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Abstract

Here a posteriori error estimate for the numerical solution of nonlinear Volterra-
Hammerstein equations is given. We present an error upper bound for nonlinear
Volterra-Hammerstein integral equations, in which the form of nonlinearity is
algebraic and develop a posteriori error estimate for the recently proposed method of
Brunner for these problems (the implicitly linear collocation method). We also
generalize this upper bound for nonlinear Volterra integro-differential and Volterra-
Hammerstein integral equations of mixed type. Finally, several numerical examples
are given to show effectiveness of these bounds.

1. Introduction

_ Nonlinear Volterra integral equations of the second
kind often occur in Hammerstein form,

;V(f)=ﬁ‘t)+L (t.s) G(s,y(s))ds, O0<t<T, (L1)

where f,k and G are smooth and known functions. These
equations arise in chemical engineering [9], cell
membrane theory [16], and other branches of science.
Another rich source of Hammerstein integral equations
is the reformulation of boundary value problems for
both ordinary and partial differential equations.
Several numerical methods for approximating the
solution of (1.1) are known. The classical method of
successive approximations {10], a variation of the
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Nystrom method was presented in [12]. Other works
about classical numerical solutions of these-equations
can be found in [1,2,6,13] and references therein.

Kumarand Sloan [11] recommend a new collocatioz
type method for the numerical solution of the
Hammerstein equation. Brunner [4] applied this method
to nonlinear Volterra equations. Recently, Frankel [8]
established a posteriori error estimate by symbolic
manipulation for the method of Kumar and Sloan [11].
This type of estimate is highly desirable from the practical
pointof view. In the present paper we have used thisidea
for establishing the error estimates of nonlinear Volterrra-
Hammerstein equations, in which the formof nonlinearity
isalgebraic. Development of anintegral equation for the
error in the approxirate solution has been illustrated in
Delves and Walsh [7], and Delves and Mohamed [6].

This paper is divided into five sections. In section 2,
we briefly review the implicitly linear collocation
method, that proposed by Brunner [4], for nonlinear
Volterra integral equations.

In section 3, we give an error upper bound for
application of implicitly linear collocation method for
these equations. In section 4, we developed this idea to
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determine an error estimate for nonlinear Volterra
integro-differential equationsand Volterra-Hammerstein
integral equations of mixed type. In section 5, we
present some numerical examples.

2. Preliminaries

Consider the nonlinear Volterra-Hammerstein

equation (1.1), where £,k and G are smooth and known - HIICIEES 156s 1 app
- (which referred to as the implicitly linear collocation

functions, G(s,v) nonlinear in v, and y is the solution to
be determined. :

‘LetC=C[0, T} denote the Banach space of continuous -

real-valued functions on [0, T], with the uniformnorm

el =sup bke()l, xe€ C, I=[0,Tl.

tel

In order to guarantee the existence of a unique

solution to equation (1.1), we assume throughout this

paper that the following conditions (1-4) be satisfied

1.fe C,

t

2. The kernel £ satisfies supser { k(t, )l ds < o0c

]
and

B
ggzol Lk@t, hds=0 (0<t,<t+8<¢<T),

4

uniformly in ¢, and ¢.

3. The function G(t, v) is defined and continuous on

“ 10, TIxR.
4 'I‘he partial derivative G (t,v) = (%) G(t,v) exists

and is continuous on [0, 71 x R

.

Under these conditions there exists aunique so’kitidr} :

in C for equation (1.1). Gsee [11)

- .

* Now, we consider the equation (1.1), when usinga
collocation method. We have a nonlinear system of
equations. In the iteration solution of this system, many
integrals will need to be computed, which usually
~ becomes quite expensive. Kumar and Solan (113}

recommend the following variant approach. Define
; z(it')kxf G(t, (1)), thus from (1.1), we have ;

2(t)= Gt i) + L K, (s)ds), 0<tST, Q1)

and obtain y(t) from
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y(t)=fi) + f; k(t,5)z(s)ds, 0<t<T.

If we solve (2.1) by collocation method, the integrals
that appear in nonlinear system of equations, need to be
evaluated only once, since they are dependent only on

" the basic function, not on the unknown collocation

parameters (see[11]). Brunner [4] applied this method

method) to nonlinear Volterra integral and integro-
differential equations. We will use a uniform

~ approximation in developing the approximate solution

of (1.1).

