FREE SEMIGROUPS AND IDEMPOTENTS IN T[∞]

A.M. Aminpour

Department of Mathematics, Faculty of Sciences, Shahid Chamran University, Ahwaz, Islamic Republic of Iran

Abstract

The known theory for an oid T shows how to find a subset T^{∞} of βT , which is a compact right topological semigroup [1]. The success of the methods in [2] for obtaining properties of T^{∞} has prompted us to see how successful they would be in another context. Thus we find (Theorem 4.8) that T^{∞} contains copies of free semigroups on 2° generators, is an immediate consequence of the stronger result and that it contains a cancellative subsemigroup (Theorem 4.7). Also obtained is a new proof of the known result in [6] that T^{∞} contains 2° idempotents.

1. Introduction

The most striking conclusions of this paper are easy to state. Throughout this paper, we will let T be a standard oid (see Section 2 for precise definition). Moreover, T is countable [2]. We will always assume that T is discrete, so that the Stone-Cech compactification βT of T is the set of ultrafilters on T, the points of T being identified with the principal ultrafilters.

It is well known that βT has a compact right topological semigroup "at infinity" T^{∞} , i.e. for fixed $v \in T^{\infty}$, the map $\mu \rightarrow \mu v$ is continuous. (See [1] for details). It is also known that T^{∞} is non-commutative. Indeed its centre is empty. Further, T^{∞} contains 2^{c} disjoint left ideals of the form $T^{\infty}v$, where $v \in H_{v}$, $k \in N$ (see Section 2 for definition), and the minimal right ideals are not closed. (We refer the reader to [2] for these facts). We shall prove that it contains copies of free semigroups on 2^{c} generators and we obtain a simpler proof than has so far been given that the number of different idempotents in T^{∞} is 2^{c} . Finally, H_{ω} is nowhere

Keywords: Cardinal function (c(x) = card (supp x)); Compact right topological semigroup "at infinity" T"; Oids; Special suboids; suppx (support of the element x)

dense in T^{∞} (Proposition 4.10).

2. Definitions and Preliminaries

Let $x = (x/n)_{n \in \mathbb{N}}$ be any sequence consisting of 1, s and ∞ , s. Write $1.1 = 1, 1, \infty = \infty, 1 = \infty$. We define supp $(x(n))_{n \in \mathbb{N}} = \{n \in \mathbb{N}: x(n) = \infty\}$. Write $T = \{(x(n))_{n \in \mathbb{N}}: \text{ supp } (x(n))_{n \in \mathbb{N}} \text{ is finite and non-empty}\}$. A commutative standard oid is the set T together with the product xy defined in T, if and only if, $(\text{supp}x) \cap (\text{supp}y) = \phi$ to be $(x(n) \ y(n))$. Thus the product $x(n) \ y(n)$ is required to be defined only if either x(n) or y(n) is 1. Of course, the product in T is associative where defined, and supp $(xy) = (\text{supp}x) \cup (\text{supp}y)$ whenever xy is defined in T. (Oids are discussed in [6]).

Any commutative standard oid T can be considered as $\bigoplus_{n=1} \{1, \infty\} \setminus \{(1,1,\ldots,1,\ldots)\}$. (In [6] oids could have any index set). Write $u_n = (1,1,\ldots,\infty,1,\ldots)$ (with ∞ in the nth place).

Put $U = \{u_n : n \in N\}$. Thus U is a countable subset of T. Moreover, every element $x \in T$ can be written as the finite product $x = u_{i_1} u_{i_2} \dots u_{i_k}$ where $i_1 < i_2 < \dots < i_k$, supp $x = \{i_1, i_2, \dots, i_k\}$. For $x, y, \in T$, suppx < suppy means that r < s if $r \in$ supp $x, s \in$ suppy, and supp $x_{\alpha} \rightarrow \infty$ for some net (x_{α})

in T will mean that for arbitrary $k \in N$, eventually $\min (\sup x_{\alpha}) > k$. The compact space βT is the Stone-Cech compactification of the discrete space T. Then βT produces a compact right topological semigroup "at infinity" T^{∞} defined by

$$T^{\infty} = \{ \mu \in \beta T : \mu = \lim_{\alpha} x_{\alpha}, \operatorname{supp} x_{\alpha} \to \infty \},$$

