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Abstract

A quantum theory of a two and three-level laser with injected atomic coherence is
developed by using a density operator method, to the best of our knowledge, for the
first time. The initial atomic coherence plays an essential role. At steady state, the
equation of motion for the density operator yields to exhibit laser without inversion
and a phase locking but no threshold for the laser field. The Fokker-Planck equation
is also derived for three level lasers and the laser action is analyzed in terms of the
coefficients of this equation which results in the quantum noise quenching. One of the
most important aspects of our method is its capability to analyze the coherently
pumped laser action in N-level systems in a simple fashion.

Introduction

The semiclassical and quantum theories of the laser
were developed more than 20 years ago [1-3]. Some of the
key concepts of the theoretical description are population
inversion and laser threshold.

It is generally the case that a laser requires population
inversion in order to overcome the absorption from the
lower level, since the gain is proportional to the population
difference between the upper and lower levels of the lasing
transition. Additionally, in an ordinary laser, where atoms
are incoherently pumped to their upper levels, there are
amplitude and phase fluctuations, due to the spontaneous
emission, which in turn lead to uncertainty in the photon
number distribution and linewidth of the laser, respec-
tively.

During the last few years it has been proposed that laser
action canbe achieved evenif the usual population inversion
between the lasing levels does not occur [4-11]. The
essential point for this possibility is to modify the emissive
and absorptive profiles, with the help of a quantum
interference effect. In these laser systems, if atomic
coherence, a kind of quantum interference, is produced in
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lower levels, it leads to an absorption cancellation. A small
population in the excited state can thus lead to net gain.
According tothe crucial role of the atomic coherence in the
laser process, a quantum theory of atwo-level single mode
laser with injected atomic coherence has been developed
by generalizing the Scully-Lamb laser theory and it has
been shown that the injected atomic coherence reduces
both the photon-number noise and phase-noise simulta-
neously [9].

In this paper, aquantum theory of a two and three-level
laser with injected atomic coherence is developed by using
the density operator method for the first time. We derive
the density operator equation of motion for pumping field.
At steady state, this equation leads to lasing without
inversion, phase locking and elimination of the threshold
of the field. Also, in the case of the three-level laser with
injected atomic coherence, we will show quantum noise
quenching. Our method exhibits the role of the atomic
coherence explicity, and more importantly, it can be gen-
eralized for N-level systems.

Density Operator Formalism

In Heisenberg picture, the density operator for continu-
ous states IC) with distribution function P (§, t) is given by
1}
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pH)= I dLPE,915)(¢! 1 small during time 7, we have:
Pa(t+T)= pa (O
and in interaction picture is given by [1]:
k ' t+1 t+T
pO)= I CLPOILO) (o @ Z(k=1)(;l) f dy... f d ©)
oIt t
where P ({) is given by: Ty {[H, 5 () (H 3 ®-Pup - 1
. Now, we denote A as the field and B as an atomic system.
PO=—1_ exp(= (S9) 3) In a period of 7, and because of the atom field interac-

1+No 1+No

N, is normalized photons number in steady state.

In general, we assume that system A, with density
operator p, (), interacts withsystem B, with density operator
p,(0). The density operator for the combined system A-B
is given by an outer product of p,(t) and p,(t) [1]:

Pas(D= P Bpy(®) @

The density operator for system A (or B) is then given
by the trace over B (or A) coordinates

Pa ()= Trs {pas O}=Zp(Blpas OIB) ®)
After a short time T from initial time t, the density

operator of system A-B can be expanded about its initial
value:

. t+T . t+T
pA_B t+1)= pA_B o+ pA_B ol "+ pA_B ol +... (6)

The Heisenberg equation of motion for p () is given by
[31:

p 1 )

. -
pA-B(t) h [HA-B’ A-B

where H, | is the Hamiltonian of system A and system
B. Using (6) and (7), we obtain:

pat+1)= Trelp, ; (V]

+2(k=1)(;i4)k’ - du.. ’ die ®)

Ty ([H, 5 @), o . [Hy 5 60,5 5 ©1... 1)

using (5) and assuming that the time variation of H, , is

tion, r, atoms are pumped to upper level |a). Thus we have:

Pa(t)=ra[pa (47)-pa (® ] (10

combining (9) and (10) and ignoring the powers greater
than two in expansion, we have:

pA(t)=(;i. 1T 15 {[Has . pas®1} (11

) (—12) LV T {[H, 5 H, 5, 5 O1)
fi

Equation (11)isthe density operator equation for pumping
field.

