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Abstract

This paper deals with the basic notions of k-tautimmersions. These notions come
from two special cases; thatis, tight and tautimmersions. Tight and taut based on hight
and distance functions respectively and their basic notions are normal bundle, end-
point map, focal point, critical normal. We generalize hight and distance functions to
cylindrical function and define basic notions of k-taut immersions such as k-plane
normal bundle, end k-plane map, focal k-plane, and critical k-plane normal. Then we
prove index theorems for cylindrical function similar to the standard index theorems
of distance function. In this way, the key point is the relation between focal point and

focal k-plane.

Introduction

Let f: M—R" be an immersion. f is said to be tight
(convex, minimal) if every non-degenerate hight function
has the minimal number of critical points. This idea was
introduced by Chern and Lashof [1] and studied by Kuijec
and many others. A good reference is [2]. The immersions
for which every non-degenerate distance function has the
minimal number of critical points have been studied in [3].
Such immersions are called fqut immersions.

The notion of tautness has been generalized to k- taut
immersion in [4] by taking the distance from k-planes
(rather than points) in R”, The main results of [4]have been
published in [5], and the rest of [5] deals with the
generalization of "spherical two-piece property” introduced
by Banchoff [6] for k-tautimmersions. Only [4] and [5] are
compact manifolds considered. In [7], the general properties
of k-taut immersions on compact and non-compact
manifolds were investigated.

The study of k-taut immersions needs theorems for
cylindrical functions similar to the standard theorems for
distance functions. This generalization has not been done
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in [4], or elsewhere, thoroughly, and is so important that
this paper is devoted to it. Notions such as normal bundle,
end-point map, focal point, critical normal etc. need to be
generalized. The key notions are focal point and focal &-
plane.

Notation and Definition
We work throughout in the category of smooth (C=)
manifolds and smooth maps. M is always a connected m-
manifold without boundary which is second countable.
For convenience, when we say " the point ¢ ~ eR™ we

mean the end point of the vector e

Definition 1.1.
Let f: M—R"be an immersion. For each k-plane II in
R*, we define the k-cylindrical function C: M —R by

C,,(p)=inf N £ () - x I xe TI}.

When £ =0; thatis, when ITis a point, C, is a distance
function.

Definition 1.2,
Let f : M—>R"be an immersion. We can define the
normal bundle of f in the usual way, having as total space

the subset N (M) = MxR" of pairs (p, n” ) for which pe M
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and <d f(g).n">=0forall ge T M. Let : N(M)—R"be the
end - point map given by 1 (p, n")=f” (p)+n". The point
¢’ e Rris afocal point of (M, p) with multiplicity pu> 0 if
€=f(@) +n ,where(p,n” ) eN(M) and the Jacobian of
nat(p.,n” ) has nullity . The point e is a focal point of M
if ¢” is a focal point of (M, p) for some pe M. The critical
points of 1) are called critical normals.

These notions are essential in the study of distance

functions. Now we generalize these to use them for
cylindrical functions.

Definition 1.3.

Let f : M—R"be an immersion and N(M) be the total
space of the normal bundle of f. Let G (k, R”) be the
Grassmann manifold of k-dimensional vector subspaces in
R*. We define LN (M)c N(M) x G (k, R") as follows: (p,
n", A)E LN (M) if, and only if, (p, n )eN(M) and n” is
orthogonal to A . We observe that LN(M) is locally the
same as R " X G (k, R*"). Therefore, LN (M) is a manifold
of dimension n+k (n-1-k). It is also worth noting thatif L,
(R") is the set of all k-planes is R", then dim L, (R") = n +k
(n-1-k). The map 7,: LN (M) —-L(R") is defined as
follows: 7,(p, n , A) is the k-plane parallel to A which
passes through the pointf” (p)+n " in R". Of course, 1], is the
same as 1].

We call LN (M) the k-plane normal bundle and 1), the
endk-plane map. The k-planeIle L(R")isafocal k-plane
of (M,p) with multiplicity u > 0if TI=7,(p,n", A) forsome
(@.n", AYe LN (M)and the Jacobian of 7], at(p, " , A)
has nullity p. ITe L(R") will be called a focal k-plane of
M if ITis a focal k-plane of (M ,p) for some p e M. We call
the critical points of 1), the critical k-plane normals.

We make use of the following theorem (see [8]):

Theorem 1.4. (Sard). If M, and M, are smooth manifolds
of the same dimension and f: M,—M, is a smooth map,
then the set of critical values of f has measure 0 in M,.

