INITIAL RAMIFICATION INDEX OF NONINVARIANT VALUATIONS ON FINITE DIMENSIONAL DIVISION ALGEBRAS

D. Mojdeh

Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Islamic Republic of Iran

Abstract

Let D be a division ring with centre K and $dim_K D < \infty$, ω a valuation on K and v a noninvariant extension of ω to D. We define the *initial ramification index* of v over ω , $\varepsilon(v/\omega)$. Let A be a valuation ring of ω with maximal ideal m, and v_1, v_2, \ldots, v_s noninvariant extensions of ω to D with valuation rings A_1, A_2, \ldots, A_s . If $B = \bigcap_{i=1}^s A_i$, it is shown that the following conditions are equivalent: (i) B is a finite A-module, (ii) B is a free A-module, (iii) B is a free A-module, (iii) B is a free A-module, (iii) B is also proved that if $E(v/\omega) = E(v/\omega)$, and any of (i) - (iv) holds, then v is invariant.

1. Introduction

Let D be a division ring and Γ a totally ordered set. A function $v: D \to \Gamma \cup \{\infty\}$ is called a noninvariant valuation if the following conditions are satisfied:

v.1.
$$v(d) = \infty \Leftrightarrow d = 0$$
.

v.2. $v(a + b) \ge min\{v(a), v(b)\}$,

v.3.
$$v(a) \le v(b) \implies v(ca) \le v(cb)$$
, $a,b,c \in D$.

In this case Γ is called a value set. Also the set $B_{\upsilon} = \{d \in D | \upsilon(d) \ge \upsilon(1)\}$ is called a valuation ring of υ , and $m_{\upsilon} = \{d \in D | \upsilon(d) > \upsilon(1)\}$ is its maximal ideal.

Let D be a division ring, B be a valuation ring of D and $\Gamma_1 = \{dB | d \in D\}$. Then $\{\Gamma_1, \leq\}$ is a totally ordered set with the greatest element $0B = \{0\}$,

$$dB \le d'B \Leftrightarrow d'B \subseteq dB$$

where dB is a fractional principal right ideal of D. If we set $0B = \infty$, $\Gamma = \Gamma \setminus \{0B\}$ and define

Keywords: Initial ramification index; Noninvariant valuation

$$\nu: D \to \Gamma \cup \{\infty\}$$

by the rule

$$d \rightarrow dB$$
.

then v is a noninvariant valuation on D, where $B_v = B(cf. [5], [3])$.

Let $G_v = \{\widetilde{x} \mid x \in D^*\}$, where $D^* = D \setminus \{0\}$ and \widetilde{x} is an order preserving bijection on Γ as follows:

$$\tilde{x}:\Gamma\to\Gamma$$

$$v(d) \rightarrow v (xd)$$
.

Then G_{v} is a group, with respect to the composition of functions, which possesses a canonical order:

$$\widetilde{x} \leq \widetilde{y} \iff \widetilde{x} (v(d)) \leq \widetilde{y}(v(d)), d \in D^*.$$

With respect to this order, G_n is a partially ordered group.

 B_v and v are called invariant if for all $d \in D$, $dB_v = B_v d$. Therefore we can define a multiplication on Γ via

$$v(d).v(d')=v(dd').$$

Since B_v is invariant, the multiplication is well-defined and Γ is a totally ordered group. Furthermore, G_v is totally ordered and

$$f: \Gamma \to G$$

$$v(x) \to \widetilde{x}$$

is an order-preserving group-isomorphism (cf. [6], [7], [8], [9], [10]). Also in this case v is a Krull valuation on D (cf. [1], [12]).

2. Major Subsets

Let D, Γ , v, B, and G, be as in Section 1.

Definition 2.1. Let S be a totally ordered set, then a subset M of S is called major, if for every $x \in M$ and $y \in S$

$$y \ge x \Rightarrow y \in M$$
.