Coherently Pumped Two-Level Laser
In this section, we consider a two-level atomic beam

with upper level |a)and lower|b) which is pumped coher-
ently. Then we inject this atomic beam into a cavity as
shown in Figure 1.

The density matrix of coherent atomic beam then is
given by:

pm=[ g: “’)bi] 12)

where pas and pr are coherence terms.
In laser cavity the atomic beam interacts with field.
Thus, the interaction Hamilton is given by [3]:

First cavity Laser cavity
] 1 | 1, Laser
&% e e jax L _Laser
o (B> >
SRS T S sl BN
Pumping field

Figure 1. Scheme of the coherently pumped laser. The atoms in
the first cavity are prepared coherently and then injected into the
laser cavity.
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H, = fig (ca' + o'a) - (13) Using (2), we obtain the following relation in interaction
picture:

Using (4), the atom-field density operator is given by:
s0=| 02 1ILe)o! 20
Paa P (9 Pabp(t)] 14 PO [ 4 (Oat[ Lo N (20)

Pet () =Paem ®p (¥ =[
Pap(® Pwp®

Applying (19) in (20) we have:

Applying (13) and (14) in (11) and adding cavity loss term
we have: ' :

ﬁ(t):j CLPOIIL) Eo! a*%a.nc.c @1
t

P =1-ispa[a,p) - L[ p:a (aa’p-atpa)
2 And using (2) and (21) in (15) we obtain:

+pw(aap-apah]}

(15) [ PO UG O! T
Yp@atarce dt
2

where s=r. g1 =r, £ represents the strength of the deriv- =] ¢ LlispaP @)@l Q(U 'Q(Ua)
. —u . g2 . . .
ing field, o0 =2 1. g21%=2r, = is thelinear gain coefficient, R gzz_ paa PO (aa' 'Q(t l-alt Q( ga) 22)
vis loss constant of cavity and I" is the decay rate of atomic
levels. +pwP (O @'l Q1 al § 1aN1)

The eigenstate |Q can be expanded on the base ket of
simple harmonic oscillator [3]. So, we have: ' - -211’ (J1RS0)] {®iata)

[¢)=exp (L ¢ ZM@:I 0) Then applying (17) and (18) in (22) we have:
2 n! ’

=expl-7 (CIenniCat ) as) b= [ ¢ LPOIG)o! '
‘ dt
where a (a") is field annihilation (creation) operator and §

is eigenvalue of a with eigenstate 18).

"=j L l-ispwP©-2 11 o) (¢
From (16) we obtain: : aC'

+%(pu-pw)P(c)c%ncm)(cu)n 23)

a*(IC)(C|)=(5aZ-+C')IC)(CI %) 2
& 5,0 P () ——TI l
| N +% pa (QE)CBC‘ Q) <OIY
a -
IECla=(—+OIENCT (18) A 9
Heta=( e OIK TPOEE +C OO

and
Also, we know that the distribution function P ({) is zero
5 A at infinity [3]:

2 ae)en=1g)(g1 atda +dal a12)(2
LG SEC

a oo
= da ] CLZPOIY(Ln=1POI YENiz=0 (24
g} at 2 +ce X
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therefore, (23) becomes: D= I.Pab| o a1
2
rb(l)=j d2CP(C)IC(t)) (C(t)la*%a. no=(§) No (32)
t

=[ dLi(- C)[“ (paa- pw) C-is p IP(L)  (25)
PP 13
+& p T2 + L[ (P(])]
2 Ll 26C
-27- CLPO) o)l
The eigenvalue of a (i.e. {) can be written as:
{=Vno e} (26)

where n,and ¢ are average photon number and field phase
in steady state, respectively.

