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| kAbstract
Following, our prevﬂ:;pm}ect 1], we are going to prove the existence and

uniqueness of the soluti

the spectral problemin this project. First, we haveproven

the uniqueness of the solution. Thew to prove the existence, we construct the adj’cint
problem ¢orresponding to this spectral problem. Next, the uniqueness of the adjoint -
problem will be proven. Finally, we use the fact that the uniqueness of the adjoint
problem is the existence of the main problem as discussed by [2] and [3]. We have
determined the existence of the spectral problem. The paper will conclude with three

unsolved problems.

: : Introduction
. In [1}4he mixed problem, (ie. initial and boundary
value problem BVP), including the time dependent
Schridinger equation with non-local boundary condition,
is investigated. In this investigation, we have obtained a
spectral problem as a BVP with non-local boundary
condtions. By applying the Laplace transform EXT,
sufficient conditions are defined such that the spectral
problem can be reduced to second Fredholm integral
equations.

Buzurnguk and Serov [4] have studied the problem at

a defined amplitude q(x) = v ‘]’i‘l‘q) FI;JB’ xeRz?and

R 3 for the Schrodinger operator with a singular potential.
Birman and Laptev [5] have considered H(o)=-A-a v(X),

Key words: Spectrai problem; Mixed problem; Non-local

boundary condition; Time dependent Schrdinger equation;
Adjoint problem’

where o is a feal parameter, o >0, x € R, d=2, for the
negativediscrete spectrumof atwodimensional Schrodinger
operator. The corresponding eigenfunction properties have
been studied, few spectra and Weyl-type asymptotic
functions were given at d>3. Grinberg [6] studied the
spectral and scattering properties of the three-dimensional
anisotropic Schrdinger operator. The operator was in the
form of H=-A+v with a small zero-order pseudo-differential
potential. An eigenfunction expansion was given. The

existence and completeness of the wave operators were
proven.

In{1]and [7], the solutions of the Schrodinger equation
with initial and boundary conditions at two and three
dimensions on the half band and half cylinder space have
‘been considered. In these studies, the problem which will
be referred to as mixed problem, has been analysed by
applying the Laplace transform. In [7], 2 mixed problem
was considered and two interesting unsolved problems
were proposed. In [1], one boundary value problem,
including Schrodinger'sequation withnon-local and general
conditions, was considered. The transformed problem, in
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some conditions will be in the form of the second type;
Fredholm's integral equations.

The Problem Proposition
In this article, the existence and uniquencess of the
solution of the following boundary problem will be
examined:

Aﬁ(x,x)»f%‘_(ihx-v(x))ﬁ(x,x)- Wyw xed O
S S0 4 )a“ M) 4 o5 T M) ||y = Folird) P
k=1{i=1 j
xi€ [a, b}, p=12

where i = V-1 and p and h are real, positive physical

constants. v(i) and y (x), X€ D are known, real and
differentiable functions, and D is a domain of the plane

surface. U (x,A), X€ D and AE ¢ (¢ is a complex plane) is
an unknown function with complex values. The boundary
conditions (2) for p=1,2 gives two relations which are
linear and independent of each other, the coefficients on
the left hand side are the known functions. 0lp(x1,A) are
complex and continuous functions. I' is a boundary of
convex domain DcR2, (R?is areal plane), divided for two
curvesT, , T, by two lines atx =2, and x, =b, parallel to

X, (x,1x ) then for x € (a,,b,) functions v (x, yand Y,(x,)
w1ll be related for F andT, respectwely, ¥, (X)<Y(x)
but, v ,(a,)=7,@,) andv (®, )— Y1,(6), [11.