Corollary 1.5, For almost allTle L(R"), Ilis not afocal
k-plane of M.

Proof. Obvious.

First and Second Fundamental Forms
The main concepts in this paper are focal point and
focal k-plane. For a better understanding of these notions,
it is necessary to introduce "the first and the second
fundamental forms" of a manifold in Euclidean space. We
will not attempt to give an invariant definition, but will
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make use of a fixed local coordinate system: Letx=(x,, x,,
..., X ) be a chart of the manifold M, and Y=(y,, 3, ..., 3,)
be a chart of R Then f: M— R" determines n smooth
functions:

Y]= ylfxlo Yz =y2frl""’ Yn=ynfxl'

These functions will be written brieflyas Y~ (x,, ..., ,),
where Y~ = ¥,....Y).

The first fundamental form associated with the
coordinate systems is defined to be the symmetric matrix
of real valued functions

> -
_ Yo7
@) (ax.-'ax,-'

The second fundamental form, on the other hand, is a
symmetric matrix (I!.,.") of vector valued functions and is
->
o’y
X;0x;
expressed as the sum of a vector tangent to M and a vector
normal to M. Define I, to be the normal component of
>
’Y
ax;dx j
p, the matrix

defined as follows: the vector atapointof M canbe

. Given any unit vector v_ which is normal to M at

> >

. PY
. )= . .
ax;ox;

v

is called the "second fundamental form of M at p in the
direction v "

We can choose coordinates such that (g,), evaluated at
p, be the identity matrix. Then the eigenvalues of o li.*)
are called the principal curvaturesk,, ...,k of Matpinthe
normal direction v ~, The reciprocals &, ..., k" of these
principal curvatures are called principal radii of curvature.
Of course, it may happen that the matrix (v ™. L) is
singular, in which case, one or more of the k' will not be
defined.

Now consider the normal line ! consisting of all

f(p) +tv” (tisreal), where v" is a fixed unit vector normal
toMatp.

Lemma 2.1. Thefocal points of (M p) along lare precisely

the points f (p)*+k,." v™, where 1<i<m, k#0.Thus, there
are at most m focal points of (M,p) along 1, each being
counted with its proper multiplicity.
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Proof. See Milnor’s Morse theory ([9]).

Distance Functions and Cylindrical Functions
Now we consider critical points of distance and

cylindrical functions. ForafixedY, € R",distance function
L,’: M >R is defined as follows:

L@ Gyt ) =Y " (x, 0 )Y, I
Thus
- >
9n _29Y .y
ox; ax;

Since fis an immersion, L “hasa critical point at p if,
and only if, either (p)” = Y, “orfip)” -Y, ~ is normal to M
at p. Therefore:

Lemma3.1 Ifn(p,n")=f(p) +n =Y, ,thenpisacritical
point ofLyo’. Conversely, if pisa critical pointof L, then
there exists ann” such that (@, n") € N(M) and we have n
@.n) Y .In parttcular »pisacritical pointof L, , ~ for

everyp e M,
We have a similar result for end k-plane maps and
cylindrical functions:

Theorem 3.2. Ifn, (p, n,A) =11, then p is acritical point
of Cy,. Conversely, if p is a critical point of C,,, then there

exists (p, n, A) € LN(M)with 1, (p, n , AN =11 In

particular ,T1is a k-plane passing throughf(p)” , then p is
a critical point of C,.

Proof. Let Y, (x,,...,x,) be the projection of the end point
of Y " (x,, ..., x,) on IL. Then we have

Cl¥ 7 (oo x N =Y " (xy o0 ). (x,, oy X IR,
Thus,
220y &2,
SmoegTlespamllel toMandY™-Y,” is perpendicular to
I1, we have

%n -5y )
ox; ox;
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Firstlet7,(p,n” ,A)=T1. Wehave (Y -Y)p=n".
Hence, the right hand side of (*) at p is equal to zero for
every i; ie. foreachz,(% —22) p=0. This means that p is

Xi
acritical point of C,, . Conversely, let p be critical point of
C,-Weput(Y"-¥,") p=n".Let A be the k-plane parallel

to IT passing through the origin. Then in (*), since (——
Xi

-b
p =0 for every i, we deduce that n~ L ( ) for every i.
Therefore, (p, n,AE L,N(M) and nk(p, n,A)=II.

