 0.1-unit-wide intervals of 

logM0. (a) for Prague
SΜ  values. (b) for t

sΜ  values. In (a) and 
(b) the solid curve represents the ED88’s analytical relation 
(their Eq. 2) and our Eq. (6) respectively, and the thin dashed 
line shows the linear regression fit to the same data. In (a) and 
(b) the thick dashed line shows the relationship of Hanks and 
Kanamori [7]. In (a) and (b) the range of data used in the fits is 
highlighted in gray. 

 
The analytic relation has three free parameters and is 

most easily represented using the formulation of ED88, 
except that we control the limits of the segments by 
constants A and B in units of M0 (rather than logM0), in 
order to relate the constants to the graph more easily. 
We obtain 

0 0

(logA logB)
k log for A

6SM M M
+

= − + <  (5a) 

0

2
0

0

(log A log B)
k logM

6

(log log A)
for A B

6(log B log A)

SM

M
M

+
= − +

−
− ≤ ≤

−

 (5b) 
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Table 1.  Fitting parameters obtained when applying the analytical relation of Eqs. (5a, 5b, 5c) to the Prague
SΜ  and t

sΜ  datasets. a) 
Without a constraint of a segment with a slope of 1.0. b) Considering a minimum of two points are required to lie along a slope of 
1.0. c) For applying a linear relation of 0αlog βΜ Ms = +  

a) Ms  formula Parameters  Sum Squared Residuals (SSR)a  No. of data pointsb 
 k A B  r1 r2 r3 R  n1 n2 n3 N 

t
sΜ  -10.89 2.00×1024 1.45×1026  0.0000 0.0239 0.0275 0.0514  0 18 10 28 
Prague
SΜ  -10.78 2.00×1024 2.57×1026  0.0000 0.0158 0.0243 0.0401  0 21 7 28 

 
b) Ms  formula Parameters  Sum Squared Residuals (SSR)  No. of data points 

 k A B  r1 r2 r3 R  n1 n2 n3 N 
t
sΜ  -10.89 2.88×1024 1.29×1026  0.0108 0.0179 0.0275 0.0563  2 16 10 28 
Prague
SΜ  -10.78 2.88×1024 2.09×1026  0.0047 0.0134 0.0245 0.0426  2 18 8 28 

 
c) Ms  formula α β SSR Correlation coefficient N 

t
sΜ  0.763518±0.011680 -13.448340±0.300357 0.064944 0.996971 28 
Prague
SΜ  0.783727±0.012359 -13.875954±0.317816 0.072714 0.996783 28 

a r1, r2, and r3, are respectively the Sum of the Squared Residuals of the three sections of the relationship in Eqs. (5a, 5b, 5c), and R 
is that for the total relation. 
b n1, n2, n3, and N are the number of data points used to compute the four SSR values, respectively. 

 
0 0

2k log for B
3SM M M= + >  (5c) 

We first attempt to fit an analytical function of the 
form proposed by ED88 using t

SΜ . The results of our 
analysis are shown in Table 1. Table-1a shows the 
resulting fit when the Sum of the Squared Residuals 
(SSR) is minimized in k, A and B using t

SΜ  and the 
specified range of M0. It is seen that A is equal to 
2.0×1024 dyne-cm, which corresponds to the lower limit 
of the fitted range. Hence, no segment with a slope of 
1.0 remains when the least-squares fit to the functions in 
Eqs. (5a,5b,5c) is optimized. The full relation is given 
by 

24
0 019 30 log for 2 0 10t

SM . M M .= − + < ×  (6a) 

2
0 0

24 26
0

19.30 log 0.09(log 24.30)

for 2.0 10 1.45 10

t
SM M M

M

= − + − −

× ≤ ≤ ×
 (6b) 

26
0 0

210 89 log for 1 45 10
3

t
SM . M M .= − + > ×  (6c) 

We next reassess the fit to Eqs. (5a,5b,5c) using 
ague

SΜ Pr  (Table-1a). Again we see that no segment of 
slope 1.0 remains, although the SSR is smaller than 
when t

SΜ  values are used. 

