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Abstract

Let D be a division ring with centre K and dim, D<eo, @a valuation on K and va
noninvariant extension of @ to D. We define the initial ramification index of v over
®, &(V/w). Let A be a valuation ring of @ with maximal ideal m, and v,, V,,..., D

noninvariant extensions of @ to D with valuationrings A , A,,...A. If B= Nie1d4;,
it is shown that the following conditions are equivalent: (i) B is a finite A-module, (ii)
Bisafree A-module, (iii) [B/mB: Aim)=[D: K], (iv) £ ;-1 e(v/w) f{v/w)=[D: K]and
&(v/w)= e(v/w). It is also proved that if &(v/w)= e(U/w), and any of (i) - (iv) holds,
then v is invariant.

. 1. Introduction

Let D be a division ring and I' a totally ordered set. A V:D 5T U {0}
function v : D—» T U {0} is called a noninvariant
valuation if the following conditions are satisfied: by the rule
v.l. Wd) == d=0, d —dB,
v.2. Wa + b) 2 min{v(a), u(b)},
then v is a noninvariant valuation on D, where B = B(cf.
v.3. va) £ vb) = V(ca) < Vvcb), ab,ceD. (51, 3. v
In this case T is called a value set. Also the set B = Let G = (% | x € D*}, where D"= D\{0} and ¥ is an

{d € DI »(d) 2 (1)} is called a valuation ring of v, and
m = {d € Dl v(d) > v(1)} is its maximal ideal.

Let D be adivision ring, B be a valuation ring of D and FT T
I',={dBld € D}.Then {I' , <) is a totally ordered set with ’
the greatest element 0B= {0}, wd) = v (xd).

order preserving bijection on I as follows:

dB<dB &d'Bc dB . . .
Then G is a group, with respect to the composition of

where dB is a fractional principal right ideal of D. Ifwe ~ functions, which possesses a canonical order:

set 0B= o, I'=T \{OB} and define - . .
X<y & x (vd) £y(ud),de D".

Keywords: Initial ramification index; Noninvariant valuation With respect to this order, G, is a partially ordered group.
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B, and v are called invariant if for all d € D, dB = B d.
Therefore we can define a multiplication on I via

Wd).u(d)= Wdd).

Since B, is invariant, the multiplication is well-defined
andI"isatotally ordered group. Furthermore, G, is totally
ordered and

TG,
”x) > X

is an order-preserving group-isomorphism (cf. [6], [7],
[81, 191, [10]). Also in this case v is a Krull valuation on
D (cf. [1], [12]).

2. Major Subsets
LetD, I', v, B, and G be as in Section 1.

Definition 2.1, LetS be atotally ordered set, then asubset
M of § is called major, if foreveryxe Mandy e §

yZx=>y€eM.

Let M be a major subset of " and N aright B -module
of D. Then a(M)= {d € D lv(d) € MU {=}} isaright B, -
module of D and M(N)= {u(x)lx : N\ {0}} is a major
subset of ", and it is easily shown that there is aone to one
correspondence between major subsets of I" and a(M)’s in
D. This correspondence is an order preserving, i.e. for two
major subsets M, and M, of I', we have

M M) & a(M) < aM»).

(cf. [8, Exercise 2, Ch. 1]).
As a consequence we obtain

Corollary 2.2. (i) For any major subset Tof T', M(a(T))=
T. (ii) For any right B -module N of D, a(M(N))=N.

LetI"be as above, weputI',= {dB |de B ,d" ¢ B } and
M is amajor subset of I',. In this case, 0 #x € a(M) =
xB=vx)e M=>xBe I',=xe B = a(M)cB . Thus
we have

Corollary 2.3. (i) If M is a major subsetof T',, then a(M)
is aright ideal of B . (ii) If N is a right ideal of B, then
M(N) = {v(x) /x € N\ {0}} is a major subset of I",.

3. Initial Remaification Index
Let D be a division ring with centre K, @ a valuation
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on K and v a noninvariant extension of ® to D, with
maximal ideals m_ and m , respectively. Also put A=
{w(x)=xB | xe K=K\ {0}} andA =T |, ={kB ke
KnB, k'¢ B}.

