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Abstract
Using a sample from Burr type XII distribution, Bayes prediction intervals are
derived for the maximum and minimum of a future sample from the same distribution,
but in the presence of a single outlier of the type 8,8. The prior of @ is assumed to be
the gamma conjugate. A real example is given to illustrate the procedure. Also, the
comparison between the values of the prediction bounds for different values of 6, and

different future sample sizes is given,

1. Introduction

The outcome of an experiment may be used to predict
some feature of a future experiment under the same or
different conditions in the form of prediction intervals for
some statistics. The prediction intervals for order statistics
of a future sample from the population of the observed
sample have been considered by many authors including
Lawless [7.8], Likes [9], Dunsmore [3], Lingappaiah
[10], Evans andNijm [4], Abu-Salih etal. [1], Sartawiand
Abu-Salih [14], and Abu-Salih and Sartawi [2].

Evansand Ragab [S]andNigm [13] gave the prediction
bounds for the k-th order statistic in a sample from a Burr
type XII distribution in the case of a censored sample.

The aforementioned works assumed the future sample
to be from the original population under the same
conditions. In practice the conditions may change, and it
may happen that some values of the future sample are far
away from the main group. Such values are called outliers.

Lingappaiah [11,12] obtained Bayes predictionbounds
for future observations from the exponential life time
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distribution in the presence of outliers. The case of Burr
type X distribution was treated by Jaheen [6].

In this work we shall be concerned ‘with Bayes
prediction bounds for the maximum and minimum of a
future sample from a Burr type XII distribution in the
presence of a single outlier of the type 8,6, where 8 is the
unknown parameter of the distribution. This means that
the process has undergone some abrupt change which is
specified by the new value of the parameter Viz, 6,8,
where 9, is known.

The probability density function (p.d.f.) of the Burr
type XII distribution is given by

f(xlc, 8)= Bcx*! (1-x)®*Y, x>0(>0,8>0) (1)

The cumulative distribution function (c.d.f.) is given
by

F(x)= 1-(14x°)? , x>0

2. Main Results
Let X,.X,.....X, be arandom sample of size n from a
population defined by (1). Suppose Y,,Y,,...Y,, is an
independent random sample of future observations from
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the same distribution. Assuming c tobe known, we derive
Bayesian prediction bounds for the maximum and for the
minimum of the future observations in the presence of a
~ single outiler of the type 8,8.

2.1 Bayesian Prediction Bounds for the Maximum

It is known that the p.d.f. g(y) of the maximum in a

sample of size m is given by

g)=m {Fy}™ (y) @

where f(y) and F(y) are the p.d.f. and cdf of Y
respectively.

Inthe presence of asingle outlier, Equation (Z) becomes |

h(y)= (m-1) {E(y)}™2 F'(y) f{y)+{Fy™ £() G)

where £*(y) and F*(y) are the p.d.f. and c.d.f. of the outlier
Y. A

Let U= max(Y,,Y,,....Y,), then in the presence of a
single outlier of the type 8,8, Equation (3) becomes

h(ulc,8) = - (m-1) cBu*! (L+usy @V fl- (1402 1=

(1410 + ¢ Bus ' (1+usy &> [1-(1+uy )™, - w>0
= (-1)cBy(u)e *(1-e )16 44)

+c0,0y(n)e **0(1-e- %)™, u>0 4
where

()= In (1419)

and

i L
1+u°

: Usingthebixtomial expansion, we write (4) in the form

B . m2 m-2

h@1®)= coy @) 3 (1) ( } [m-1) %60 4
i

Qoeww)«n)-(m_‘_ga_l)e-awl)«u)] )

" For the first random sample X, X,....X,, the likely
function will be

L(Olx)= c*0*y'e®, q>0 (6)

2} k]
~ where T= Y fx)), ¥" =[] wxi), and y and ¢ are as
1=, i‘l

defined in (4). ;
Let the prior p.d.f. of © be’the conjugate prior,
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namely, Gamma (o, 1/B):

H 0,0.8)= f‘% oxtef, 9>0,(x>0,>0 (7

Combining equations (6) and (7) the posterior p.d.f.
of © is given by:

H'(etggﬁf_t%%%ﬂ eTPR, 90 @)