Let M be a major subset of Γ and N a right B_v -module of D. Then $a(M) = \{d \in D \mid v(d) \in M \cup \{\infty\}\}$ is a right B_v -module of D and $M(N) = \{v(x) \mid x \in N \setminus \{0\}\}$ is a major subset of Γ , and it is easily shown that there is a one to one correspondence between major subsets of Γ and a(M)'s in D. This correspondence is an order preserving, i.e. for two major subsets M_1 and M_2 of Γ , we have

$$M_1 \subseteq M_2 \Leftrightarrow a(M_1) \subseteq a(M_2).$$

(cf. [8, Exercise 2, Ch. 1]).
As a consequence we obtain

Corollary 2.2. (i) For any major subset T of Γ , M(a(T)) = T. (ii) For any right B, module N of D, a(M(N)) = N.

Let Γ be as above, we put $\Gamma_{+} = \{dB_{v} | d \in B_{v}, d^{-1} \notin B_{v}\}$ and M is a major subset of Γ_{+} . In this case, $0 \neq x \in a(M) \Rightarrow xB_{v} = v(x) \in M \Rightarrow xB_{v} \in \Gamma_{+} \Rightarrow x \in B_{v} \Rightarrow a(M) \subseteq B_{v}$. Thus we have

Corollary 2.3. (i) If M is a major subset of Γ_{+} , then a(M) is a right ideal of B_{v} . (ii) If N is a right ideal of B_{v} , then $M(N) = \{v(x) \mid x \in N \setminus \{0\}\}$ is a major subset of Γ_{+} .

3. Initial Remaification Index

Let D be a division ring with centre K, ω a valuation

on K and v a noninvariant extension of ω to D, with maximal ideals m_{ω} and m_{v} , respectively. Also put $\Lambda = \{w(x) = xB_{v} | x \in K^{+} = K \setminus \{0\}\}$ and $\Lambda_{+} = \Gamma_{+}|_{K} = \{kB_{v} | k \in K \cap B_{v}, k^{\perp} \notin B_{v}\}$.

Combining the above and Corollary 2.3 one can easily show that

Proposition 3.1. There is a one to one correspondence between major subsets of Γ_{+} which contain Λ_{+} and the right ideals of B_{ν} which contain $m_{\rho}B_{\nu}$.

If D is finite dimensional over its centre, the above sets are finite and the rank of each of them is equal to a natural number n.

We now state the following definition which is one of the keys in this paper.

Definition 3.2. Let D be a division ring finite dimensional over its centre K. The above natural number is called the initial ramification index of v over ω and it is denoted by $\varepsilon(v/\omega)$.

This definition coincides with the one in the commutative case.

To prove one of the main results in this section, we need to invoke results from [3] and [5].

Theorem A. [3, Th. 1]. Let D be a division ring with centre K, $[D:K] = n^2$ and B be a valuation ring of K. Then B possesses at most n noninvariant extensions in D.

Suppose $G_{\omega} = \{ \widetilde{k} \mid k \in K^* \}, G_{\omega}(\Gamma) = \{ \widehat{d_i} \mid d_i \in D^* \}$, where $\widehat{d_i} = \{ \widetilde{k} \mid (d_i B_v) = k d_i B_v \mid k \in K^* \}$.

In [5], each of the d's is called an orbit.

Definition B. [5, Section 4]. The number of distinct \hat{d} 's is called the ramification index of vover ω and it is denoted by $e(v/\omega)$.

Theorem 3.3. Let D, K, v, ω , Γ_+ and $\varepsilon(v/\omega)$ be as above. (i) If Γ_+ does not contain the least element, then $\varepsilon(v/\omega) = 1$. (ii) If Γ_+ contains the least element such as d_0B_v , $\Gamma' = \{d_0^tB_v \mid t \in Z\}$ and n is the number of orbits of the set of $G_\omega(\Gamma') = \{d_0/t \in Z\}$, then $\varepsilon(v/\omega) = n$.

(iii) If m_v , the maximal ideal of B_v , is not principal, then $\varepsilon(v/\omega)=1$.

Proof. (i) Let xB_v be any element in Γ_+ and $A = \{yB_v \in \Gamma_+ \mid yB_v < xB_v\}$. Clearly A is an infinite set. Since $e(v/\omega) < \infty$, there exist y_1B_v , y_2B_v in A such that $\hat{y}_1 = \hat{y}_2$, hence for

some $k \in K^*$, $y_1B_0 = y_2kB_0$, $y_1^{-1}y_2B_0 = k^{-1}B_0$ or $y_2^{-1}y_2B_0 = kB_0$.