3.Error Estimate with Algebraic Nonlinearity
In this section we assume that the form of nonlinearity
in (1.1) is algebraic (i.e. G(t, y(1))= ¥(1), p € N). To

discretize (1.1)letS.%’ (Zx)be the piecewise polynomial
space, such that S’ (ZW) ={yly € C.7,=7 lo,€ I,
n=0,...,N-1}. Here N21 and m1 are positive integers,
IT denotes the space of real polynomials of degree less
than m, h= %,icé: 0,t=t4nh(n=1..N-1),Z;= {1 /n=
1,...N-1}, Zn=Z,U(T}, and 6= [1,,,,,] (O<n<N-D).

 Let X(N):=Uho Xa, where X,'={t, =1, +ch/
j=1,....m;0¢ 5...<c,<1], (8=0,....N-1) denote the'et
of collocation points at which the approximate solution
y (e S (Zy)istosatisfy the equation (1.1). Following

the method of [4], we define
Hy=yx1), peN. BN R)

By substitution (3.1) in equation (1.1), wé have
yO= i)+ |, kesi(sids, 015 . 62
the explicit foﬁn“ of (2.1) nﬁw becomes
‘z(t)= [ﬂt) + '; k(t,s)z(s):ﬁ'T : peN, 0<¢ S T. (3.‘3) -

The solution of (3.3) is approximated by an element

2z € SV (Zv) and we have

2(t +Th)= lﬁl Lima, te01], (34)

whereL,('t)denotes‘tﬁefthLagmngepulynomial,andag;
are expansion parameters. Define the local residual
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function by

: n-1 i+
Rn(t)+zn(t fiy+ }: k(t,s) za(s) ds+2 L . ' k(t,s) z; (s)dsr,
» =0 112
peN, (n=0,..,N-1). 3.5)

Equation (3.5) can be written as

G
Ra(th) = -2alts) 4{)’ {ta)th } k(ta, ;s tn +Th)Za(ttTH)dT +
0

nl 1 P
Y / k(tay, ta+Th) 2:(t; +Th)dT
i=0 Jo

pe N, (n=0,..., N-1), 3.6)

By substituting (3.4) in (3.6) we obtain

m m nl
R (1 )= -gi L(7)a, + [f (Ew)th Y, Ain(chani+h Y,
P i=0

.m Byi(ta) aﬁ,r

2 Bultn) du %)

where

A(c) = kipch rhiLidr, te 0.1,

t+the (.t ] (3.8
1

B (0= kit + ) Lyv) dr. 3.9

In most applications the integrals (3.8) and (3.9)
cannot be evaluated analytically and must be determined
numerically. We suppose that, the parameters {cj}j'-1 are
choosen such that (see [3])

m m 5l m
0= -gl L{t)a, + [f )tk lzi Apa(c)ani+h Y Y

=0 =t
Biithj)ams [, PEN. (3.10)
Note that our aim here is a determination of a set of
expansion coefficientsa ,(I=1,...,m; n=0,...,N-1). As
mentioned above, we assume that the values of A, ( ;".),
B, (1) are evaluated analytically or numerically, so for
each n=0,....N-1, we obtained a nonlinear system of
algebraic equations in R= for expansion coefficients
{a,} (@=0,...N-1),wherea =(a,,,....a,,)".Oncea, has
been determined, the approximation z on the subinterval
(t,t,,)is given by (3.4) and the local residual function
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R (t) is determined from (3.7). Finally, the desired
approximation to y(t) is then obained by use of the
equation

1
Y= ) + | Ktz (s)ds, @.11)

or

-l m
vt +eh)= M1, bch) + K, 4, (c)a, +h3, 3, Bt )a,,
te[0,1], t +The(t,t,,], (3.12)

where 4, A(c)and B, (1) as defined in (3.8) and (3.9). Let
£,(t) be the local error in the z (1)

gf)=z(t)-z,(), O<i<T. 3.13)

Our aim here is to obtain an error upper bound for the
exact solution of (1.1) (i.e. y(£)), so we have

<

Vit )= fe )+ .