Degeneracy of Distance Function and
Cylindrical Function
Thereis an intimate relation between degenerate critical
points of distance functions and focal points. We have a
similar relation for cylindrical functions. First we consider

the distance function Ly,

Lre (¥ (e x ) =Y " (1 1o )Y TP
The second partial den'vatives are
8x.~3xj ax. ax, ax,ax,
At a critical point, if we assume ¥ "= ¥ "+, this

becomes
oLz, - -
—L=2(-tv.L )
0xi0x; @; i)

Therefore, if we choose x, ..., x, around pe M such that
(g;) becomes the identity matrix, we have:

Lemma 4.1. The point pe M is a degenerate critical point
of Ly, if,and only if, Y ,,-'is a focal point of (M p).

We have a similar result for cylindrical functions (see
4n:

Theorem 4.2. The point peM is a degenerate critical
point of C.. if, and only if, I1 is a focal k-plane of (M p).

Now we get other criterions for degeneracy of
cylindrical functions. First we look at the second partial
derivatives of C,:

2
=219 Y’ @y )9
ox;0x;

9Cn

aY aY.
ax:axj el

Xj ax,

Xi
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IfweassumeY,” =Y+, this, atacritical point, becomes

- o
Cn = ..-Q-Y—.QL- . li.-’).
0x;0x; Y oxi Oxj !

Thus:

Theorem 4.3. The point peM is a degenerate critical
point of C, if, and ongw ;’f, a?
(g o *

o o L)
Y oxi Oxj Y

is singular at that point.

If we put + >

oY dY. »> >

H@O=120 v 17,
Ut dxi 0x; d
then
3’Cn 1
=2[Lg,-H. ()
0x;0Xx; e

Therefore:

Theorem 4.4. p is a degenerate critical point of C,if, and

only if, 1 s an eigenvalue of (H( 0).
t

- Since the eigenvalueof (H,(f))and ("1, are generally

different, if IT is a focal k-plane, f{p)” +tv_ may not be a
focal point. In this case, we have the following result:

Theorem 4.5. If f: M— R"is not substantial (i.. M)
R®) suchthat s<n, thenany k-plane (k<n-s) throughafocal
point in R" perpendicular to R’ and to the normal ray
passing through that point is a focal k-plane.

. -+ -»
Proof. Corresponding to this plane, oY o foralli,j.
oxi ox j ‘
5 e Y
Therefore, (21-. 8" is the zero matrix and (H(0)= (V"
- Xi 0Xj

l;). Thus, since 1 jsan eigenvalue of (v*. l,.;), itisalsoan

t
eigenvalue of (H, ,.-I( 0).

Although distance function is a special case of
cylindrical function, the type of their critical points can be
different. For example, p is anon-degenerate critical point
of L, But we show that, for some k-planes passing
through f(p), p is a degenerate critical point of C,;: if ITis
transversal tof, then
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M, (C)=1p € M: Ci(p)=0}

is of dimension m+ k-n. If m+k-n>1; thatis, k2n-m+1, then
p is not an isolated critical point of Cp; therefore, it is
degenerate. Hence, we have the following result:

Theorem 4.6. If f: M—R"isan immersion,Tle L (R")is
passing through f(p) and is transversal tof, and k2 n-
m+1, then p is a degenerate critical point of Cppe

We also observe thatif f: R—R?is defined by fix)=(x, -
x*)(n 22) and I is the x-axis, then x= (is anon-degenerate
critical pointof L, . but it is adegenerate critical point of
C,,- This inspires the following:

Theorem 4.7. If f: M—> R*is an immersion and IL=df,
(T M), then p is a degenerate critical point of Cnpfor every
peM.

Proof. We choose coordinates x,,...,X,,..., X, atf(p) such
that x,, ..., x, vary in II, and (by the help of df and
exponential map) x,, ..., X, be coordinates for M in a
neighbourhood of p. Then

Crp @y oo X,)= b R

Thus,
Crp _ 2, Oxmsl . 42x 9%n - 0 at (0,..., 0) €R"
ox; oxi ox;
and
FCp _ o Fxmel o 9 Wmut Mmal 4 _
oxidx; T Oxidxj dxj  Oxi
at (0,...,0) eR™

Index Theorems for Cylindrical Functions

Now we study non-degenerate critical points of
cylindrical functions. In this way, we give several index
theorems for cylindrical functions similar to the one for
distance fundtions. (Index of a map at a non-degenerate
critical point is equal to the number of negative eigenvalues
of its Hessian at that point; see [9]). For distance functions
we have:

Theorem 5.1. (Index theorem for Ly, ). The index of Lyo
at a non-degenerate critical point pe M is equal to the
number of focal points of (M p) which lie on the segment

Yo*- f(p)"; each focal point being counted with its
multiplicity.
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Proof, see [9]. that is, G(t)-J’G(t)I Also, gk,-J ie g=lTgl. -
Itlsobvnousthat(g canbecl‘{(,mentobeposmve

For index theorems of cylindrical functions we need
the following two lemmas:

Lemma 5.2, G = (8-t HLD) is symmerric.

aYo

Proof. We have (V.Y ). g" * =0and (¥,”-Y").
ox;

Xi
Therefore,

-~y >
. . 3t ar., - ¥ =0
oxj Oxi ax, ax. "9x;ox;
are s 3y are O
Er ax, o ox; 3x.8x,

By subtracting these relations, we deduce that

3 ar. _of. of..
oxi ax, Bx, ki
that is, the matrix (81’ %-) is symmetric. Since (g,) =
oxi 0xj

(a” gl)and(

(Gv (1)) is symmetric.

Lemma 5.3. We can choose coordinates X5
that, at p,

@) g=(g)=1and
(b) G(1)= (G@(t) is a diagonal matrix,

1) are also symmetric, we deduce that

ook, Such

Proof. Let x,,...,x_ be any coordinates centered at p. Let

.. ,x,,.besomeoﬂmcoordmatw which we are going to
choose¢ We have

G(t)=——— 5—-(Y -Y, )‘tv '—'( )

Xj ax., ax,
BY a
t Y™ Y )t —_ (=)
,,,()— ( ) A ax,)

If we write J= V)= ( ), then we have

ax,

+ ,(t)=

266

definite. Therefore, by sxmultaneous diagonalization
theorem ([10]), there is an orthogonal matrix W such that
W’(g) W=I and W’(G’(t)) W is a diagonal matrix. Now (by

the help of theexponenual map) we choose X,,..., X such
that (), —(ax')_w Then, with these new coordinates,
() ), =/ and (G(g))’ is a diagonal matrix.

Theorem 5.4. (Index theorem for C,)). The index of C,at
a non-degenerate critical point pe M is equal to the

number of eigenvalues of (H‘.,( 1)) which are larger than L
t

Proof. By Lemma 5.3, we may assume that, atp,
and (G, A9, and therefore, (H, (1)) is diagonal. Let

¥ L)

We form the characteristic polynomial of (L1 - H,(1):
t

(g)=I

@[

- -}-t-a“)(x-%d- an)...(x-%-+am) =0.

l—a <0=>a>landthetheoxem1sproved

We prove the following lemma which is useful in our
subsequent discussion.

Lemma 5.5, If n is the plane parallel to T1 passing

Sy -.
through the origin, then %Y— = projection of o1 ontoll.
x; xl

Proof.Lete,”,....e,” be an orthonormal basis for [T and IT

="+ 11, Forsunphcxty, we ke fip)” as the origin. Let
Y =t +).e +..4A, ¢ Wekmwforevery],(l' -
Y, )e "= 0. Hence.foreach],

0= "X )e =Y "¢ - 00" A,
Therefore, A=Y ".¢,”. Thus,

- - k - -
Y= 43 (X e
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Fi-‘rom this we get 7 3y, ’
' (B;)_—.(Q_EY_‘) T¢[1 0]
- - ¥ 9xi oxj0 mt0 C
A ok @F =, '
Y. 4jml 3xi. i’ where
s C= (cﬁ)=(2f,‘=’1 (a :.eh")(aj".e:)), relSijsm.
.\ * ,* . . .
~ Then (Q) =I- |/ O},
are_ rojection onto T of . en (Q,) [0 C] which gives the following
axi xi corollaries:
Now we consider the matrix
a}* a;: Theorem 5.6. (Index theorem for- Cwhen k=n-1). The
Q)= v E‘—‘_-)- index of C,, at a non-degenerate critical point p €M is

We choose coordinates at a critical point p such that

(N has a useful form: Let = df (T M). Suppose MandT
be the planes passing through the origin parallel to IT and

Trespectively. We write T= (ﬁﬁ 7) e*’iand n= ﬁﬁ ?)
Qlﬁ, Let r=dim (ﬁﬁ 7). We choose orthonormal basis
g ... for TIN Tand extend it to the orthonormal basis
T, Jor T. We choose coordinates x, at