We can assume that $y_2^1y_1 \in B_v$. Since $y_1B_v < xB_v$ and $B_v < y_2B_v$, then $y_2^1y_1B_v = kB_v < ky_2B_v = y_2kB_v = y_1B_v < xB_v$. Hence every major subset of Γ_+ which contains all elements of Λ_+ , contains xB_v and hence all elements of Γ_+ . Therefore, by Definition 3.2, $\varepsilon(v/\omega) = 1$.

(ii) Let $d_0 B_v$ be the least element in Γ_+ . Since $e(v/\omega) < \infty$ the set $T = \{d_0, d_0, \dots, d_0, \dots\}$ is finite, then there are positive integers r, s(r > s) such that

$$\{d_0^k B_v \mid k \in K^*\} = \hat{d}_0^r = \hat{d}_0^s = \{d_0^s k B_v \mid k \in K^*\}.$$

Thus for some $k \in K^*$, $d_0^s B_v = d_0^s k B_v$ or $d_0^{r-s} B_v = k B_v$, since r - s > 0, $d_0^{r-s} B_v \in \Gamma_+$ and $k B_v = d_0^{r-s} B_v \in \Lambda_+$.

This implies that there exists the least positive integer

This implies that there exists the least positive integer n, with $d_0^n B_v \in \Lambda_+$. Also n is the number of orbits of the action G_ω over Γ' , that is the number of elements of the set of T.

Now suppose

$$M(yB_y) = \{zB_y \in \Gamma \mid yB_y \le zB_y\}.$$

We show that $M(d_0B_v)$, $M(d_0^2B_v)$,... $M(d_0^2B_v)$ are the only major subsets of Γ_{\perp} which contain Λ_{\perp} .

By Definition 2.1 $M(d_0^t B_v)$ is a major subset of Γ_+ , we show that $\Lambda_+ \subseteq M(d_0^t B_v)$ for $1 \le r \le n$. Suppose $kB_v \in \Lambda_+$, since $d_0 B_v \le kB_v$, then $kB_v \in M(d_0 B_v)$. If there exists some positive integer $1 \le r \le n$, such that $d_0^t B_v < kB_v < d_0^{t-1} B_v$, that is $kB_v \in M(d_0^t B_v)$ and $kB_v \notin M(d_0^{t-1} B_v)$, then $B_v < d_0^{t-1} kB_v < d_0 B_v$. This is a contradiction, because it is assumed that $d_0 B_v$ is the least element of Γ_+ , hence $kB_v \in M(d_0^t B_v)$ and $\Lambda_+ \subseteq M(d_0^t B_v)$, for $1 \le r \le n$.

Now let M' be another major subset of Γ_+ which contains Λ_+ , then $M' \subseteq M$ (d_0B_v) . On the other hand $d_0^nB_v \in \Lambda_+ \subseteq M$ and hence $(d_0^nB_v) \subseteq M$. This implies that for some $1 \le r \le n$ and for $xB_v \in M$

$$d_0^T B_0 < x B_0 < d_0^{T+1} B_0$$

or

$$B_{\nu} < d^{-r}xB_{\nu} < d_{0}B_{\nu}$$

and this is a contradiction too. Therefore $M' = M(d \delta B_v)$, for some $1 \le r \le n$ and $\varepsilon(v/\omega) = n$.

(iii) On the contrary, suppose $\varepsilon(v/\omega) > 1$, by (i) Γ_{+} contains the least element $d_{0}B_{v}$, where $d_{0} \in m_{v}$. It is easily shown

that
$$m_n = d_n B_n$$
.

It is well known that, if $F \subseteq E$ is a finite field extension, then any discrete valuation ring A of F extends to a discrete valuation ring B of E. Correspondingly we have the following result, when the field extension lies in a division ring D.

Proposition 3.4. The nontrivial valuation ω of K is discrete if and only if there exists a one to one correspondence between and Γ and a subset of integers Z.