In steady state (i.e. da/dt= 0) and using (2) and (26) and
assuming classical field (n>>1), relation (25) can be
written as:

( ...E_ is pap YT
P N) PNy 1+No 2 n
+ho[_CPu Y

1=0
2 (1+Ng® (1+No)

on the other hand o, v, p,, and N, are in the same order of
magnitude:

0<o,v,p,.Ny<1 (28)
So we have:
Opa Y -~ 29

(1+No* (1+No)

This relation is in agreement with the fact that by increas-
ing v, for a fixed value of o, p, is increased (increasing p_,
corresponds to increasing absorption).

From (29) and (27) we get:

i(8-4o)
g(P- “"’”’N_‘; 2};“""’“ W'ﬁo' =0  (30)
+INo

where we made use of the following relation:
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Relation (30) is valid whenever the real and imaginary

parts are zero separately.

Thus, we have:
cos(0-0)=0 =

0-¢o=tL 33
b=tE (33

with the negative sign, the stability of field is not satisfied
(if ¢o = ¢ + 5 ¢ in field phase). So:

=0-L 34
o 5 (34

This shows the phase locking in coherently pumped
two-level laser. By putting the real part of (30) equal to
zero and using (34), we obtain:

(Paa - pr) YNo +2 lpad _ Y r 35)
1+No

This relation shows the laser without inversion. In

other words, even if paa < pw , we still have a positive value

for N,. This is shown in Figure 2. From (35), we can also

show there is no threshold for pumping field. This is shown

in Figure 3. Relation (35) was denved by Ning Lu using a
different method [9].

1.20 -
100 F-\-= oo mmf oo
0.80
0.00 i

0.40 3

0.20 ii

Square root of no

Figure 2. The left and right-hand sides of equation (35)as.a
function of a normalized laser amplitude YNo , y/0=1 and left-
hand side curves are plotted for i, p,_, = .03 ii, p, =0.1 iii, p, =
0.01.
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Figure 3, The left and right-hand sides of equation (35) as a

function of a normalized laser amplitude YN for fixed p,=03,
but for various values of y/a: i, Yo= 0.5 ii, yor= 1 iii, ya= 10.

Coherently Pumped Three-Level Laser
Inthis section, we assume that the atomic beam consists

of three-level, atoms (upper level a), middie level Ib)and

lower level Ic)) which are prepared coherently and then are
injected into a laser cavity (as shown in Fig. 1),

By using (4) the density operator for atom-field is
given by:

Paap (1) Pup (L) Pacp(t)
Pa-1=[ pp(t) pup(t) Prep(t)
Pap (1) peep (1) Pecp(t)

(36)

Using the interaction Hamiltonian for atom-field, (36) and
(11), we obtain:
P O={-is(pw+pcb) [a, p]

-%[(pu+pbb)(tn"p-apa)+(9bb+PW)(Pafa -apa')

| +pc5(aap-apa+pm-apa)]}--}p(t)a*a+c.c

37
Using the same argument as in the previous section and
applying(17), (18), (21), (24), (26) in steady state (i.e. da/
dt= 0), we obtain:
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(Paa-Po) VN0 +2 [1pa+1peel 1 ¥ m
1+No

a
2
(38)

SIO[O@utpw) Y Gpwe?,
2 1+No? (+No  (14No?

where we have also used (32) and the following relations:

Pab=|par| €1 (39

Prc =| prc] €7 40
The bracket in (38) is almost zero because o, ¥, p,,, N, and
Ip, ] are in the same order of magnitudes. By pumng the
imaginary part of (38) to zero and considering the stability
of field, we have:

9-¢°=e.,,-¢o=ew-¢.,=§-e.c-¢o=§ @1

This shows the phase locking in the coherently pumped
three-level laser. By putting the real part of (38) equal to
zero and using (41) we get:

& (P - W)VNI_O+2[|pn!J+|PbJ] l No=0
2 1+No

“42)

This shows there is lasing without inversion in the
coherently pumped three-level laser which is also shown
in Figure 4. Also (42) shows there is no threshold for
pumping field. This is shown in Figure 5.