a-l 11
D |, ke, ¢ ez 4T,

k(t .t +Th)z (t +Th) dT+

b
(3.14)

We may write the equation (3.2) in the (exact) fi
(see [6] pp. 123) (exact)form,

¥ t)=ﬂt)+L k(hS):(S)dﬂg fﬂ k(t,5)z(s)ds teX,
(n=0,....N-1),

(.15
or
Y= A 'J*"LJ k(t, ,t,+Th) z (t +Th)dT +
5l gl
hg.o Lk (t,p b, +Th)z(t +Th)dr, (3.16)

by subtracting (3.16) from (3.14), we get

ot )= y(t”.,.)-yn(t,j)=hf Kt .t +Th) €,(t +Th)dT +

a1l 1
hg«o L k(t 4 +ThE(t +Th)dt, te X, te [0,1].

(3.17)
Now, we define the integral operatuor 7, : C — C
by
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‘rk(r,,;, ti+ thy a (1) dr, i<n
0

Ta.i(a)-:
f cjk(t,,\;, ts+ TH) a (D) dr, i=n
o
(n=0,....N-1; j=1,...m). (3.18)
Therefore (3.17) in operator form is
n-1 o
3.19)

F—3 T E. *
8=hT, () + hg‘o W€D

by substitution (3.17) and (3.13) into (3.1) we get
z,+E=[y,+ 8, peN, (n= 0,....N-1). (3.20)

| Multiply (3.20) by k(t, , t,+Th), and integrate overthe
domain of interest, we have in operator form

n-1
KT (z)+hY T, (z)+8,=hT ((y,+8)")+
B0 n oy} ’

-1

1S, T ((y+6¥), peN. 321)
Fi]

Expanding (3.21), we get

-l

an-hT&a(zn) -hgo Th.i(zi) +

. n-l
KT, (v3+ py} ' 8)+hE, T, (F +py! 18)+
KT, (Bgl’.z_'ﬂyf 2 &+t )+

n-l

kY T, @D yp2 &4t &) (3.22)
=0 2 ‘
If §, — 0, then for n sufficiently large, we can assume

(yg.'.pyg'l 8A{>>§£S_pi._l_)-.y{ K &% +...+8g i, ‘

thus we have ‘
n-1
8,-hpT, (¥R ™" &)-hpZ T, (3F 1 &)=  -AT, (2.)-
n-l -l
T, (2) +hT, (50)+ b3, T, 50); (3.23)

1t follows by using (3.11) and (3.5)
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R +z=yE, peN, (n=0,.,N-1). (3.24)

Therefore (3.23) can be written as
O-hpT, (vi ™! &)-hpg T, (0! &)= AT, (R )+
"g TR, (3.25)
50, we can establish the following error bound from (3.25)
HITnn @)l + 550 [Ti R |

fl&all < 1 7 -1 i’
1- hl|Ton 02 |- o= s 02
peN, (n=0,...N-1} '

(3.26)

where 1- hgl| T 02 || - ApZid T 07 t|}>0andthe
norm used is the uniform norm, i.e., ‘

8l = sup |8, ]

62

Thus, we can state this theorem for error estimates of
algebraic nonlinearity in (1.1).

Theorem 3.1. Consider the nonlinear Volterra-
Hammerstein integral equation (1.1), with algebraic
nonlinearity, and let functions f.k and G satisfied to the
hypothesis (1-4) stated at begining of section 2. Moreover,
suppose that R, and 3, are the local residual function in
z, and the local error in y,, respectively. If the operator
T, (o) defined as (3.18), then 8, can be satisfied in the
error estimate (3.26). '

4. Generalization of Nonlinear Volterra
Integro-Differential and Volterra-Hammestein
Integral Equations of Mixed Type

The arguments of section 3, can be extended to
nonlinear Volterra integro-differential equations of the
form

y 0=ty 0) + | kt.5) G (sisnds,  0sisT, @)

subject to the initial condition y(0)= y,. In this equation

£k and G are assumed smooth and known functions, and
fit,v), G{t, v} to be nonlinear in v. The form of the
nonlinearity is again assumed to be algebraic. This
problem may be written as

1 - 1
Y=y, + L F5.y(s))ds + L K(ts)G(sy(s)ds,  (4.2)
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where

1
K(t.s)= L Kr.s)dr, OSs<<T. 43)

Equation (4.2), may be viewed as a special case of
Volterra-Hammerstein integral equations of the mixed

type
M .