Proof. Since $e(v/\omega) < \infty$ and $\Lambda = \omega(K^*) = \{kB_v | k \in K^*\}$ is isomorphic to a subgroup of Z, $\Gamma = \{dB_v | d \in D^*\}$ corresponds to a subset of integer Z. Now the proof is straightforward.

We are now in a position to prove an interesting consequence of the above results as follows:

Corollary 3.5. (i) $\varepsilon(v/\omega) \le e(v/\omega)$.

(ii) $\varepsilon(v/\omega) \mid e(v/\omega)$ if Γ_+ does not contain the least element or contains the least element $d_0 B_v$ such that $d_0^{\epsilon(v/\omega)} B_v \in \Gamma_+$. (iii) $\varepsilon(v/\omega) = e(v/\omega)$ if ω is discrete.

(iv) $\varepsilon(v/\omega) = 1$ if the valuation ring A of ω is of rank I and is nondiscrete.

Proof. (i) It is clear by Definition B and Theorem 3.3. (ii) If Γ_{+} does not contain the least element, then $\varepsilon(v)$ $\omega) = 1$ and it contains the least element d_0B_v , by Theorem 3.3 (ii), there is a least positive integer n such that $\varepsilon(v)$ ω = n and $d_0^nB_v = kB_v \in \Gamma_{+}$. By assumptions for some $k' \in K^*$, $k'B_v = d_0^{\epsilon(v)\omega)}B_v$. Now if n does not divide e(v) , then e(v) ω = mn + r, where 0 < r < n.

So $d_0^{r}B_v = k^{r}k^mB_v \in \Gamma_+$ and this is a contradiction. In any case $\varepsilon(v/\omega) \mid e(v/\omega)$.

(iii) By proposition 3.4, Γ_+ contains the least element d_0B_v . We show that $\Gamma' = \{d_0^BB_v | n \in Z\} = \Gamma$. If $\Gamma' \neq \Gamma$, then there exist $dB_v \in \Gamma$ and a positive integer r such that $d_0^TB_v < dB_v < dD_v^TB_v$, hence $B_v < dD_v^TB_v < dB_v = G(\Gamma)$, now by Definition B and Theorem 3.3 (ii), the proof is complete. (iv) Since in this case the value group of ω does not contain the least positive element, neither does Γ . Hence, Theorem 3.3 (i) completes the proof.

Let m_v, m_ω be the maximal ideals of B_v, B_ω respectively, then $[B_v/m_v: B_\omega/m_\omega]$ is called the residue class degree of vover ω and it is denoted by $f(v/\omega)$.

We have the following, which is a generalization of [1] (Proposition 4, § 8.5, Ch.IV) and [4] (18.5 (a)).

Theorem 3.6. Let D be a division ring with centre K, ω a valuation on K and υ a noninvariant valuation on D

which extends ω . If B_{ω} , B_{υ} are the valuation rings corresponding to ω , υ with maximal ideals m_{ω} , m_{υ} respectively, then

$$[B_{\nu}/m_{\omega}B_{\nu}:B_{\omega}/m_{\omega}] = \varepsilon(\upsilon/\omega). f(\upsilon/\omega).$$

Proof. By Proposition 3.1 and Definition 3.2, $\varepsilon(v/\omega)$ is equal to the number of proper right ideals of B_v which contain $m_\omega B_v$. The set of proper right ideals of B_v which contains $m_\omega B_v$ forms a totally ordered set relative to the inclusion, hence $\varepsilon(v/\omega)$ is equal to the length of the right module $B_v/m_\omega B_v$ as a right B_v module. It is well known that a right B_v —module of length 1 is a 1-dimensional right vector space over B_v/m_v . Since B_v/m_v is a vector space over B_w/m_ω of $f(v/\omega)$ -dimension, hence a right B_v —module of length $\varepsilon(v/\omega)$ is a vector space of dimension $\varepsilon(v/\omega) f(v/\omega)$ over B_w/m_ω . Thus the proof is complete.

4. The Relation $\sum_{i} e f_{i} = n$

Let D be a division ring finite dimensional over its centre K, ω a valuation on K with valuation ring A and $v_1, v_2, ..., v_n$ noninvariant extensions of ω to D. We say that A is defectless in D, if $\sum_{i=1}^{N} e(v_i/\omega) f(v_i/\omega) = dim_K D(cf. [11])$.