Construction of the Adjoint Problem
Considering the homogeneous form of Equation (1)
as:

€= AT A+ £ -ve)TED (1)

h
and multiplying that by v (x,A\) and integrating on domain
D as follows:

AT ()Y (XA) &k + 3’:_ )D(ihl -v(x)) T &AWV (x,A) &k =
h

JD

[,
z M & - Bx AT EM o voxpdx +
Jrﬂ ox; X;

v e—

2R Gh - v(x)) V (R

j 1 KA [A‘v" ) + & (3)
D n’

Then, the adjoint operator of (1)) can be obtained as
follows:

7= AV - 2B Ghprv () T 6N
h

@)
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where p=A is the conjuéate parameter, V is f vector
perpendicular to the I" boundary directed ouside o wfnﬁm

D. The boundary conditions have determined thai
term on the right hand side of the Rel. (3) w

z[a“(" M TED - s, x)—a@l‘wscv,xj)ho
x.
)

]
F axJ

be zero

r

The integrand I is chan‘%ed o[, (j=1,2) and tl)len is
changed to (a,, b,) as shown below:

'[Bu(xk)- - aV(x,x)|

[ S
00s (x3,Ty)

NUAL)

€0s (v.(,xj)

e % =z

J [ 6x1, yaxn0) T, a0 7 100> € (. 12l s, 120x)A) ¥ “Ax)] dmy
3

& (x)) I
3 | 'e=pap

1+v30)

J-
bl -

J ;(xm(xl)'x)[av(x.x>| aV(x.x)l i) ] o (5)
a x=12(x1)

where 7_is a vectror tangent to I', directed to a moving
point dlrectJon on the boundary. To define the function

Ju(x,\) I
Jx2
(2) is taken as:

Z

o Ex) PIRT mryreeyy
'L [—a;;-l,q:.ﬂ(,,, (141 7% ) Tou. 21 G0 -

Fxn

l Yilxn)
2=x1) aq

VM G drr] D
x=nix1

b1 .
. LUED (X1).7~)|: Na:':) I

x2=72(x1)

X2 = YX1)’ (k=1,2) the homogeneous equation of

2
xh) ® & (1)
I"z=‘1k(’i1)+ Z “yz ‘}:’7‘

2
(xl) i+ 2 0 ) Tlxy 1) A=
k=1

k}_; Y v 'Yx(X1)7€)+Z( & - o{,‘;’(xm'k(m))w—;;ﬁlnw,“y

2
3 o P=12

k=1

(Xl) U (x1,7(xA) = 0

under the condition of:

M
A (X1)<i

o - o @y i) o (o) - o] Y 200
then, by applying Cramer's rule:

(%)Y 1(%p) (éz (xy) - ‘-’ézl) )Y 2(xy)

=0 (6)

a(zlz) () Ol21

aitx, X .
1—)'12-11@1) =$ z[,ﬁ)mﬁ el ) LoyLirsy
K

ﬂ«‘,?(m‘u"m.mw«&’mix..wlm] o A
id

& ®) - ®)
oy, (30 @ RED N &y xR
Ay “(12)(’1) ﬂ" (1|Wl(ll) k=1[ 1 0 ]

u) .
Dap-aDeion §[ad oy wen i o]
=l

%ﬁhfnﬁﬂ =

The above relation is substituted in Rel. 5 and the terms are
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rewritten as follows:

by [T 1) @ . (2

J CRGS mrrd DN 1| oy () i (xy)- oy 2 .
" 480 D0y aBie-oLaxpraap

@
J Ton200.0 % wa b 2o ) a(ll)(") <o} 01000 “"‘“) x; +
a AxD | oy (k1) - an21 @nvIx) "21 @D

o2 2)

b
+J 0% e, Tormmo ", “12("“““ D)

o AGD oy (x1) ﬂzz(xl)-ﬂz] Y 261)

(2)

) - 0

b
J “”2‘ ”“m M2, Tt nenh FITIGD ey D

i
q ¢ ;2)("1) ugl GV oy (x1)

Q' ‘(xmﬁnmﬁ:l" % gl ot <)ol )
Ll PRV P 0 | 0Dy oDy
19 (1)

- 2 o m )
Ty (. hy- 128 %12 (00 Y 16y)

A

D oD apafapriay oDap

b]

T (x1),1) Jdxq -

T2 »'“f"‘l’
Ay @
Ty, wl)ma'(’“”, a%a'?xi o(‘l) az(x.)«,, a2y
& B=se) M1 2=0k) “20(‘1) "22(11)-021 (xpr2txp

