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Abstract

In this paper, we adapt the operational Tau Method for personal computers
and apply it to a system of two nonlinear second order ordinary differential
equations which are related to general relativity. The interesting behaviour this
problem exhibits in its numerical treatment is discussed. In this problem, we try
to use the Tau perturbation term to locate the correct solution of this nonlinear
problem. The results of this experiment and those which are going to be given
in another paper show that in some problems the effect of nonlinearity could
prevent the correct solution from being located properly.

1. Introduction
We first briefly introduce the operational formula-
tion of the Tau Method and then as in [3] modify it to
apply to the following system of nonlinear Odes [2,8]:

drldzqy-y2
x.__[?_]_y z

drx® 12y dx2(v2-1)+22
xE&[x==]=y 4x*(@*-1)+z7]

with conditions:

z(0)=1, z—>0 as x >0
y0)=0, y—>1as x>

Let us consider the general Ode
Dy(x)=f(x) xe€[-1,1] ¢))
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By)=7 @
¥, constant, i=0,1,...,v-1
where v is the order of the Ode and
D= p 04 3)
=0 dx’
p, @)= gp,,.x&g, X @
J!

and o is the degree of p (x) and

8 =(Prys Prys oo+ s Prgy»0:0,..0),

)ﬁ:(l,x,xz,...)r.

The operational Tau [8] is mainly concemed with
three elementary matrices 7), L or ¢ which are used to
reduce differential problems to linear algebraic prob-
lems as follows:
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The effect of differentiation, shifting or integration
on the coefficient vector g,=(ao,ai,...,d0,0,...) of a
polynomial y,(x)=g,X is the same as that of post-
multiplication of g, by the matrices 1, 1, or ¢ respec-
tively. So:

Xy (X)=aspX,

Do) _g,nX,
" S =g

I}’n(X)dx=gn LX.

Following Theorem 1 [8], we have

Dyx)=qgll X= gﬁz &)

A4

z ‘v

=0

o=vov? ©6)

where y(x): =@V , a:=(o,a,...).
We introduce the vector

Z():(Yl ’ 72§ ---’YV,O’()’ "')
andthematan-(b)suchthatb = B, (V)forz-
1,2,...,vand jeN. Then the supplementary COI'ldlthIlS
in the problem take the form
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Then the coefficient g of the exact solutions y=g V of
that problem satisfy the following infinite algebraic
system:

aki=fi i=0,1..4
axi=0; i2d+1 ®)
gﬁj=7ﬁ =12,..,v

where d. = degree of f{x) and B ; is the ith column

vector of the matrix B. Setting

G=@17£2’ aney B_Va 9&0’&1"')

and

il
~
1]
=3
o
I~ >

Y
we can write instead of (8):

a G=y. )
Definition 1. The polynomial y.(x)=g. ¥ will be
called an approximate solution of (9) if the vector anis
the solution of the linear algebraic system of equations
an Gn= y (10)

where G, is the matrix defined by a restriction of G to
its first n+1 rows and columns. To apply it to systems
of Odes, we follow the same procedure as in [3,4].

2. The Main Problem
We actually want to solve the following system:

xz’ -7 =xy%
x5 +xy =yz2+4x2y3 - dxYy
with conditions:

z(0)=1, z—>0as x>
¥0j=0, y—=1las x>
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After linearizing this problem by Newton’s method
[3] we use the following two strategies.

First Strategy. For sufficiently large x we solve that
problem over [0, x] as a boundary value problem and
use the Segmented Tau Method [7,6].

For example, in this problem if we take x = 10,
using five segments we find the accurate solution;
Figure 1.

Remark (1). In [2] there is no numerical result
available unless a graph of the solutions over [0, 3] is
given. Hence, we decided to give graphs of our solu-
tions and also check their numerical accuracies with
the Tau perturbation terms £, (x). In the final result, the
maximum absolute value of the perturbation term over
[0, 10] is about 1.0x10°5, For x21.0 that value is about
1.0x10-1°,

Second Strategy. We consider the following strategy
which can be useful for the problems in which we may
have to take x too large. Let us consider that problem
over a small interval [0,3.] with conditions:

zn+l(0)= L
yn+l(0)= 0,

zn+l(3.)= o
Ypeil3)=1.

where o is to be found in such a way that the correct
solution over that interval is obtained.
The reason that we consider

yn+l(3) =1

is because we know it tends to value 1 approximately
asx — 3.

Generally, choosing this interval and value of o is
not so easy, but depending on the problem, we can
usually take advantage of some theoretical results con-
cerning its solution.

