QUASI-PERMUTATION REPRESENTATIONS OF SUZUKI GROUP

H. Behravesh

Department of Mathematics, University of Urmia, Urmia, Islamic Republic of Iran

Abstract

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field G, and let G be the minimal degree of a faithful representation of G by complex quasi-permutation matrices. Let G denote the minimal degree of a faithful rational valued character of G. In this paper we will calculate G, G, G, G, G, G, G, where G is the Suzuki group. Also we will show that $\lim_{G \to G} \frac{c(G)}{c(G)} = 1$.

Introduction

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field Q, and let c(G) be the minimal degree of a faithful representation of G by complex quasi-permutation matrices. See [1].

By a rational valued character we mean a character χ corresponding to a complex representation of G such that $\chi(g) \in \mathbb{Q}$ for all $g \in G$. As the values of the character of a complex representation are algebraic numbers, a rational

Keywords: Suzuki group; Quasi-permutation; Quasi-permutation representation; Representation theory

valued character is in fact integer valued. A quasipermutation representation of G is then simply a complex representation of G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module. We will call a homomorphism from G to $GL(n, \mathbb{Q})$ a rational representation of G and its corresponding character will be called a rational character of G. Let r(G) denote the minimal degree of a faithful rational valued character of G. It is easy to see that

$$r(G) \le c(G) \le q(G) \le p(G)$$

where G is a finite group.

Let Sz(q) denote the Suzuki group [4] where q is a power of 2. We will apply the algorithms we developed in [1] to the group Sz(q). We will show that

$$\lim_{q\to\infty}\frac{c(G)}{r(G)}=1$$
, where $G=Sz(q)$.

2. Algorithms for p(G), c(G) and q(G)

Lemma 2.1. Let G be a finite group with a unique minimal normal subgroup. Then p(G) is the smallest index of a subgroup with a trivial core (that is, containing no non-trivial normal subgroup).

Proof. See [1, Corollary 2.4].

Definition 2.2. Let χ be a character of G such that, for all $g \in G$, $\chi(g) \in Q$ and $\chi(g) \ge 0$. Then we say that χ is a nonnegative rational valued character.

Notation. Let $\Gamma(\chi)$ be the Galois group of $Q(\chi)$ over Q.

Definition 2.3. Let G be a finite group. Let χ be an irreducible complex character of G. Then define

(1)
$$d(\chi) = |\Gamma(\chi)| \chi(1)$$

(2)
$$m(x) = \begin{cases} 0 & \text{if } \chi = 1_G \\ |\min\{\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}(g): g \in G\}| & \text{otherwise} \end{cases}$$

(3)
$$c(\chi) = \sum_{\alpha \in \Gamma_{(\chi)}} \chi^{\alpha} + m(\chi) 1_G$$
.

Corollary 2.4. Let $\chi \in Irr(G)$. Then $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is a rational valued character of G. Moreover $c(\chi)$ is a nonnegative rational valued character of G and $c(\chi)$ (1)= $d(\chi)$ + $m(\chi)$.

Proof. See [1, Corollary 3.7].

Now we will give algorithms for calculating c(G) and q(G) where G is a finite group with a unique minimal normal subgroup.

Lemma 2.5. Let G be a finite group with a unique minimal normal subgroup. Then

(1) $c(G) = min \{c(\chi) \ (1): \chi \text{ is a faithful irreducible complex character of } G\};$

(2) $q(G) = min \{ m_0(\chi)c(\chi) (1) : \chi \text{ is a faithful irreducible complex character of } G \}$.

Proof. See [1, Corollary 3.11].

Lemma 2.6. Let G be a finite group. If the Schur index of each non-principal irreducible character is equal to m, then q(G) = mc(G).

Proof. See [1, Corollary 3.15].

3. Quasi-Permutation Representations

Definition 3.1. A group G is called a (ZT)-group if there is a positive integer N such that

- (1) G is a doubly transitive group on 1+N symbols;
- (2) The identity is the only element which leaves three distinct symbols invariant;
- (3) G contains no normal subgroup of order 1+N;
- (4) N is even.

We shall use the following notations:

G: a(ZT)-group;

H: the subgroup of G consisting of the elements leaving one fixed symbol, say a, invariant;

Q: a Sylow 2-subgroup of H;

K: the subgroup of H consisting of the elements leaving an additional fixed symbol invariant;

x: an involution in the normalizer $N_{c}(K)$.

Lemma 3.2. Q contains two elements y and z such that y is an involution and $xyz = z^{-1}xz$.