=1 —
Va1 (), M+ #13en) “1(21)(“) a"(“mm) um(m a1 2(x1),1) 1 dxy =0
AGD | agy "‘“*‘21 ®1)Y1(x1) a20 (x1)
)]

If, in the above relation, the inside of the bracket of the first
term is shown by A (x,),

Al xR =y16p)+ T LD 1+y I(X]) u“ =y agz)(xl)-u" aofac) |
A(Xl) u(21)(x1) a%)(xl)'u'll (xp2(xp)

(1)

Denaan-o) an(xl)a,z(xl)-an(xl)un&1)]11(x1)

=‘— [ oPanalap-odl oo oyt enyaen-

(2)

1
-[u,, e apo@ apellaplrap ] 6D apaap-Beapap])

®
and, under the condition of:
o)) @
Ao (x1) %“n EL L TR U P 0 6,
; o) o) of ()
the out-come will be:
lim A (x)=—1_ [aﬁ” oy - o ane @),

X1— a1

Ao (al)

Kavei and Aliev

254

J.Sci.l.R. Iran
lim A (x) = [+ e en- o e en]  (9)

x1-> b Ao (bl)

Similar operations are carried out on the second term of
Rel. (7) to obtain A,(x)) and relations correspond to
Equations (8), (6,) and (9). The third and fourth terms of
Rel. (7) will give A (x,) and A (x,) as follows:

2
1 1) @
As ) =L*Y 1(x1) oy @) oy @
Axy) oG @) og) o)

(M

2 m
As(x1) =- _1 + ¥ 7i(x1) oy ) “|(11 )("1) |
A) | Dap oD

At the points (x, = a,, b,) we have:

4
2 Aq(x) =0
- J

If, four of the first terms of Rel. (7) are integrated by
parts, then the boundary conditions of the adjoint problems
will be as follows:

Xxi=ai, xi=b (10)

LI L Ly REAC of "‘l’ opaap)- oy apfatep 1N aDD)
2= EAC Ty map,
x|
axy 1 FaD sy "g))("l) u%)m)_ uﬁ’(xnmuu
oy oM NN
Lo “12("1)'“11("17)’1(:1) ) o
8 | Deep-oDecmion ey
-[ATED R my cpn - [ A G Rxpm ey }=0 (11)

o, o
“u(‘l)“‘_p_("tm("l) L G+

W(LDL

) Do aispray)

v 12001 b
T b T

1+7)(x1) "‘12("1) uu(xﬂﬁ(l]) 10("1) V("lv'h("l)»n'
Sv—
Alxp) um(xl) “21 (X1)’Y1(X1) (m)(xl)

- AZ6D Roupv - [ A3 GD gy axp}=0
However, the following statement can be proven:

Theorem1. If the conditions (6), (6,) and (10) are
maintained, also A (x,) €C’la,, b1, q=14 and the

coefficients ag;)(m), xi€(a,b).(p, k and j = 1,2) are
continuous, then the boundary T is a Liapunov line.
Consequently, the adjoint problem will be in the form of
(4), and (11).

The Unique Solution of the Spectral Problem
The homogeneous form of Equation 1 will be multiplied

by u(x,A) and integrated over domain D and for the first
term, the Ostrogzadsky Gauss law is applied, we obtain:

22: Jux,\) T

Xj

222 0(x,A) cos (v,x;) d- } Jgrad (x, 0|2 dx +

=t r
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2”7 ’ (ind - vx) | Tz A)|2 dx =0
h™ Ip

As Rel. (5), if the integrand of the first term of above
equation is changed,

b1 — v ——
‘ [G’(yq TGN Tlryyy A Y 1 xp)HRxp7p ) AR Y (AN 2 (xl)] dxg -
ﬁ

{1+ vl
x2=y2(x1)

{1+ 7%

x2=r1(x1)

FxM)

&am ) -
xm Gnd - =

b
1 | #=n
ox2

J | grad @x, 3| 2ax + 2 ; (idh-ve) Jox, 2 ax =0
h? |
From the homogeneus form of (2), we have otained