In this example we take o = 0.(0.01)0.3 and N=9
for the degree of the Tau approximants, Legendre
basis [5], and initial guesses

Zy=x- X%, yp= X.

Then a spectrum of solutions with a maximum value
of

[abs(hn(x))] = 0.01
is obtained; see Figure 2.

To increase the accuracy of the solution and thus
probably make that behaviour disappear, we apply the
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1.23

o 2 a )

&

OO_‘I-I'T‘T—I'T'T'T'X
N0 05 t0 5 20 25 30

Figure 2. The spectrum (second strategy)

Segmented Tau Method over [0, 3] and the same
happens again, but this time with a maximum value of

[abs(hn(x))] = 0.5 x 10™.

Hence, the effect of nonlinearity causes the pertur-
bation terms, even with reasonable accuracies, not to
be so effective in locating the correct solution in that
spectrum. For more information concerning the effect
of perturbation terms in locating the correct path of a
solution see [9].

As we see in Figure 2, all these solutions are over-
lapping approximately over a relatively large segment
of that interval and they behave roughly the same over
the rest of it, and hence result in the same Hn(x).
Therefore, we apply the following important remark:

Remark (2). When as in this problem, we have a com-
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* Figure 3. y(x) and z(x) solutions (second strategy)

"~ mon piece, made by the solutions in the spectrum,
- which starts from one of the end points, the appropri-
- ate information of the solution (such as the values of
the solution and its derivatives) at a point in that seg~

ment can be used to solve the problem over the rest of
- the interval as an initial value problem (Ivp).

‘Clearly, the Tau Method is one which provides

such information with reasonable accuracy [1], by
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to find the correct solution. We will- present some of
those limitations in detail in another paper. ‘

2- This sort of approach that we used to solve this
problem can be foﬂowed by some other Ode numen-
cal methods: -

3- The second strategy s very useful to avmd
uhnecessary difficulties which may occur when using
personal computers. ;

4- The Tau Method, along with the solution, usu-
ally provides good approximate values for derivatives.
As in this problem it proved to be very essential in
computing the solution over the rest of the interval.

‘ ; References

1. ‘El-Daou, MK, Namasxvayam, 8. and Oxm. EL. Differ-
ential eqnantms with piecewise -approximate coeffi-
cients: Discrete and continuous estimation for initial and

. boundary value problems. Computer Math. Applic., 24,

©(4),33-47,1992. .

2. Garfinkle, D, Genexal reianvxsnc stnngs Phys Rev D,
32, (6), September 1985. :

3. Hosseini Ali Abadi, M. and Omz, EL. A Tau Method'
based on non—umform space-time elements for the
numerical simulation of solutions. Compater Math.
Applic., 22, (9), 7-19, 1991.

-4, Hosseini Ali Abadi, M. Ph.D' Thesis, Imperial Coliege,\

’ contrellmg the ‘defect term in the Ode. Hence, using -

Zx)atx = .8, and taking the steplength h = 0.5,

located; see Figure 3 which shows the solution over
[0, 3.6].

3. Final Remarks

i- It is possible to apply the adaptwe Tau Method

‘ to systems of Odes with normal sizes, using personal
" computers, provided that some neceéssary steps be
taken to avoid limitations of personal computers, It

should be noted that compared with some similar
~ computation, using CDC main frame [4], here we had
to apply some special treatment to be able to use a PC-

-approximate values of y(x), y'(x), z(x),

the\ correct path of the solution in that spectrum is -

(1988). ;

5. Lanczos, :C. Legendre vs. Chebyshev polynomials. Top-
ics in numerical anglysis, (ed. J.J.H. Miller), pp. 191-
201. Academic Press, New York, (1973).

6. Onumanyi, P. and Ortiz, E.L. Numerical sohmon of stiff
and singularly perturbed boundary value problems with a
segmented-adaptive formulation of the Tau Method.
Math. Comput., 43, 189-203, (1984).

7. Ortiz, B.L. Step by step Tau Method, pwcemse polyno-
mial appmxnnahons, Campset Math. Appl 1, 381-392,

{1975). :

8. -Ortiz, B.L. and Samara, H. An\operatxonal approach to

192

the Tau Method for the numerical solution of no,nﬁne’ar
differential equations. Computing, 27, 15-25, (1981).

‘9. Hosseini Ali Abadi, M. ef al. The Tau perturbation- term

in solving beundary value problems over semi-infinite
intervals. (In press). ; ,