The Bayes predictive p.d.f. p(ulx) of U given xis given
by

plulx)= ] h(ui6) IT (0lx)de ©)

8

Substituting (5) and (8) in (9), we get

. . m2 . g
plulg)= cln+o) (B+T)"y(u) X g ¢ ( "‘_2 )

]
(m.l) + . eo
B+T+G+D) @™ (BHT+G+Bd W)™
- (m+90—1) — }’ u>0 (10)
{B+T+(+60+1) G

To construct prediction intervals for U based on'the
observations x,,X,,...,X, we evaluate

s

PU 2 a'l;)=j p(ulx) du =§(-1)5 (“‘“2)
i

a

{n_;_l_{ B+T \"““+Leo _m+95-l) |
1 BrT+Ge0@  \i+8o j+6o+l)

(D
(__-.w.__)*f*j |
B+T+(+00)p (@) |
where ¢(a)= In(1+2°) : ; ;
Since $(0)=0, it is easy to check that P(U2 0ix)= 1 by
using the following formula :
5 (—1)"( n )(i+e)“= nl 2
AN, T G+ az)
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given by Lingappaiah [11,12].
The (1-y) 100% Bayes prediction interval for U is
(L,®), L,®) such that PL,(X) <USL,® 9= 1-y.
By taking equal tail probabilities, L, and L, are found
by the use of (11) such that

P(U2L @-1+¥2
P(U2L,@I) - V2.

L, and L, are obtained by the bisection method.

2.2 Bayesian Prediction Bound for the Minimum
The distribution of the minimum in a sample of size m
is given by:
q(y)= m(1-Fy)™). f(y) 13
In the presence of a single outlier, Equation (13)
becomes

q(y)= (1-F@)™" f*(y) + (m-1) (1-F)=* (1-F*(y))
f(y) (14)

where f, F, * and F* are as defined in section (2-1).

For the Burr X1I distribution given in (1), with an
outlier of the type 6,8, and V= min Y,, Equation (14)
becomes

B(viB)= (1+vo)*=b, cBv! (1+ve)™ + (m-1)
(1-v)%®D _(Leve)®  cOv=! (1Lev)y®D, v>0  (15)

Equation (15) simplifies to

q(viB)= cOw(v) (m+0,-1) exp{-(m+0,-1)¢(v)0}, v>0

(16)

The Bayes predictive p.d.f. p(vix) can be defined
using equation (8) to be
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p(vix)={ q(vi6) . IT*(81x) do
Carrying out the integration, we get
p(viX)= c(n+or) (B+T)n+ax y(v) x
(m+8,-1) an

{B+T+(m+60-1) ¢ W))***!

To construct Bayes prediction intervals for V based
on the observations x ,x,,...x , we evaluate

P(V 2 bly)= ] p(vix)dv= (

b

B"’T }n*@
B+T+(m+60-1) ¢ ®)) ~
(18)
Since ¢(b)= In(1+b"), it is obvious that P(V2 0ip)= 1.
For the equal tail probability (1-y) 100% prediction
intervals for V is (L,(x), L2(x)) such that P(V2L Ip)= 1-
12. and P(V2L,Ix)= Yz_

Using (18), we get

L(x)= |expf@-8) G+DY } -
(&) [exp\(m"_ea*l) L 1}, for i= 1,2 where

(-3t et

3. Example

Wingo [15] reported the relief times (in hours) of 50
arthritis patients receiving a fixed dosage of an analgesic.
: The data is listed in Table 1. Past experience with
similar data suggests that the patients relief times could
be adequately described by a Burr Type XII distribution
(c.f. Wingo [15)).

Wingo [15] found the maximum likelihood estimate

of ¢ to be € = 5.000.