MI , k=1,2 Also, considering the above
ox2 x=Yx(xy)

relation and Rel. (7), we have:

by
r——] (1) (2)
Toum by T Goay, any + L TTED 7 fo) “)(X') a'(._})(")a"(;)(” o)
My | o) 00 (aa)o0, (x)Y oxt)

by

| Vo @n Taw aom fr 2 () + T8 vhn)
Axy)
i

by

oo i)

Doyoiria) ot

@)
q.“ @) dxy +

)(xmx" xOY2(x1)
an(xl}a.“(xu( 2(x1)

+

oy (xl)
U—?,)(m)

dx -

1+ Y%(Xl) ~(le'r1 (x1)A) ﬂx] T (n),x)l
|

b1

Ot(,lz)(mm, 1 xOY 1x1)

un(m%mrﬁ(xl)

u‘.',’(xn

L%’)ﬁ’(xl.vl ()L} Bxp,y2 (x1),h)
Atw) 081 (xp)

dx) +

i

o082 x )y 26)
0;22) = )-Oézl)(n ax)

b1
it 1+ vim) a, (x1)
Ill(xl,'n (x1),7d 2 T (]0)

1
lq O (x1)

+ dxg -

b1
1+7%m)
TAx)
aq

U-(,Io)(m)
o0 (x1)

2)(X1Hl“(x1)f 1(x1)

U(nl)(m)-dgl (x1)Y1(x1)

Ty &) B )Mk +

by
J rrden
Alx1)

ﬂlao)(n) mu(u)-a”(n)(z(m)

Y L Ty A Bxrm (xi)h) dxg -
0, (x1) Gn(n)-ﬂz () 1(x)

"
B 2
Olgo)(n)

o20(x1)

1+ v | oo mrie)

J . N 0-(;2) (x1 )ﬂ-(;,)(n Y1(x1)

[T e a2 dx -

| lerad@e, |2 ax + 2~ ’ @b -va)Fx. M2 =0 (12)
h? Ip
D
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The first term of Equation (12) is integrated by parts
and considering Equation (8), we can obtain:

b1
]“1

b1

U (x1,71 (D, A) T(x1,71 (x1),A) Ax(xp) dxq=

Ai(xr) [5’ (1 GOM T G)A) - T @y A Tm ).k)l dxp +

1
2a

+l [ @m a2 A B ’J A (X1)|5(X1.Y1 M zan  (12)

Similar operations for the terms of 2, 3, and 4 in (12)
will give:

b1
] aj
b1
i
2
by
+% £ oz oAl 2 A2t 8 %‘ ArmfEmn e za  (12)
. 1
-b]
J aj
b1 — T oo
%( A3(x,)[a" 1 GO T xpmy GDA) - Tl G T (yy G A drg+
Ll

U (x1,72 RD,A) T(x1L Y2 (x1),A) Ax(x1) dxy =

Axxy) [‘6’ ot GO Tlrxy1 &) - Tl v &M T (1 (X1)J~)] dxy
ai

W (xLy2 (x0,A) T(xy,y1 (x1),A) As(xp) dxi=

.. 11 ) T ) Aty 13 J.I Keienetan e (12;)

bl
|
%’ " sl tain 0n TG0 - Toum G o o] dus

la (12)

U (xLy1 x1).A) T(xy2 (x1),A) Aalxp) dxi =

"-“ &1 xp ) Txy (xlll)N(Xl)'bl 1 ’ Ay S0 m M T (xg, 1 (DA dy

Considering the relauons (12) to (12) and the
conditions (10), then Rel. (12) will beas follows

b1
% , A1(xy) [‘5’ o &DA) Ty xph) -0 & &) Ty, (x1).l)| dx;-
l‘l

bi
1 /
2 a)
by

+ % } Aaxy) [ﬁ’ @ o)) Tory, () - Ay (.1 () T (xg, 7, (x]),}.)l +
31

bl
_1_,
2/,

A1) T xay1 x| 2dx o

A [T xnp2 (x| 2dx i+
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+ %l A [AIKXI) Toxpm G)h) g x1.71 (xA) - AT (31,7 (g40) E(X].'ﬂ (11).1)1 +
q

— ——me
+ [M"I) T G Ty v () A) - Ai(xlﬁ (11 ()N Ty, 72 (A +] ) dny-

by . —_— by
%I A3l U .13 G Ty ()A) iy % | A'dy) Ty, )T 0y, )N b+
L] 8

b

(1 2) (2)

+| B apal 2 —-——-“tfixl) , a'lo(xl) 42("1)-“‘1(,‘1)(2(") dxg -
" Vo ey e@epaPoram)

b1 .