The above results suggest that the observed data for 
t
SΜ  and even ague

SΜ Pr do not provide evidence of a 
slope of unity for earthquakes in the relationship 
between Ms and logM0. If a minimum of two points are 
required to lie along a slope of 1.0 (Table-1b), then for 

ague
SΜ Pr the values of k, A, and B are almost equivalent 

to those given by ED88. 
The analytical relation of ED88 (their Eq. 2) and our 

fit (our Eqs. 6a, 6b, 6c) are plotted with solid curves, 
and the relationship of Hanks and Kanamori [7] is 
shown by a thick dashed line (Figs. 2a, 2b). Dark 
histogram bars are used to highlight the range of data 
used to compute the fit. These plots show visually that 
the evidence in support of the analytical relation 
proposed by ED88 is even weaker when the improved 

t
sΜ  scale is used. But by using a standard linear 

regression a better fit is obtained for t
sΜ  than for 

ague
SΜ Pr as shown by thin dashed lines (Figs. 2b, 2a). 
It is important to compare the success of testing 

different hypotheses. First, the sum squared residuals of 
fit in the both hypotheses using t

sΜ  scale are compared 

with residuals of fit using ague
SΜ Pr scale. Comparison 

shows that the residuals in the case of applying 
analytical relation and using t

sΜ  values is larger than 

that for using ague
SΜ Pr values, but this result is reverse in 
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the case of fitting a single linear regression (compare 
fitting parameters in Table-1b and Table-1c). For both 

ague
SΜ Pr and t

sΜ  the residuals of fit is increased when a 
standard linear regression is applied. This is expected, 
because multiple linear and unlinear regressions analyze 
normally gives smaller residuals than only one single 
linear regression. The residuals of a single fit by using 

t
sΜ  values about 11% is reduced in comparison with 

using ague
SΜ Pr values. Moreover, it is apparent (Figs. 2a, 

2b) that a linear fit extends to smaller moments which 
were excluded from the fit because of possible 
incompleteness of earthquake catalogue, and also 
because of possible upward bias in Ms values close to 
the detection threshold. We use the same lower M0 limit 
of 2.0×1024 dyne-cm for fitting as ED88 used. It is 
apparent that the goodness of fit strongly depends on the 
upper limit of fitted data, because the progressively 
smaller number of earthquakes towards higher moment 
create greater scatter, and because of the onset of 
magnitude saturation. 

ED88’s main reason for imposing a lower limit of 
2.0×1024 dyne-cm when fitting their relation was the 
upward biasing of Ms Values caused by station 
threshold effects. Of course, this specific source of bias 
is governed by the bias in magnitude rather than 
moment. Figures 1a and 1b show a large scatter in the 
logM0: Ms: relation for individual events, particularly at 
smaller magnitude. If data points below, say Ms=4.5 are 
affected by station threshold bias, then this would have 
only a marginal effect on Figures 2a and 2b. We 
conclude that this source of bias does not contribute 
significantly to histograms with logM0 > 23.4 (M0 > 
2.5×1023 dyne-cm).  

To examine the possible upward bias in low 
magnitude values we determined station correction 
(average station

S
event
S MM −  values for each station) by 

using data of 10,894 earthquakes for which three or 
more observations have been used in the calculation 
of ISC

SΜ . The average station correction in 0.1-unit-wide 
ranges of logM0 against logM0, and the histograms of 
used data are plotted respectively in Figures 3a and 3b 
for 6,553 earthquakes. Figure 3a shows that earthquakes 
with M0 smaller than ~1025 dyn-cm have been reported 
by individual stations in which most of station 
corrections ( station

S
event
S MM − ) are positive. Therefore, 

by applying station correction, calculated MS values will 
be increased about 0.1 for earthquakes with M0 smaller 
than ~1025 dyn-cm, this means the dataset used in this 
study does not show an upward bias in low magnitude 
values.  

We conclude that data used here are more consistent 
with a linear fit than with the more complicated analytic 
relation of Eqs. (5a, 5b, 5c), and that this is so over the 
wider moment range from M0=2.5×1023 to 
M0=1.26×1027 dyne-cm, however in our analysis we 
used data range from 2.0×1024 to 1.26×1027 dyne-cm. 
This conclusion implies that logM0 is proportional to 
about 1.3MS over this wider magnitude range or MS is 
proportional to logM0 as:  

0(0.763518 0.011680) log

(13.448340 0.300357),

t
SM M= ±

− ±
 (7) 

The observed linear relationship suggests that the 
spectral fall-off above the corner frequency is not 
influencing Ms measurements at least up to 7.2.SM ≤  
We can only speculate on the origin of the 0.76 
gradient. We can be confident that it is not caused by 
inadequate distance correction since we are using t

SΜ  
(Table 1c) although the difference between this value 
and the 0.78 obtained for ague

SΜ Pr  (Table 1c) may 
represent such an effect. One possibility is that the 
deviation of our gradient from 1.0 represents a 
dependence of stress drop ∆σ upon M0. If this were so, a 
relation 14.0

0M∝∆σ is implied, which corresponds to a 
reduction in stress drop towards larger earthquakes.  