Combining the above and Corollary 2.3 one can easily
show that :

Proposition 3.1. There is a one to one correspondence
between major subsets of I', which contain A_ and the
right ideals of B which contain m B .
If D is finite dimensional over its centre, the above sets are
finite and the rank of each of them is equal to a natural
number n.

We now state the following definition which is one of
the keys in this paper.

Definition 3.2. Let D be adivision ring finite dimensional
over its centre K. The above natural number is called the
initial ramification index of v over @ and it is denoted by
gvaw).

This definition coincides with the one in the commutative
case.

To prove one of the main results in this section, we need
to invoke results from [3] and [5].

Theorem A. [3, Th. 1]. Let D be a division ring with
centre K, [D: K]= n? and B be a valuation ring of X, Then
B possesses at most n noninvariant extensions in D.

Suppose G,= {k 1k € K}, GT)= {d|d € D'}, where
d={k 4B)=kdB |k € K*}.
In [5], each of the d’s is called an orbit.

Definition B. [5, Section 4]. The number of distinct ;’s is
called the ramification index of vover @ and itis denoted
by e(vw).

Theorem 3.3.Let D, K, v, »,T", and & v a)be as above.
() IfT, does not contain the least element, then &( W) =1.
(i) If I", contains the least element such as d B, I "=

{doB, |t € Z} and n is the number of orbits of the set of
At

G, ()= {do/ t € Z} , then g(V/®) =n.

(iii) If m,, the maximal ideal of B, is not principal, then
gvw)=1.

Proof. (i) Let xB, be any element in I, andA={B €
I 1yB <xB }.Clearly A is an infinite set. Since e(W®) <
oo, there existy, B, y,B, in A such that ?1 = ?2, hence for
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some k € K*,y,B = y,kB,, yi'y,B = k'B or yi'y B =kB .

We can assume that y3'y, € B, Since y B, < xB, and
Bu < yzBu’ then yilleu=kBu < kyZsz kaBv= yIB u< XBu'
Hence every major subsetof I', which contains all elements

of A ,containsxB andhenceallelementsof I",. Therefore,

by Definition 3.2, e(v/@) = 1.

(ii) Letd B betheleastelementinT,. Since e( v/ w) <eo the
A A2 Ar

setT={do,do,....do, ...} is finite, then there are positive

integers r, s(r>s) such that

{dkB,\ k€ K'}= do =do = {dkB, |k € K}.

Thus for some k € K*, dy B = dokB ordy "B = kB,
sincer-5s>0,d "B,e I',and kB = & °B,eA,
This implies that there exists the least positive integer

n, with & B € A,. Also n is the number of orbits of the
action G over I', that is the number of elements of the
setof T.

Now suppose

M(yB )= {zB, € T'|yB <zB }.

We show that M(d,B ), M (cb B, ),...M (& B,) are the only
major subsets of I', which contain A,

By Definition 2.1 M(d B ) is a major subset of ', we
show that A, ¢ M (do B,) for 1<r<n. Suppose kB, € A,,
since d,B <kB ,thenkB € M(d B ).If there exists some
positive integer 1 <r<n,such thatd§ B <kB <d*'B,
thatis kB, € M (d B, )and kB, ¢ M(@ " 'B ), then B <
d kB <d B .Thisisacontradiction,because tisassumed
thatd B isthe leastelementof ', ,hence kB, € M (& B,))

and A, cM(&B),forl<r<n.
Now let M” be another major subset of I', which

contains A, then M c M (dB ). On the other hand

d B € A,c M “and hence (do’B,) < M . This implies that
forsome 1<r<nandforxB e M~

&B,<xB,<d"'B,

or
B <dxB <dB,

and this is a contradiction too. Therefore M'= M(d B ),
forsome 1 <r<nand gvw) = n.

(iii) On the contrary, suppose & v/@) >1,by (DT, contains
the least element d B , where d, € m . It is easily shown
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that m =d B .[]

Itis well known that, if F c E is a finite field extension,
then any discrete valuation ring A of F extends to a
discrete valuation ring B of E. Correspondingly we have
the following result, when the field extension lies in a
division ring D.

Proposition 3.4. The nontrivial valuation  of K is
discrete if and only if there exists a one to one
correspondence between and I' and a subset of integers
Z.