Proof. See [4, Proposition 9].

It is a theorem that there is a unique (ZT)-group of order $q^2(q-1)(q^2+1)$ for any odd power q of 2(see [4, Theorem 8]). This group will be denoted here as Sz(q) and called a Suzuki group. The Suzuki groups are simple for all $\alpha > 2$

Let G = Sz(q) where $q = 2^{2s+1}$ and $s \ge 1$; let $r = 2^{s+1}$. Then

$$|Sz(q)| = q^2(q-1)(q^2+1) = q^2(q-1)(q+r+1)(q-r+1).$$

The group G by [4, Theorem 9] has the following among its subgroups:

H: a Frobenius group of order $q^2(q-1)$;

 B_0 : a dihedral group of order 2(q-1);

 A_0 : a cyclic subgroup of order q-1;

 A_i : cyclic groups of order $q\pm r+1$ for i=1,2 respectively; B_i : the normalizer $N_G(A_i)$, which has order $4(q\pm r+1)$, i=1,2;

 $Sz(q_i)$: for some q_i such that $q = q_1^m$.

Lemma 3.3. Let G = Sz(q), $q \ge 8$. Then the maximal order of a proper subgroup of G is equal to $q^2(q-1)$.

Proof. The maximal order of a proper subgroup of G is either $q^2(q-1)$ or 4(q+r+1) or $|Sz(q_1)|$ for some q_1 by [4, Theorem 9].

Now
$$q^2(q-1) = \frac{r^4}{4} (\frac{r^2}{2} - 1)$$
 and $4(q+r+1) = 4(\frac{r^2}{2} + r + 1)$.

Since $s \ge 1$ so r > 4. Therefore $\frac{r^2}{2} \ge 2r > r + 1$ so we have

 $\frac{r^4}{4} \cdot \frac{(r^2 - 1)}{2} > \frac{r^4}{4} \ge r^3 \ge 4r^2 = 4\frac{r^2}{2} + 4\frac{r^2}{2} > 4\frac{r^2}{2} + 4(r+1).$ Thus $q^2(q-1) > 4(q+r+1)$.

Let $Sz(q_1) < Sz(q)$ for some $q_1 = 2^m$. As q is an odd power of 2, m is odd. Therefore $q_1^2 \le q$.

Now we have to show that $|Sz(q_1)| \le q^2(q-1)$. We know that $|Sz(q_1)| = q_1^2(q_1-1)(q_1^2+1)$, so $|Sz(q_1)| \le q(\sqrt{q}-1)(q+1)$. We have to show that $q(\sqrt{q}-1)(q+1) \le q^2(q-1)$ or equivalently, $(\sqrt{q}-1)(q+1) \le q(q-1)$ the latter is equivalent to $\sqrt{q}(q-1) \le q^2+1$. But $\sqrt{q}(q+1) \le (q-1)(q+1) = q^2-1 < q^2+1$.

Theorem 3.4. Let G = Sz(q), $q \ge 8$. Then $p(G) = q^2 + 1$.

Proof. This follows from Lemmas 3.3 and 2.1.

Theorem 3.5. The character table of Sz(q), $q \ge 8$ is given in Table 1.

(it is a character of A_1).

Let ε_2 be a primitive (q-r+1)-th root of 1. If a_2 is a generator of A_2 the function ε_2^i is defined by

$$\varepsilon_2^i (a_2^k) = \varepsilon_2^{ik} + \varepsilon_2^{ikq} + \varepsilon_2^{-ik} + \varepsilon_2^{-ikq}$$
 for $i = 1, ..., q-r$;

(it is character of A_2). Finally, l=1,2.

Proof. See [4, Theorem 13].

Theorem 3.6. Let G be a simple Suzuki group. Then all characters of G have Schur index 1.

Proof. See [2, Theorem 9].

Table 1. Character Table of Sz(q)

	1	у	Z	b _o	b _i	b ₂
x	q²	0	0	1	-1	-1
χ_i	q^2+1	1	1	$\mathcal{E}_{0}^{i}\left(b_{o}^{i}\right)$	0	0
Ψ_{j}	(q-r+1) (q-1)	<i>r</i> -1	-1	0	$-arepsilon_1^j(b_i)$	0
$\eta_{_k}$	(q+r+1)(q-1)	-r-1	-1	0	0	$-\varepsilon_2^k (b_2)$
ξ,	$\frac{r(q-1)}{2}$	- <u>r</u> _2	± r √-1 2	0	1	-1

In this table $2q = r^2$ and y, z are as Lemma 3.2, and b_i is a non-identity element of A_i for i = 0,1,2. Let ε_0 be a primitive (q-1)-th root of 1. If a_0 is a generator of A_0 the function ε_0^i is defined by

$$m(\chi) = \varepsilon_0^i (a_0^j) = \varepsilon_0^{ij} + \varepsilon_0^{ij} \text{ for } i = 1, ..., \frac{q}{2} - 1;$$

(it is a character of A_0).