=g+ 3, | kG syNds, OSIST, (@)
p=1 70

where the functions gk, and G, (u= 1,...,M) are subject
to the hypotheses stated at the beginning of section 2.

Ganesh and Joshi in [9] analyzed the implicitly linear
collocation method for Fredholm-Hammerstein inte gral
equations analogous to (4.4). Using the notation of (4.4)
weletM= 2,k (1,5)=1,k,{t.5)=K(1.5), G (5.9)=1(5.)) and
G,fs,y)= G(s.y). So, as mentioned above, the nonlinear
Volterra integro-differential equation (4.2) is a special
case of (4.4). Since the error analysis is obvious, we
refrain from going into details of the method, and using
a similar procedure as outline in section 3, we have the
following theorem, without the proof.

Theorem 4.1. Let the form of nonlinearity in Volterra-
Hammerstein integral equation of mixed type (4.4) be
algebraic (e.g. G (s,y(s))=y rs);ru=1,..M;p eN),
furthermore let assumptions (1 -4) for the functions g,kp
and G (= 1,...M) hold. If R, and &, are the local
residual functions in z, and the local error in y,
respectively, then the upper bound for 8, can be
established as:

2 (Wt rao [+ m5zd s @id])

(EAES - - 9
1o 2 (It oSl + = it oD

r=1,..M; p €N, (n=0,..N-1), 4.5)

where 1-hp, Tpet Gl Tha OGF 'l)n + X% ﬂT:i i -Iﬂ }>0

and the operator Th.; as defined

1
.I okp.(ta,j, ti+thhoa(tydr, i<n
Th (@) =

! L’ Kultnjy tn + TH) @ (D) dt,  i=n

= 1... M). (4.6)
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Numerical Experimentation
Here we present some illustrative numerical results
indicating the merit of the error estimates. For
computational purposes, we consider two test problems.

Example 1. (From [3])

y(t)= 1+ sin’(t) - L; 3sin (t-5)y*(s)ds, 0<t<£3

with solution y(t)= cos t.

Example 2.

2 t
y(t)=1- -Sé- + vy - L tsy¥s)ds, 0<:<1,
¥(0)=0

with solution y(¢)= t. This problem may be written as

8 ] t
Y= t+ ig - L;-*' _io Yi(s)ds - Lk{t,s).)”(s)ds,

where k(t,5)= st £
2 3

We choose m=2, ¢,= (3-¥3)/6, c,= (3 +¥3)/6, p=2
(example 1), p,= 2 and p,= 4 (example 2). Using the
subroutine BRENTM [14] for solving the nonlinear
algebraic system of equations, we summarize the results
from the actual error of the implicitly linear collocation
method [4], and estimated upper bounds (3.26) and (4.5)
in Tables 1 and 2. All computations were carried out in
double precision on an IBM-PC using a program written
in the language Mathematica™, ver. 2.1, in which the
norm used throughout the program is the uniform norm,
as displayed in (3.27).

Conclusion
In most contemporary studies involving Volttera-

Table 1. Comparison between the actual error and the upper
bound estimate (3.26) for Example 1

Actual error Estimated upper
N Iy-y bound (4.5)
4 3.04x10° 3.24x10°
5 3.45x10¢ 3.54x10¢
6 7.87x10°* 14.88x10*
7 8.01x10°? 15.73x10°
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Table 2. Comparison between the actual error and the upper

‘bound estimate (4.5) for Example 2
Actual error Esnmateduppa' .
N fty-y 3i bound (4.5)
5 221x10* 2.74x10*
7 9.57x107 18.07x107
9 1.01x10* 3.29x10°

Hammerstein integral equations [1,2,13] a priori error
estimate is being developed with the aid of interpolatory
projections and the approximation theory. Here we
consider algebraic nonlinearity for Volterra-Hammerstein
integral and integro-differential equations and illustrate
that both a uniform approximation and a posteriori error
estimate may be obtained for the implicitly linear
collocation method. In other papers we extend this idea
for other types of nonlinearity.
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