ON THE GENERALIZATION OF N-PLE MARKOV PROCESSES

E. Pasha

Institute of Mathematics, Teacher Training University, Tehran, Islamic Republic of Iran

Abstract

The notion of N-ple Markov process is defined in a quite general framework and it is shown that N-ple Markov processes are linear combinations of some martingales.

Introduction

Let $\{X_i, t \ge 0\}$ be a real valued Gaussian process on some probability space (Ω, F, P) with zero mean and continuous in quadratic mean. Let

$$\sum_{t=0}^{n} \sigma \left\{ X_{s} : s < t + \frac{1}{n} \right\},$$

$$\sum_{t=0}^{+} \sigma \left\{ X_{s} : s > t - \frac{1}{n} \right\},$$

$$\Gamma_{t} = \bigcap_{n} \sigma \left\{ X_{s} : |t - s| < \frac{1}{n} \right\},$$

where $\sigma \{ ... \}$ is the smallest σ -field with respect to which the elements of $\{ ... \}$ are measurable. We say the process has Germ field Markov property if given Γ_t , the two σ -fields \sum_t^- and \sum_t^+ are conditionally independent. If the process is (N-1) times differentiable and given $G(t) = \sigma\{X(t), X'(t), \ldots, X^{(N-1)}(t)\}$ the two σ -fields \sum_t^- and \sum_t^+ are independent, then one says that the process is an N-ple Markov process in the sense of DOOB. Here it is understood that $X(t), \ldots, X^{(N-1)}(t)$ are linearly independent as elements of $L^2(\Omega, \mathcal{G}_t, P)$, where $\mathcal{G}_t = \bigcap_t \sigma\{X_s : |t-s| < \frac{1}{n}\}$. In this paper, we generalize this notion by generalizing the structure of G(t).

Definitions and Results

Let $X = \{Xt, t \ge 0\}$ be a process defined on some prob-

Keywords: Gaussian processes; Markov process; Martingales; N-Ple processes

ability space (Ω, F, P) .

Definition. The process X is called a generalized N-ple Markov process with respect to the process $\{Y_i(t), i \ge 0\}_{i=1,...,N}$ if:

(i) for each $t \ge 0$, $Y_1(t), \dots, Y_N(t)$ are linearly independent as elements of $L^2(\Omega, \mathcal{I}, P)$, where $\mathcal{I} = \bigcap_n \sigma\{X_s : |t-s| < \frac{1}{n}\}$. Moreover, we assume that the process $\{Z(t), t \ge 0\}$ is continuous in quadratic mean, where for each t, $Z(t) = (Y_1(t), \dots, Y_n(t))$,

(ii) $\sum_{i}^{+} \perp \sum_{i}^{-} | \Gamma_{i} |$ where:

$$\sum_{t=0}^{+} = \bigcap_{\varepsilon>0} \sigma \{X_u : u > t - \varepsilon \},$$

$$\sum_{t=0}^{+} = \bigcap_{\varepsilon>0} \sigma \{X_u : u < t - \varepsilon \}$$

$$\Gamma_t = \sigma \{Y_1(t), \dots, Y_N(t) \},$$

We have the following result concerning the process $Z(t) = (Y_1(t), ..., Y_N(t))^*$.

Theorem 1. If $\{Xt, t \ge 0\}$ is a Gaussian generalized N-ple Markov process with respect to $\{Y_j(t)\}_{i=1,\dots,N_r}$ then the process $Z(t) = (Y_j(t),\dots,Y_N(t))^*$ is a Markov process.

Proof. By assumption we have

means the transopose of matrix.

$$\sigma\{X_u:u\geq s\}\perp\sigma\{X_u:u\leq s\}\mid\sigma(Z(s)),$$

where $A \perp B \mid G$ means that given G, A and B are conditionally independent. For each $\varepsilon > 0$ we have:

$$\sigma\{Z_u: u \geq s + \varepsilon\} \subset \sigma\{X_u: u \geq s\}$$

and

$$\sigma\{Z_u: u \leq s - \varepsilon\} \subset \sigma\{X_u: u \leq s\},$$

therefore

$$\sigma\{Z_u: u \geq s + \varepsilon\} \perp \sigma\{Z_u: u \leq s - \varepsilon\} | \sigma\{Z(s)\},$$

Therefore

$$\bigvee_{\varepsilon>0} \sigma\{Z_u: u \geq s+\varepsilon\} \perp \bigvee_{\varepsilon>0} \sigma\{Z_u: u \leq s-\varepsilon\} |\sigma\{Z(s)\},$$

thus

$$\sigma\{Z_u: u>s\} \perp \sigma\{Z_u; u< s\} \mid \sigma(Z(s)).$$

Finally by continuity assumption of Z(t), we get

$$\sigma\{Z_u: u \geq s\} \perp \sigma\{Z_u: u \leq s\} | \sigma(Z(s))$$

and this completes the proof.

This simple fact leads us to a Goursat type ([1], p. 74) representation of generalized N-ple Markov processes.

Theorem 2. Let $\{X_i, t \ge 0\}$ be a Gaussian generalized N-ple Markov process with respect to the Gaussian processes $\{Y_i(t), t \ge 0\}_{i=1,...,N}$. If the covariance matrix $\Gamma(t,s) = E(Z(t)Z'(s))$ of $Z(t) = (Y_1(t),...,Y_N(t))^*$ is nonsingular, then:

$$X_t = \sum_{i=1}^N \psi_i(t) U_i(t)$$

where $\psi_i(t), i=1,...,N$, are N real functions and $\underline{U}(t)=(U_1(t),...,U_N(t))$ is an N-variate martingale.

Proof. From Theorem 1, Z(t) is an N-variate Gaussian Markov process.

Therefore by (3.1[2]), it has the following representation:

$$Z(t) = \Phi(t) \underline{U}(t)$$

where $\Phi(t)$ is an $N \times N$ non-singular matrix and $\underline{U}(t)$ is an N-variate martingale. On the other hand, by the Markov property of $\{X_n\}$ we have:

$$X_{t} = E(X_{t}/X_{u}: u \le t)$$

$$= E(X_{t}/Z(t))$$

$$= A(t)Z(t)$$

where A(t) is a $1 \times N$ matrix, so we have:

$$\begin{split} X_i &= A(t) \; \Phi(t) \; \underline{U} \; (t) \\ &= \psi(t) \; \underline{U} \; (t) \\ &= \sum_{i=1}^N \psi_i \; (t) \; U_i \; (t) \end{split}$$

where $\psi(t) = (\psi_1(t), ..., \psi_N(t)) = A(t) \Phi(t)$, and $\underline{U}(t) = (U_1(t), ..., U_n(t))^*$.

References

- Mandrekar, V. On the multiple Markov property of Levy-Hida for Gaussian processes. Nagoya Math. J., 54, 69-78, (1974)
- Mandrekar, V. On multivariate wide-sense Markov processes. *Ibid.*, 33, 7-12, (1968).