1

H_Y%@ ag—,»)(xx)-aﬂ)(xﬂfl(xl) aﬂ))(xl) ’ fxm (xl)-k)ﬂ——xls’h TR by +
R

bl @) @),
4 1+vfm) q"o;(n) u%(n)ag)(n)ﬂ(n) a2 600 B ) i -

M) i) aDmrePumyan)

b1
’ 1+ 75m) a‘,l,)(n)-a(ll,)(xnﬁ(n) a%)(xt) Pxi 12 G 2 g -

Alx) a%)(n)-ag,)(n))f 1() u%)(xl)

-ngradax,x)lzdx +3*2i/ @hv(x) i M k=0 (13)
h” Jp

If in Rel.(13), the following conditions, which are
called "condition A", is maintained. "condition A"
ReA (x,) =0, ¢= (1,2), Im A’ (x,)0, q=(1,2)
Re[A\(x)+A(x)=0, Im [ijl) -A,(x)1=0

o) o Doy oopalPriey oD

im “g("i’ “g)(xx)"lg)(n)fz(n) 20 b u%)(xl)-a;‘l)(x,m(x,) u%)(x,) <o
A Alxp
(|2 TI0) | 9000 el .LA's(xl)] +
A ‘éﬁ)(‘l) 0@("1%?(’&1%0&1)
[’iﬁ("_ﬂ a(l%(n)aill)l(mh(m q('gl(xl) -Lauef =0,
Aan oaz’(xm;,’(um(m céo)(xl) 2
Re (Lt 2T | 906 oRanaldapray LAy -
A ey aﬁ?(n%?(xﬂrz(x,)

1473 | e emian oPay
A0 | o@yaamioy oDy
The following statement will be proven:

-%Aa(x,), }=0

Theorm 2. If the conditions of theorem 1 and condition A
are met, then for A >0, the uniqueness of spectral problem
will be proven.

Remark. To restore theorem 2, it is required that the
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coefficients of the imaginary partof Rel. (13) be set to zero.

The Uniqueness of the Solution for the Adjoint
Problem
To prove the uniqueness of the adjoint problem, the

homogeneous form of Eq. (4) is multiplied by V (x,A) and
integrated over D,

2 ——— .
Y BW?(,M Ttx. M) cos (v,x) dx-| Dlgrad x| 2 dx-
Fl Xj :

r

2_':{ (ibh +veo)) s, ) 2 dx=0 (14)
h“ip

and in the boundary condition for the adjoint problem (i.e.

Equation. (11), the following terms will be chosen as:
Bap) - BGp AT Y160 =By o) Ao 160> Bl Aree = B ey,

B A =B By Aalyva) =By,

(13 2) 2)
(17t an) | S10%) 2l Gura) TAG) AT = B ),
ag,)(n) u%(m)-ﬁé?(n)rz(m)

1 D 1
R (1 .yy‘g (x;), agz)(‘l)‘“g 1 &0 xy) ﬂgo) 1)
oSopelamiay oDy

Ho Ko =B (15)

and
AG) - BED AZED Y200 = BRGe) A0 v201)> Ay Agteny = BDean),
B0 A6 =By o). AP ATIR) =By,

(2)

(2)

@
.(1+T?(,“)) Oqg (k1) Oy (x1)0q) (xe)Y2(x1) Md%’(m,
ag,)(m) 0;22)(1&1)-0!(22,)(1&1)Y2(x1)
TN D
(1473 ) Sty ) 2% A =8w  (15)
0%)(’11)-(!;',)(1!1)(!(1(1) u%)(xx)
Then, the boundary condition will be as:
212 + =0 kel2
BP ) 2D g 3y \7(1.1)] ] ! 15
PAPRE E %2= elxr) xem,bn( )