The generation of 20-second surface-wave used in 
the MS calculation depends on focal depth, focal 
mechanism as well as on the earth structure near the 
earthquake source or along the propagating path. In 
order to compare the focal mechanism effect on 
estimated MS, the data are grouped. Here, following 
Frohlich and Apperson [17], earthquakes are grouped 
according to dip angle values of their P, B and T axes 
(δP, δB, and δT values) which were taken from Harvard 
source solutions. The mechanism is considered as 
strike-slip or normal faulting when dip angle of the B or 
P axes exceeds 60° respectively. When the T axis 
exceeds 50° the mechanism is proposed as thrust 
faulting. The t

SΜ  values for each group averaged over 
0.1-unit-wide intervals of logM0 are plotted in Figure 4. 
This figure represents a set of ( t

SΜ , logM0) regression 
lines over a wide range of M0 (2.5×1023 to 1.26×1027 
dyne-cm) inferred from global distributed earthquakes 
with different focal mechanism. The values of the 
correlation coefficient, always greater than 0.97, 
indicate that the linear regression inversion is a good 
fitting. The thick solid (strike-slip) and gray (thrust) 
lines do not show much significant differences. The 
slope of thin solid line (normal earthquakes) is smaller 
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than of the other lines. Consequently, in the case of 
normal earthquakes, for a fixed value of M0>~1025, the 
magnitude t

SΜ  would be small (~ 0.1) in comparison 
with other earthquakes.  

To compare average t
SΜ  in different tectonic 

settings defined as “oceanic ridges & fracture zones”, 
“continental”, and “subduction zones”, the data were 
classified using Flinn-Engdahl seismic region number 
[16], and t

SΜ  values were averaged over 0.1-wide 
intervals of logM0. In Figure 5 average MS versus logM0 
are compared for different tectonic regions. This figure 
shows that the continental earthquakes have a larger 

t
SΜ  than corresponding earthquakes along mid-oceanic 

ridges and subduction zones with the same seismic 
moment. However, the largest earthquakes occur in 
subduction zones. For a given M0 value, mid- oceanic 
ridge earthquakes have a smaller t

SΜ  than earthquakes 
in other regions. The difference between these regions is 
not constant and it increases with increasing seismic 
moment. Also, the number of individual data points 
controls the scatter of averaged data. 

 

 

Figure 3.  (a) Average station corrections of 111,555 station 
records for 6,553 earthquakes over 0.1-wide intervals of logM0 
against logM0. Error bars show a standard deviation of data 
points. (b) Histograms of dataset used in this study. White and 
gray histograms represent respectively number of contributed 
stations and earthquakes. 

Conclusions 

In the relation of MS with logM0 the observed data do 
not provide evidence of a slope of unity towards smaller 
events when either the t

SΜ  or ague
SΜ Pr  scales are used. 

A simple linear regression gives a slope of 0.76 for t
SΜ  

over a wide range of moments from 2.0×1024 to 
1.26×1027 dyne-cm extending below the range used for 
fitting. The linear regression is less good for ague

SΜ Pr . It 
is concluded that a linear fit of gradient 0.76 is 
preferable to the analytical relation of Eqs. (5a, 5b, 5c), 
making logM0 proportional to about 1.3MS over this 
wider moment range. Comparison of ( t

SΜ , logM0) 
relations for earthquakes with different focal mechanism 
do not show a very significant differences, but, the 
( t

SΜ , logM0) relation for different tectonic settings 
shows a systematic bias. 

 

 

Figure 4.  Average t
SM  over 0.1-wide intervals of logM0 

against logM0 for earthquakes with different focal mechanism. 
Thick solid line, gray, and thin solid lines are the regression 
lines fitted to earthquakes with strike-slip, thrust and normal 
mechanism, respectively. The filled circles, squares, and 
triangles represent the average magnitude for earthquakes with 
strike-slip, thrust, and normal mechanism respectively. Open 
circles represent location of average data points for 
earthquakes in witch δP ≤ 60°, δT ≤ 50°, and δB ≤ 60°. The 
regression line for this group of earthquakes as earthquakes 
with other focal mechanism has been shown by dashed line. 
For regression analysis only the data points in the seismic 
moment range 2.5×1023 to 1.26×1027 dyne-cm were used 
which marked by vertical dotted lines. Nind and Nbin represent 
the number of individual and the relevant binned data points, 
respectively. 
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Figure 5.  Average t
SM  over 0.1-wide intervals of logM0 

against logM0 in different tectonic regions. The filled circles, 
squares and triangles represent the average magnitude for 
earthquakes in “continental”, “subduction zones” and “oceanic 
ridges and fracture zones” respectively. The thick solid line, 
gray and thin solid lines represent linear regression lines to the 
data points in “continental”, “subduction zones” and “oceanic 
ridges & fracture zones” respectively. For regression analysis 
only the data points in the seismic moment range 2.5×1023 to 
1.26×1027 dyne-cm were used which marked by vertical dotted 
lines. Nind and Nbin represent the number of individual and the 
relevant binned data points, respectively. 
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