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Abstract
The second virial coefficients are given as a spherical-core contribution plus a
series of nonspherical perturbation terms. A revised analysis is given of the effect of
long-range nonspherical terms in the intermolecular potential on the second virial
coefficient given by a preferred HFDID1 spherical core treatment of the integration
for small intermolecular distances. This effect is considered by damping functions.

Introduction

The potential energy of interaction between two
polyatomic molecules is usually assumed to consist of a
spherically symmetric component plus a contribution due
to the asphericity of the molecular charge distribution.
The latter contribution is conveniently divided into terms
representing the classical electrostatic interaction between
thetwochargedistributions, the anisotropy of the quantum-
mechanical dispersion forces, and the shape of the
molecular core (i.e. the anisotropy of the repulsive part of
the potential). Parts of the potential contribute more
significantly to some properties of the molecular gas than
to others, For example, the viscosity of a quadrupolar gas
canusually be adequately described by apotential function
consisting only of the spherical component plus the
contribution due to the quadrupole moments, whereas the
secand virial coefficient of the same gas depends
significantly on all parts of the potential function.

A method for the calculation of the second virial
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coefficients of non-spherical molecules is the perturbation
procedure developed by Pople and Buckingham [1,2].
They proposed that in addition to the interaction of
permanent dipoles, other oriented intermolecular forces
such as dipole-induced dipole interaction, and quadrupole
forces, may be important.

The statistical mechanical expression for the second
virial coefficient is expanded accordingly to produce an
expression that gives corrections to the spherical
contribution in the form of a series that converge rapidly
at high temperatures. The coefficients of the series are
some integrals. These integrals are functions of
temperature, which are usually evaluated numerically
and tabulated [1-4].

The weak point in the above development usually is
the form for the long-range nonspherical terms in the
potential; this form is kept in the subsequent integrations
even down to r = 0 (r is the radial coordinate). The
formulas are convergent at high temperatures, but it is at
high temperatures that effects occurring at small
intermolecular separation might be expected to be most
important.

Such that time the nature of the damping of the long-
range terms has been greatly clarified, and multiplicative
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damping functions have been developed that convert the
asymptotic formulas valid at large r into ones valid at all
r [5].

In the previous works of Boushehri er al. [3,4,6), a
single damping function for all the long-range terms,
including those in the spherical potential, was used. In

principle, a somewhat different damping function should

“be used for each long-range term, but Absardi et al. [7]
found that this refinement did not produce any appreciable
change in the final second virial coefficients. In this
paper, we use a modified potential HFDID1 [8] based on

theindividual and general damping function and show the.

effect of these damping functions on the B,,andalsoB .

Calculations

If two nonspherical moelcules interact, the potential k

energy will depend on the relative spatial orientations of
the molecules, V,..as wellason their distance apart, V L@,

All HFD potenuals are based on partitioning the
interaction energy V_ into uncorrelated (Ve Hartree-
Fock) and correlated (V ) Parts [9-11].

VD=V +V_, RR¢Y

Here V_isthe (SCF) Hartree-Fock interaction energy
for the rare gas dimers, which is often represented by {10-
12

Vs (HFD-B) = A exp(-oR + BR?) @

where the parameters A, o, and B are adjusted to fit
experimentally-determined properties for the system of
interest.

Douketis ¢t al. [9] modified the original HFD-A

potential by representing V__ by a doubly-corrected

dispersion series of the form

Veor =- [¥, CaR ™ ga(oR)] f(0R), 3

n=6,8,10,12,14

whefe

g2 (pR) = {l;exp(~2.1 PR/n-0.109p°R*n'A)I" @
| f(pR) = 1-(pR)"** exp(-0.78pR) &)

with R in atomic unit,
Here, C, represents the dispersion coefficients; the

universal dampmg functions g, (oR) correct the individual .

terms of the expansion for charge overlap effects, and the
universal function f(pR) corrects the expansion for
exchange overlap. The quantity p is a scaling parameter
that accounts for the different range of different
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interactions.

This potential is dubbed the HFDID1 (Hartree-Fock
Dispersion Individually Damped). The parameters of this
potential, which is usually expressed in reduced form, are
given in Reference 8.