Using the same approach to obtain a solution for the
adjoint problem requires "condition B" which isequivalent
to "condition A" as:
"Condition B"
RB(x)=0, (¢=12),
Re [B,(x,) + B (x,)] =0,

5:2(’(1) 5‘2("1)5?0‘177’2("1)

B BB e ey

&x;)
Bigen BRm B2
B(z%) (x1) B%)(n)-ﬂg) &1)Y2(x1)

Im B (x)20, q=(1,2)
Im [By(x,) - B, (x)1=0
BB ey B

1 1
B i) By
8xp)

im €0 ,m 20

Im { 1+ Y?(x'l)
&(x1)

-1 B3 )] +
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[.“ﬂ("l) BizesYaman Bdan | 1 Bat)| ) =0
B | pRenePanrian BRen
Re {[1+Y?(x1) ﬁ?(xl) Bm(u)-ﬁu(m)ﬁ(n) 1B3ap| -
&) BRG)  BReBRmiram)
{[_“ﬁ(m a8 Pamian Bm(xx) 1 m(,,)]} N
)| pRenpReorian BRan | 2

From boundary conditions (2), we defined a(")(x D, p=

12, ]—02 k—1,2andA(x)A(x)forA(x) q= 14 by
the same procedure for boundary condmons (15), we

define their equivalent, as ﬁm (x1),p=1.2,j=0,2; k=1,2and

8(x,),5,(x,) B (x,),q = 0,4; respectively. Tasum everything
or all of this up, the following theorem will be concluded:

Theorem 3. If the conditions for theorem 1 and condition
B are satisfied, then for A>0, the uniqueness for the adjoint
problem is proven. By this definition, the crucial theorem 4
can be concluded.

Theorem 4. Assume that, u >0, h >0, v(x) > 0, and xe D is

continuous y (x) and '(i'p(x 1,A), Xj€ [a1,b)] are complex and
continuous functions and the boundary conditions (2) are
linear, independent functions, D [R? at the direction of axis
X, is convex and the boundary I" is a Liapunov line,

D=DUT, T =uls, x, =y (%), k = 1.2 1,(x) < 1,(x))
and [a b ] = proj I x, D. If the conditions (6), (6,) and (10),
also 8(x,)# 0,8 (x))0,and A (x,) €C"[a,b], B (x) €

—_ 4
C®[a,,b,], q= 1,4, are satisfied. Finally 2‘; B, (x)=0,x,
‘F

=(a,, b,) and the main conditions of A and B are maintained,
and the rest of the coefficients are continuous, then, for A1>
0, the existence and uniqueness of the solution for the
spectral problem is proven.

Unsolved Problems
1) Consider the solution of Equation (1) when the Global
integral is added to the boundary condition (2) as in the
equation below:
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21 o &an o8 ) 8 +
Z[Z’as.(xl)__+ S) (x1) x,l):ll
S P %2 = Yo(x1)
k:, &na““’" oD | E=Fon
1 -s@l)
52"7
s=1 A
p=12 x; € {a1,b1]

2)Consider the solution for Equation (1), when the boundary

problem is as in the problem below:

ih 99%) Ju(x) h2 d u(x)
9%, 2” Bx?

21

CPRY:. V)

- () —+ 06 (x0) u(x) {1
E[;n'd(” %; cé' ]X1=mo)

3) In the above problem, (unsolved problem 2), v(x))=0,
defines three boundary conditions which are linear and
independent and the problem would have infinite solutions:
2
ih Ju(x) b d u(x)
9xo 2H 9x?

vx1)ux)=0, x=(xox1)eDcR?

=0p(xp) p=12, xoelaphy]

=0, x=(XoxX1)eDcR? (16)

In addition, add a non-local boundary condition (i.g.a
Global integral) to the (16) so that the problem would have
no solution, hint [7].
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