Let ε_1 be a primitive (q+r+1)-th root of 1. If a_1 is a generator of A_1 the function ε_1^i is defined by

$$\varepsilon_1^i(a_1^k) = \varepsilon_1^{ik} + \varepsilon_1^{ikq} + \varepsilon_1^{ikq} + \varepsilon_1^{ikq}$$
 for $i = 1, ..., q + r$;

Theorem 3.7. Let G = Sz(q) where $q = 2^{2s+1}$, $s \ge 1$. Then $c(G) = q(G) = rq = \frac{r^3}{2}$ where $r = 2^{s+1}$.

Proof. Since by Theorem 3.6 the Schur index for each irreducible character of G is 1 so by Lemma 2.6 we have c(G) = q(G). In order to calculate c(G) we apply Lemma 2.5. Now we have Table 2.

Now

$$(q-1+1)(q-1) = q^2 - rq + r - 1 = \frac{r^4}{4} - \frac{r^3}{2} + r - 1 > \frac{r^4}{4} - \frac{r^3}{2} \ge 4\frac{r^3}{4} - \frac{r^3}{2} = \frac{r^3}{2} = rq$$
 and

Table 2.

θ	d(θ)	c(θ)(1)	
χ	q^2	q ² +1	
χ,	≥ <i>q</i> ²+1	≥ <i>q</i> ²+1	
Ψ,	≥(<i>q-r</i> +1)(<i>q</i> -1)	≥(<i>q-r</i> +1)(<i>q</i> -1)	
η,	$\geq (q+r+1)(q-1)$	$\geq (q+r+1)(q-1)$	
ξ,	r(q-1)	rq	

$$(q+r+1)(q-1) > (q-r+1)(q-1) > rq$$
 and

$$q^2+1=\frac{r^4}{4}+1>\frac{r^4}{4}\ge 4\frac{r^3}{4}>\frac{r^3}{2}=rq.$$

So $c(G)=rq.$

4. Rational Valued Characters

Lemma 4.1. Let G be a finite group. Let G have a unique minimal normal subgroup. Then

 $r(G) = \min \{d(\chi): \chi \text{ is a faithful irreducible character of } G\}.$

Proof. Let $\chi \in Irr(G)$. Then $\sum_{\alpha \in \Gamma} \chi^{\alpha}$, where $\Gamma = \Gamma(Q(\chi))$: Q), is an irreducible rational valued character by [3, Corollary 10.2].

Let ϕ be a faithful rational valued character such that r(G)

= $\phi(1)$. Since G has a unique minimal normal subgroup so there exists a faithful irreducible character, say χ , such that $[\phi,\chi] \neq 0$. So $\phi = \sum_{\alpha \in \Gamma} \chi^{\alpha} + \psi$, for some rational valued character ψ . Hence $\phi(1) \geq \sum_{\alpha \in \Gamma} \chi^{\alpha}$ (1)= $d(\chi)$. So $r(G) = d(\chi)$.

Lemma 4.2. Let G = Sz(q), $q \ge 8$. Then r(G) = r(q-1).

Proof. This follows from Table 2.

Theorem 4.3. Let G = Sz(q). Then

$$\lim_{q\to\infty}\frac{c(G)}{r(G)}=1.$$

Proof. Let G= Sz(q). Then by Thorem 3.7 and Lemma 4.2

we have
$$\frac{c(G)}{r(G)} = \frac{q}{q \cdot 1}$$
. Hence $\lim_{q \to \infty} \frac{c(G)}{r(G)} = 1$.

Acknowledgements

This paper is a part of Ph.D thesis submitted to the University of Manchester.

References

- Behravesh, H. Quasi-permutation representations of pgroups of class 2. J. London Math. Soc. (2) 55, 251-260, (1997).
- 2. Gow, R. Schur indices of some groups of Lie type. J. algebra 42, 102-120, (1976).
- Isaacs. I.M. Character theory of finite groups. Academic Press, New York, (1976).
- 4. Suzuki, M. On a class of doubly transitive groups. Ann. Math. 75 105-145, (1962).