To prove our next result we need the following, which is covered by [6,3.3 Satz].

Lemma 4.1. Let D be a division ring finite dimensional over its centre K, ω a valuation on K and $v_1, \dots v_r$, the noninvariant extensions of ω to D. If A_i is a valuation ring of $v_i(1 \le i \le s)$, $B = \bigcap_{i=1}^s A_i$ and $P_i = B \cap m_i$, where m_i is a maximal ideal of A_i . Then,

- (i) $A = B_m$ (the localization of B at P_n).
- (ii) D is a field of fraction (left and right) of B.
- (iii) P's are the only maximal ideals of B.

Now it may be of interest to record the following result as the first application of Lemma 4.1.

Theorem 4.2. Let D be a division ring finite dimensional over its centre K, ω a valuation on K with valuation ring A and v_1, \ldots, v_n , the distinct noninvariant extensions of ω to D, with valuation rings A_1, \ldots, A_r . Assume that m is a maximal ideal of A and $B = \bigcap_{i=1}^{s} A_i$, then

$$[B/mB:A/m]=\sum_{i=1}^{s} \varepsilon (v_i/\omega) f(v_i/\omega).$$

Proof. We define $\psi: B / mB \to \prod_{i=1}^{s} A_i / mA_i$, by $\psi(b + mB) = (b + mA_i, \dots, b + mA_s)$. It is clear that ψ is a homomorphism, $(mB)_{pi} = mB_{pi} = mA_i (1 \le i \le s)$. By [8, Theorem 7.5], $mB = mA_1 \cap mA_2 \cap \dots \cap mA_s$, so ψ is one

to one. By [2, Theorem 3.2], [8, p. 97, Corollary 6] A_i 's are locally invariant, mA_i 's are the right ideal of A_i 's and if $(a_1+mA_1,...,a_s+mA_s) \in \prod_{i=1}^s A_i / mA_i$, then a_i, a_j, mA_i and mA_j are compatible for $i, j \in \{1,2,...,s\}$ and there exists an $x \in D$ with $x \cdot a_k \in A_k$ for k=1,2,...,s hence $x \in B$ and $\psi(x+mB)=(x+mA_1,...,x+mA_s)=(a_1+mA_1,...,a_s+mA_s)$. This shows that ψ is onto and hence ψ is an isomorphism from $B / mB \to \prod_{i=1}^s A_i / mA_i$. By Theorem 3.6 the proof is complete.

For the proof of the main result we need the following

Theorem C. ([5, Th. 4.1]). Let D, K, ω be as above and let $v_1, v_2, ..., v_s$ be all distinct noninvariant extensions of ω to D, then

$$\sum_{i=1}^{s} e(v_i/v) f(v_i/v) \leq [D:k].$$

Theorem D. ([3, Th. 3]) Let D be a division ring finite dimensional over its centre K. Let A be a valuation ring of K. Assume that A_1, A_2, \dots, A_n are all of the noninvariant extensions of A to D. Then $B = \bigcap_{i=1}^{s} A_i$ is the integral closure of A in D.

Combining Theorem 4.2 and Theorem C, we obtain

Theorem 4.3. Let D be a division ring with centre K and $dim_K D < \infty$. Let ω be a valuation on K with valuation ring A and v_1, \ldots, v_s be the distinct noninvariant extensions of ω to D, with valuation rings A_1, \ldots, A_s . Assume that m is a maximal ideal of A and $B = \bigcap_{i=1}^{s} A_i$, then the following conditions are equivalent.

- (i) B is a finite A-module.
- (ii) B is a free A-module.
- (iii) [B/mB: A/m] = [D: K].
- (iv) $\Sigma_{i=1}^{s} e(v/\omega) f(v/\omega) = [D:K]$ and $\varepsilon(v/\omega) = e(v/\omega)$.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) is proved exactly similar to the commutative case, (cf. [4], 18.6). Now by Theorem 4.2, Theorem C, Corollary 3.5 and the equivalence of (i), (ii), (iii) the proof is complete.

In view of Theorem 4.3 an interesting and important case is $\varepsilon(v/\omega) = e(v/\omega)$ in which v_i must be invariant. So, we show the following consequence for which we are indebted to J. Gräter.