The perturbation expansion for the second vmal

f coefﬁcnent, ‘B(T), then leads to [3]

-.-?4%3** Bus (T 6
B(T) 308[°(T)+ T ©)

whereN, is Avogadro's number; B, "is the (dimensionless)
contribution from V (r); Bp, is reduced nonspherical
contribution to the second virial coefficient, it depends
only on T'=k_T/e, where € is the depth of the potential
well; Tis temperature; k., is the Boltzman constant; and o,
is the separation at which the spherical potential is zero.
Our goal in this work is to calculate the nonspherical
contribution to the second virial coefficient of the
polyatomic gases by considering the contributions of the
following terms of the HFDID1 potential model:

By = Bas (86) + Byy (8, ind i) + Bz (Cs anis) +
Bss (B0 % Cs anis) + Bs; (6, ind gt X Cs anis) (7)

The terms in Equation 7 are defined in the Appendix
of Reference 6.

The values of x(the polarisability amsotroples), 0°.C,
and o are taken from Reference 7.

The dimensionless integrals J (T") that appear in the
expressions for the various contributions to By are defined
by

;oo

Ja (T =ﬂ—é5-(‘7"@"'3 { x2n exp (--;—’"é) & ()

where Vo (1) = Vo / €0 (Vo isthe spherical potential), and
x = 1/r_. The value of thése integrals is calculated for
6<n<30 and T" in the range 1-10. Also we represent the

dimensionless integrals J- ().

2 @)= @y f & fx) exp (- -—9 ©
0
where f(x) is the same as f(pR) given in Equation 5.

Theonly difference between the IO (THandthel, (T° )
is the presence of f(x) in the integrand. ,
It should be noted that the precise form of the short-



J.Sci.L.R. Iran

Hashemi and Boushehri

Vol.10 No.1
Winter 1999

Table L. Example of the effect of damping on the calculated nonspherical contributions to second
virial coefficients (CO,"). The core potential is HFDID1.

T=1 T=5

Contribution

Undamped Damped Undamped Damped
Br. (66) -0.6414 0.5941 0.0252 0.0226
Br (8, indp) -0.0007 -0.0006 -0.0004 -0.00004
Ba (C, anis) -0.0461 0.0423 0.0020 -0.0017
B1 (80 x C, anis) 0.1231 0.1134 0.0049 0.0043
B (8, ind p. x C, anis) -0.0092 -0.0084 -0.0005 0.0004
Bra (total) 0.5743 0.5320 -0.0232 -0.0204
B; (spherical)® -1.9912 +0.3212

ag*=0.85; k= 0.268; oty = 0.0547; C = 1.89

HFDID1 also used for calculation of B (spherical)

range directional forces is as yet unknown. Therefore, we
only consider the contribution to the second virial
coefficient resulting from long-range directional forces.

Table I gives the nonspherical contribution to the
second virial coefficient of carbon dioxide as a function of
temperature, the values were calculated from Equation 7.
The effects of the damping on the various nonspherical
contributions at reduced temperature T= 1 and T*= 5 are
also shown in this table.

Results and Discussion
The values of function J]n) (T'), which serves as

coefficients in the perturbation expansion for the second
virial coefficient, are available on request. These values
are designed to be used in exactly the same way as those
of Reference 7 for the damped nonspherical potentials.
The differences arise from the use of the preferred accurate
pair potential model, HFDID1, in calculating 1° 1h
functions.

The damping effect of the more realistic case of the
HFDIDI1 spherical on the nonspherical contributions for
several values of n is illustrated in Figure 1.

The plot in Figure 2 shows the deviation in second
virial coefficients of carbon dioxide as predicted by the
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Figure 1. Effect of damping for several values of n, with the
spherical-core potential represented by an HFDID1 model
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Figure 2. Deviation plot for the second virial coefficient of
carbon dioxide. The points are ARef. 13; ®Ref. 14; HIRef. 15;

ORef. 16; ClRef. 17.

present procedure. As the figure shows, the error, within
4%cc/mol, is in good agreement with experimental
uncertainties for a wide range of temperatures.
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