Proof. Since e(Ww) < e and A= axK")= (kB | k € K"} is
isomorphic to a subgroup of Z, I'= {dB | d € D'}
corresponds to a subset of integer Z, Now the proof is
straightforward.[]

We are now in a position to prove an interesting
consequence of the above results as follows:

Corollary 3.5. (i) e(Vw) < e(Vw).

(ii) (W) | e(v/w) if T, does not contain the least element
or contains the least element d B such thatd “*®B e T,.
(iii) e(V/w) = e(v/w) if @ is discrete.

(iv) &(v/ @) =1 if the valuation ring A of wis of rank / and
is nondiscrete.

Proof. (i) It is clear by Definition B and Theorem 3.3.
(ii) If ", does not contain the least element, then & v/
o) = 1 and it contains the least element d B, by Theorem
3.3 (ii), there is a least positive integer n such that &(v/w)
=nanddB =kB € I, . By assumptions for some k’e K°,
k’B = d B . Now if n does not divide e(W/w) , then
e(vV/w)= mn + r, where O<r<n.

Sod; B = k™ k"B € T, and this is a contradiction. In any
case e(V/w) | e(vw) .

(iii) By proposition 3.4, T, contains the least element
dB . We show that I'=(diB | n € Z}=T.If " T, then
there exist dB e T and a positive integer r such thatd B <

dB,<d*' B, hence B,< df dB,<d,B, and this is a
contradiction. Hence I'’= T and G(I'") = G(I'), now by
Definition B and Theorem 3.3 (ii), the proof is complete.
(iv) Since in this case the value group of w does not
contain the least positive element, neither does I'. Hence,
Theorem 3.3 (i) completes the proof.[]

Letm, m bethe maximalidealsof B ,B respectively,
then [B /m : B /m ] is called the residue class degree of
vover @ and it is denoted by f{v/w).

We have the following, which is a generalization of
(1] (Proposition 4, § 8.5, Ch.IV) and [4] (18.5 (a)).

Theorem 3.6. Let D be a division ring with centre K, @
a valuation on X and v a noninvariant valuation on D
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which extends w. If B B, are the valuation rings
corresponding t0 ®, v with maximal ideals m_ m,_
respectively, then

(B/mB,: B Jm }= &v/o). f(va).

Proof. By Proposition 3.1 and Definition 3.2, g(v/®) is
equal to the number of proper right ideals of B which
contain m B . The set of proper right ideals of B, which
contains m B, forms a totally ordered set relative to the
inclusion, hence &(v/ @) is equal to the length of the right
module B /m B as aright B, module. It is well known
that-a right B —module of length 1 is a 1-dimensional
right vector space over B /m . Since B /m_ is a vector
space over B /m , of f(v/w)-dimension, hence aright B —
module of length g(v/@) is a vector space of dimension
&V w) f{v/w) over B /m . Thus the proof is complete.[]

4. The Relation 3. ef=n.

LetD bea division ring finite dimensional over
its centre K, ® a valuation on K with valuation ring A
and v,,v,,...,, noninvariant extensionsof @ toD.We
say that A is defectless in D, if

Zie1( Ui/ @) f (Vi | @)= dimgD (cf. [11]).
Toprove our nextresult we need the following, which
is covered by [6,3.3 Satz].

Lemma 4.1. Let D be a division ring finite dimensional
over its centre K, @ a valuation on X and v,,...v, the
noninvariant extensions of wto D. If A, is a valuation ring
ofy(1<i<s), B= N=1A; and P= Bnm, where m, is a
maximal ideal of A.. Then, -

DA~ B, (the localization of B at P).

(ii) D is a field of fraction (left and right) of B.

(iif) P,'s are the only maximal ideals of B.

Now it may be of interest to record the following result
as the first application of Lemma 4.1.