Quantum Noise Quenching in Coherently Pumped
Three-Level Laser
Using Heisenberg picture, (1) and (37), we get:

[d*EPL.oleMel=] o LPC.) tis(pm+po) [anp]
-is (Pun + prc) [ a1, p]

-%t(p.npw)m" a'pa+ paa’- a'pa)

+ (P +pec) (pa'a - apa” +a'ap - apal)

+Pea (229 - apa + paa - apa)

+pac (a'a'p - alpat + pata’ - a'pal)
“3)
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Figure 4. Equation (42) as a function of a normalized laser

amplitude, YNo for fixed y/a= 1 but for various values of p,, and
Py ip,=0.2,p =03,iip =0.1,p =0.2,iiip,,=0.01, p_=0.02.

-%[I E){Clata+atal C) )1}

using (17), (18) and (24), we have:

P(L.)=is@u+p0) T &L is(pra + poy BE:0
BC x‘

(m.mc7n-4CHCOHiL[H«,m
o (57 Y% CPE
0t urp 2w FPCY
Loy 2 Flg
-Lpe, Cad(8 t)wC 4 J(i}
2 ol
44)
If rand ¢ show magnitude and phase of field respectively,
we have:
{=rei 45)
So, we find:
O _gwd o 4
of 2 (ar ra¢) “o)

7

Square root of no

Figure 5. Equation (42) as a function of a normalized laser

amplitude, YNg for P, =02, p, = 0.1, but for various values of
Yo i, ya= 0.5 ii, Yo= 1 iii, ya= 10.

=k (—+1_ 4
ol 2(8r+f8¢) @)
? 1L 12,18, g

acac‘ 4 9 T or ry¢
Fo_em @ 10 13 ;0.2 8,
3 4 3¢ Tor ray P& forse
49)

using (46), (47), (48) and (49) in (44) and applying steady
state we get:

IP (.0,

P(r, 0, 0= (L0 (Pan c|]
(r¢t)={4[a(p +Ptb) + 0| Pac | >

+L[a(pu+pu,)-a |p.c|-2a12(p..-poc-%)
4r

@, 0,9
or

-D)-vP1P@o.y

-4 1s(|pa]+] Prc )

- [0 (Paa - Pec
(50)

P9,
+ =[O (Daa + Pib) -0t Pac | ] ——tm}
e (Paa + ) -] Pic | Yo
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this shows the Fokker-Planck equation for a coherently
pumped three-level laser. Thus, the phase diffusion coef-
ficient is equal to [1].

4=+ o] )321;2’ .0

(879

Lut e |pac|)32‘°f: A

If (Paa +Pro=| Pac] ), then the phase diffusion coefficient
and therefore quantum noise is equal to zero. Thisiscalled
"quantum noise quenching.” On the other hand, if

(Paa + P <] Pac| ) thenphase diffusioncoefficientbecomes
negative. In this case, as a result of atom-field interaction
the noise of system is less than the vacuum noise.

Conclusion
In summary, we have studied the operation of coherently
pumped two and three-level lasers by using a density
operator method. We showed that in the presence of
atomic coherence, laser without population inversion is
possible. The initial atomic coherence leads to laser phase
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locking and furthermore produces driving force, so that
there is no threshold in the coherently pumped laser. These
results were shown for both two and three level lasers. We
also derived the Fokker-Planck equation for the three-
level laser. By using this equation, we showed quantum
noise quenching for coherently pumped three-level laser.
Qur method can be generalized for N-leve! lasers, Further-
more, we showed that the approach developed here leads
to the same results as those obtained by Ning Lu [9].
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