Additions and Corrections

"M.H.Alamatsaz- On Modality and Divisibility of Poisson and Binomial Mixtures. J.Sci. I.R. Iran, Vol.1,No.3, Spring 1990."

M.H. Alamatsaz*

Department of Mathematics, Faculty of Science, Isfahan University, Isfahan, Islamic Republic of Iran

As it was brought to the author, s attention by Dr.D.N. Shanbhag and Dr. A. Alzaid (private communication) Example 2 of the paper is erroneous in view of the following theorem.

Theorem: Given any t>0, the Poisson mixture

$$p_n(t) = \frac{1}{n!} \int_{\{0,\infty\}} e^{-\lambda t} \frac{(\lambda t)^n}{n!} dG(\lambda)$$
 $n = 0,1,2,...$

is a strongly unimodal lattice distribution if, and only if, G is strongly unimodal. This theorem is an obvious consequence of theorem 6.1 in S. Karlin (total positivity, Vol. 1, Stanford University Press, California, 1968, p412). The paper also contains several misprints; these are pointed out as follows:

p202(and 205), & 12, and 2, column no. 0 (and 2): Shanbhagh should be Shanbhag.

p203, ℓ 3, column no. 2: $c(\leq 0)$ should be $c(\geq 0)$.

p205, 25, column 1: $p_0 - .4 > p_1 - .02$ should be $p_0 \approx .04 > p_1 \approx .02$.

6, column 1: $.02 - p_1 < p_2 - .17$ should be $.02 \approx p_1 < p_2 \approx .17$.

 ϱ -8, column 1: $\psi \alpha$ (s) should be ψ_{α} (s).

14, column 2:
$$p(z) - k \frac{1-cz}{1-dz} |z| < 1/d$$
 should be $p(z) - k \frac{1-cz}{1-dz}$, $|z| < 1/d$.

p206, ℓ 8, column 1: $G_{\iota}(\alpha)(z)$ should be $G_{\iota}^{(\alpha)}(z)$.

16, column 1: μ -ct γ should be μ -ct γ .

 $\ell = 2$, column 1: n = 0,1,2,...,n should be r = 0,1,2,...,n.

$$Q-11$$
, column 2: $g_r - \int_0^r should be $g_r - \int_0^t$$

p207,
$$\ell$$
 11, column 1: $\int_{(0,p_0)}$ should be $\int_{(0,p_0)}$.

2-6, column 2: Goldie should be Goldi.

^{*} Present address (until June 1991): Department of Probability & Statistics, University of Sheffield, Sheffield S3 7RH, UK.