Theorem 4.2. Let D be a division ring finite dimensional
over its centre K, @ a valuation on X with valuation ring
A and v,,...,v, the distinct noninvariant extensions of @
to D, with valuation rings A ,...,A . Assume that m is a

maximal ideal of A and B= N/~ 14;, then

(B/mB: Alm=Y &/ ®)f (] o).

i=1

Proof. We define y:B/mB — []i.1A:/ mA;, by

Y +mB)=(b+mA,, ..., b+rmAy. Itis clear that y is
a homomorphism, (mB),=mB,=mA (1<i<s).By [8,
Theorem 7.5], mB=mA,nmA,N...nmA,, so Wy is one
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to one. By [2, Theorem 3.2], [8,p. 97, Corollary6]4,’s
are locally invariant, mA; s are the rightideal of A, s
andif (a;+mA,,...a+mA) € []i-1 Ai/ mA; ;thena, a,
mA; and mAi are. compatible fori,je {1,2,....5} and
thereexists an x€ Dwithx-ag, € A, for k=1,2,...,s hence
x € B and wy(x+mB)= (x+mA,...x+mA )=
(a+mA,,...,a+mA). This shows that y is onto and hence
 is an isomorphism from B/ mB — []i-1 Ai/ mA;.
By Theorem 3.6 the proof is complete.

For the proof of the main result we need the following

Theorem C. ([5, Th. 4.1]). Let D, K, wbe as above and let
V,,0,,...,, be all distinct noninvariant extensions of @ to
D, then

Y e/ v)f(vi/v)SD:K]

im]

Theorem D. ({3, Th. 3]) Let D be a division ring finite
dimensional over its centre K. Let A be a valuation ring of
K. Assume that A A,,...,A are all of the noninvariant
extensions of A to D. Then B= n’-1 A; is the integral
closure of A in D.

Combining Theorem 4.2 and Theorem C, we obtain

Theorem 4.3. Let D be a division ring with centre X and
dim D <eo. Let @ be a valuation on K with valuation ring
Aand v,,...,0, be the distinct noninvariant extensions of
to D, with valuation rings 4,,....A,. Assume that m is a
maximal ideal of A and B= n’=1 A;, then the following
conditions are equivalent.

(i) B is a finite. A-module.

(ii) B is a free A-module.

(iii) [B/mB: A/m]l= [D: K].

(iv) Sz e(v/o)f{v/o)=[D: K] and &v/w)= e(v/w).

Proof. (i) < (ii) & (iii) is proved exactly similar to the
commutative case, (cf. [4], 18.6). Now by Theorem 4.2,
Theorem C, Corollary 3.5 and the equivalence of (i), (ii),
(iiii) the proof is complete.[]

In view of Theorem 4.3 an interesting and important
case is & v/w)= e(v/w) in which v, must be invariant. So,
we show the following consequence for which we are
indebted to J. Griiter.

Theorem 4.4, If the conditions of Theorem 4.3 hold, then
o uniquely extends to an invariant valuation to D.

Proof. Let v be an extension of @ to D and &( v/ )= e(v/
@)= n>1.Let m B C bB chB c.chB =m, be the
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complete chain of right ideals, where b; ’s are the distinct
orbits of v over . Then each d in D can be written as d=
bku, where k € K, and u is a unit in B [5). On the
contrary, assume that v is not the only extension of @ to
D.Let R be the subring of D minimal with the property of
containing all extensions of @ to D [3, Lemma 4]. Then
J(R)cmpB cB cR,ie.eachb,is a unit in R. With the
same notations as in [3, Lemma 5], the automorphism of
§ induced by the inner automorphism of D which is
induced by d= b ku is the identity, i.e. S= (RNK)/(NNK)
and Zis purely inseparable over S, where N is the maximal
ideal of R and Zis the centre of R/N. This is a contradiction
as in the proof of [3, Lemma 5(i)]. Thus vis invariant and
the only extension of @ to D. So the proof is complete.[]

Remark 1.Let K < L be a finite separable extension, A
a discrete valuation ring of K, then the conditions of
Theorem 4.3 holds, but when E lies in a division ring D,
this conclusion does not hold.

Example 4.5, Let H = (%) be the usual quaternion

algebra, then the p—adic valuation (p>3) of Q does not
extend to H. So by Theorem 4.4, this conclusion does not
hold for Q and H.

Finally, as animmediate consequence of Theorem 4.3
and Corollary 3.5, we obtain

Corollary 4.6. For any non discrete valuation ring A of
rank 1, the equivalent conditions of Theorem 4.3 hold if
and only if A is defectless in D and e(v/w)= 1 for all
1<i<s.

Remark 2. To observe some of the results developed here
see the example of [3, Sec.4] or [, Sec. 5]. Unfortunately,
an example which may demonstrate all of the results can
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not easily be constructed. It would be an interesting
exercise to think of such examples.
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