Table 1. Relief times (in hours) of 50 arthritis patients

5 10 15 20 25

0.50 0.55
0.72 0.36

0.70 0.84 058
0.62 049 0.54

0.80 0.55 0.84 0.70 0.34
0.57 0.73 0.75 0.58 0.44

30 35 40 45 50
0.82 0.59 0.71 0.72 0.61
0.7 035 0.64 0.85 0.55
0.60 0.60 036 0.52 0.68

0.59 0.29 0.75 053 046

0.70 0.49 0.56 0.71 0.61
0.81 0.80 0.87 0.29 0.50
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Table 2. 95% Bayesian prediction bounds for the minimum in the presence

of a single outlier of type 6,8

m= 10 = 20

© B) 8, L, L, L, L
0.1 0232 0545 0.200 0.469

03 0231 0543 0200 0468

(08,0.1) 05 0.230 0540 0.199 0467
1 0228 0535 0.198 0.465

0220 0.515 0.195 0.456

0213 0499 0.191 0448

0.1 0202 0545 0174 0.469

03 0201 0.543 0.174 0468

(2.4,0.3) 05 0.200 0541 0.174 0467
’ 0.198 0535 0.173 0465

0.191 0516 0.169 0456

0.185 0.500 0.166 0.448

0.1 0202 0545 0.174 0470

03 0201 0.543 0.174 0469

4,0.5) 0.5 0200 0.541 0.174 0.468
0.198 0.535 0.173 0465

0.191 0516 0.169 0456

0.185 0.500 0.166 0448

0.1 0.202 0.546 0.174 0470

03 0201 0543 0.174 0469

(5.6,0.7) 05 0.200 0541 0.174 0468
1 0.198 0.535 0.173 0465

0.191 0.516 0.169 0457

0.185 0.500 0.167 0.449
0.1 0202 0546 0.174 0470

03 0201 0.544 0.174 0.469

(7.2,09) 05 0200 0541 0.174 0468
0.198 0536 0.173 0466

0.191 0516 0.169 0.457

0.185 0.500 0.167 0.449
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Table 3, 95% Bayesian prediction bounds for the maximum in the presence
of a single outlier of type 6,8 :

m=10 m=20

(o, B) 8, L L, L, L
0.1 0.649 0944 0.708 0.981
03 0.658 0.961 0.726 1.004
038,0.1) 0.5 0.663 0976 0.733 1.021
1 0.668 0.999 0.738 1.047
0671 1.022 0.740 1.061
5 0671 1.023 0.740 1.062
0.1 0.650 0945 0.709 0.982
03 0.659 962 727 1.005
{2.4,03) 0.5 0.664 0.976 0733 1.023
1 0.669 1.000 0.739 1.047
0672 1.021 0.741 1.061
0.672 1.023 0.741 1.061
0.1 0.651 0946 0.711 0.936
03 0.660 0964 0.727 1.006
4,0.5) 0.5 0.664 0977 0.734 1.023
0.669 1.000 0.739 1.047
0.672 1021 0.741 1.061
0.672 1.023 0.741 1.061
0.1 0.653 0.947 0.712 0985
03 0.660 0.965 0.728 1.007
5.6,0.7) 05 0.665 0978 0.735 1.024
0.670 1.001 0.740 1.048
3 0672 1.021 0.741 1.06%
0.672 1.023 0.741 1.061
0.1 0.653 0948 0.714 0.986
03 0.661 0.966 0.729 1.008
(7.2,0.9) 05 0.665 0.979 0.735 1.024
0.670 1.000 0.740 1.048
3 0.672 1.021 0.742 1.060
0672 1022 0.742 1.061
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Using the given 50 observations we calculate Bayes
prediction intervals for U and V, the maximum and
minimum of a future sample of the relief times (in hours)

" for a sample of size m of arthritis patients receiving the
same medication as the patients of the first sample, under

the assumption that one outlier of type 8,0 is present. The.

 results for m= 10,20 and 6,=0.1(0.2) 0.5; 1(2) 5; v= 0.05
are reported in Tables 2 and 3.

4. Comments
(1) It appears from Table (2) that for fixed values of
o and P the bounds L, and L, decrease as 6, increases.
Also, when o4 and the corresponding B20.5 the values
of L, and L, are stablized for each value of 9. ‘
(2) It appears from Table (3) that for fixed values of
o and P the bounds L, and L, increase as 6, increases.

Also, when aincreases and the corresponding Bdecreases

the values of L, and L, increase also.

(3) It appears that the length of the confidence interval
is little larger in the case of the minimum when compared
to that of the maximum. ‘

Also the length is more or less a constant.-

There is no sense in comparing these lengths with-

those obtained by other methods because the models used
are different.
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