-» -
T MY S

p such that @, = EaL We also extend d, ....d, 10
xi

@ ...a s € ...e, W be an orthonormal basis for I1
Then, atp,

o o 0

g=OL 9y jand 2L =2 i=1,..,m,
(& (ax.- ax,-)_ ax; A

—’

gi:projectionof

ox;

. lai1gjsr
a =
! Zigl(a;..e w)en,rHS j<Sm

Hence, at p,
-» -» > >
oy v | ai.a
Y oxi dx; Zﬁil(ai'.e,.")(aj".e,,’)=cg

where in the firstrow 1Si<m, 1< j < r and in the second
row 1< i < m, r+1< j < m. Therefore, at p,

equal to the number of focal points which are on the
positive direction of V..

Proof. In this case we have r=m, where r=dim (ﬁﬁ?)
Therefore, (B,)= QYT | s, ()= (L V.
ox; Oxi v t

). By simultaneous diagonalization, we may assume that
o1 ‘.,.*) is diagonal. Now we observe that the eigenvalues

of (H,(¢)) are in the form of L+a, Therefore, the number of
t

eigenvalues of (H,($)) which are larger than L is equal ©
t

" the number of positive eigenvalues of (v". ] ), and we are

267

done.

Theorem 5.7. If I1 is a focal (n-1)-plane, then any T
parallel to T1 is also a focal (n- 1)- plane.

Proof. Let I1 be a focal (n-1)- plane passing through the
point Ap)"+ »v", and IT be an arbitrary (n-1)- plane
intersecting the direction of v atf{p) +Av . Weknow that
Lis an eigenvalue of (11 +v". 1,"). Thus, there is a vector
)t(l such that t
(%1 +v 1 X)= %x,.

We write

(11_ 1+V". 1) X)= (% 1+V°.17+ (i- -%.) DX)= %.xl+

..1__1_X --l-X;
(2. t)( ) 2
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that is, i- is an eigenvalue of (.)1-'- 1+v".1,"). Therefore, I
is a focal (n-1)-plane.

Now let (H 0= (LB+D,), where B= ATy

v p P Y oxi dx

D=v".1,". Weevaluate (D) atp and (H () for T1= 0, &,
n,A)=atp:
© Let A\, (¢) be the eigenvalues of (H,(9) and
Ap---» A be the eigenvalues of (D). Also there is 2 >0
such that all functions A, (7) (1s{ <m) are non-decreasing

on [t,, =), If 4, (1) >L(1<i <p), then Ve 1,, 4, 024, (1,)>
to

1.>1 (1<i<p). Hence A, 2 0 (1iS p); that s, the number

t,

of eigenvalues of (4, ,.,(t)) which are greater than -:— vt

is at most the number of non-negative eigenvalues of (D,).
Now suppose Aq,.., A >0,A ... .+A_<0. By continuity
of eigenvalues, there exists a ¢, such that V&2 £, 4,()...,

AO>L, A enns A (DS thatis, thenumber of eigenvalues
t t

of (H,()) which are greater than %Vtz £, is at least the

number of positive eigenvalues of (D,). If t,=max {1},

Lemma 5.8, For every £ >4,
The numberof po sitive } <

eigenvaluesof (D)

'The number of eigenvalues of

(H j () which are larger than L.
L I

[ the number of non-negative }
éigenvalues of (D)

From the above lemma we see that for every ¢ >t,, the
number of eigenvalues of (H(9) which are larger than 1
t

Alemzadeh

J.Sci.L.R. Iran

is at most equal to the number of focal points (finite and
infinite) on the normal ray r(v")= {£(p)” + 1v'1£20} (which
are being counted with their multiplicities); also, if (D) =
(v". 1,”) has no zero cigenvalue at p, then this number is
exactly equal to the number of focal points on r(v"). In the
special case when II= 1,(p,tv ", A) (>,) is nota focal k-
plane, the index of C,, at p is at most equal to the number
of focal points (finite and infinite) on r(v"); also, if (D) =
(v"1,") has no zero eigenvalue at p, this index is exactly

equal to the number of focal points on r(v").
Therefore: ‘

Theorem 5.9. Thereisat, such thatfor everyt>t,in which
N=1,(,tv *, A) is not a focal k-plane, the index of Cat

p is at most equal to the number of focal points on )
(including the focal point at infinity which is counted with
its multiplicity).

Theorem 5.10. In theorem 5.9, if (D) = (v"J;") has no
zero eigenvalue at p, thenthe indexCatpis exactly equal

to the number of focal points on r(v").
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