Theorem 4.4. If the conditions of Theorem 4.3 hold, then ω uniquely extends to an invariant valuation to D.

Proof. Let v be an extension of ω to D and $\varepsilon(v/\omega) = e(v/\omega) = n > 1$. Let $m_{\omega}B_{v} \subseteq b_{1}B_{v} \subseteq b_{2}B_{v} \subseteq ... \subseteq b_{n}B_{v} = m_{v}$ be the

complete chain of right ideals, where b_i 's are the distinct orbits of v over ω . Then each d in D can be written as $d=b_iku$, where $k \in K^*$, and u is a unit in B_v [5]. On the contrary, assume that v is not the only extension of ω to D. Let R be the subring of D minimal with the property of containing all extensions of ω to D [3, Lemma 4]. Then $J(R) \subset m_\omega B_v \subset B_v \subset R$, i.e. each b_i is a unit in R. With the same notations as in [3, Lemma 5], the automorphism of S induced by the inner automorphism of D which is induced by $d=b_iku$ is the identity, i.e. $S=(R\cap K)/(N\cap K)$ and Z is purely inseparable over S, where N is the maximal ideal of R and Z is the centre of R/N. This is a contradiction as in the proof of [3, Lemma 5(i)]. Thus v is invariant and the only extension of ω to D. So the proof is complete. \square

Remark 1. Let $K \subseteq L$ be a finite separable extension, A a discrete valuation ring of K, then the conditions of Theorem 4.3 holds, but when E lies in a division ring D, this conclusion does not hold.

Example 4.5. Let $H = \left(\frac{-1}{Q}, \frac{-1}{Q}\right)$ be the usual quaternion

algebra, then the p-adic valuation (p>3) of Q does not extend to H. So by Theorem 4.4, this conclusion does not hold for Q and H.

Finally, as an immediate consequence of Theorem 4.3 and Corollary 3.5, we obtain

Corollary 4.6. For any non discrete valuation ring A of rank 1, the equivalent conditions of Theorem 4.3 hold if and only if A is defectless in D and $e(v/\omega)=1$ for all $1 \le i \le s$.

Remark 2. To observe some of the results developed here see the example of [3, Sec. 4] or [5, Sec. 5]. Unfortunately, an example which may demonstrate all of the results can

not easily be constructed. It would be an interesting exercise to think of such examples.

Acknowledgements

The author would like to thank Professors J. Gräter and M. Mahdavi-Hezavehi for their valuable suggestions and encouragement. My thanks also go to the Research Council of Sharif University of Technology for its support.

References

- Bourbaki, N. Commutative algebra. Reading, Mass., (1970).
- Brungs, H.H. and Gräter, J. Noncommutative Prüfer and valuation rings. Contemporary Mathematics, 131, (2), (1992).
- Brungs, H.H. and Gräter, J. Valuation rings in finite dimensional division algebras. *Journal of Algebra*, 120, 90-99, (1989).
- Endler, O. Valuation theory. Springer-Verlag, Berlin/New York, (1972).
- Gräter, J. Valuations on finite dimensional division algebras and their value groups. Arch. Math., 51, 128-140, (1988).
- Gräter, J. Zur theorie nicht kommutativer Prüfer ringe. Arch. Math., 41, 30-36, (1983).
- Mathiak, K. Bewertugen nicht kommutativer Körper. Journal of Algebra, 48, 217-235, (1977).
- Mathiak, K. Valuations of skew fields and projective Hjelmslev space. Springer Lecture Notes in Math. No. 1175, Springer-Verlag, Berlin, (1986).
- 9. Mojdeh, D. Valued division rings associated to noninvariant matrix valuations. Proceedings of 25 th Iranian Mathematical Society Conference, (1994).
- Mojdeh, D. Noninvariant matrix valuations and their associated valued division rings. (Submitted).
- 11. Morandi, P. The Hensellization of a valued division algebra. *Journal of Algebra*, 122, 232-243, (1989).
- 12. Shilling, O.F.G. The theory of valuations. Math. Surveys, No. 4, Amer. Math. Soc., Providence, R.I., (1950).