with the multiplication $\mu v = \lim_{\alpha} \lim_{\beta} x_{\alpha} y_{\beta}$ if $\mu = \lim_{\alpha} x_{\alpha'}$ $v = \lim_{\beta} y_{\beta'}$ (See [1] for details). For a function f from a discrete space T into a compact space X, the unique continuous extension of f to βT is denoted by f^{β} . The cardinal function is the map $c: T \to N$ given by c(x) = card (supp x) (that is, the number of elements for the support of x). Then if $(\text{supp} x) \cap (\text{supp} y) = \emptyset$, so that xy is defined, c(xy) = c(x) + c(y). It follows easily that c extends to a homomorphism c^{β} from T^{∞} into the one-point compactification $N \cup \{\infty\}$. Now write $H_k = T^{\infty} \cap (c^{\beta})^{-1}(k)$, $k \in N$, and $H_{\infty} = T^{\infty} \cap (c^{\beta})^{-1}(\infty)$. Then $T^{\infty} = H_1 \cup H_2 \cup \ldots \cup H_{\infty}$. So each $\mu \in H_k$ is the limit of a net (x_{α}) with $c(x_{\alpha}) = k$ for each α and card $(H_k) = 2^c$, $k \in N$ (see [2], Remark 5.8). Further, H_k is open, $H_k H_m \subseteq H_{k+m}$ for all $k, m \in N$, so that $H_1 \cup H_2 \cup \ldots \cup H_n \cup \ldots$ is a subsemigroup of T^{∞} .

3. Idempotents

The present section is devoted to the existence of idempotents in the compact right topological semigroup T^{∞} . Of course T^{∞} contains a minimal idempotent ([3], Theorem 3.11). In the search for idempotents of T^{∞} a major role is played by substructures called special suboids. Let us first give the following definition of special suboids.

Definition 3.1. Let T be a commutative standard oid and let $(k_n)_{n=1}^{\infty}$ be a strictly increasing subsequence of N. The special suboid of an oid T corresponding to $(k_n)_{n=1}^{\infty}$ is denoted by $S(k_n)$ and defined by

$$S(k_n) = \{(x(k))_{k \in \mathbb{N}} \in T : x(k) = 1 \text{ for } k \neq k_n \text{ for all } n \in \mathbb{N}\}.$$

Note that for an infinite subset $A \subseteq N$, the special suboid of the standard oid T corresponding to the strictly increasing sequence of A is denoted by S(A).

The following is the main result of this section. For this result, we use non-principal ultrafilters on N (see [4] for details). If v is a non-principal ultrafilter on N and $A \in v$, then A is an infinite subset of N, and so generates a special suboid S(A) of an oid T. Moreover, the number of non-principal ultrafilters on N is 2^c [8].

Theorem 3.2. T^{∞} contains at least 2^c idempotents.

Proof. Let v be a non-principal ultrafilter on N, and let $A \in v$. Let S(A) be the special suboid of T corresponding to A. Then $S^{\infty}(A)$ is a compact right continuous subsemigroup of T^{∞} . Take $B \in v$, then $A \cap B \in v$, so that $S^{\infty}(A \cap B)$) $\subseteq S^{\infty}(A) \cap S^{\infty}(B)$. By the finite intersection

property $\bigcap_{A \in V}^{\infty}(A)$ is non-empty and hence is a compact right continuous subsemigroup of T^{∞} . So it contains a minimal idempotent, e_v say. Now suppose that v_i and v_i are two different non-principal ultrafilters on N, and let $A \in V_i$ with $N \setminus A \in V_i$. Then $S^{\infty}(A) \cap S^{\infty}(N \setminus A) = \emptyset$ [1],

Proposition 7.1), and hence $\begin{bmatrix} \bigcap S^{\infty}(A) \\ A \in V_1 \end{bmatrix} \cap \begin{bmatrix} \bigcap S^{\infty}(A) \\ A \in V_2 \end{bmatrix} = \emptyset$.

Thus $e_{v_1} \neq e_{v_2}$. This proves our assertion.

Remark 3.3. It should be noted that for an idempotent e in T^{∞} , then $c^{\beta}(e) = \infty$. We denote the set of all idempotents in T^{∞} by $E(T^{\infty})$. So we obtain that $E(T^{\infty}) \subseteq \{v \in T^{\infty}: c^{\beta}(v) = \infty\}$.

4. Free Semigroups

Our aim in this section is concerned with the free semigroups on 2° generators in the compact right topological semigroup "at infinity" T[∞]. Let us first establish some definitions and the results which will be required in this section.

Definition 4.1. Let $x \in T$, $x = u_{i_1} \ u_{i_2} \dots u_{i_r}$ where $i_i < i_i < \dots < i_r$, and let $k \in N$. We define $\sigma_k : T \to T$ by

$$\sigma_k (u_{i_1} u_{i_2} \dots u_{i_r}) = \begin{cases} u_{i_1} u_{i_2} \dots u_{i_r} & \text{if } k \geq r \\ u_{i_1} u_{i_2} \dots u_{i_{r-k}} & \text{if } k < r. \end{cases}$$

Then σ_k extends to a unique continuous function σ_k^{β} from βT into itself.

Theorem 4.2. Let $\mu \in \beta T$, $\nu \in T^{\infty}$ with $c^{\beta}(\nu) = k$, $k \in \mathbb{N}$. Then $\sigma_k^{\beta}(\mu \nu) = \mu$.

Proof. Let $x_{\alpha} \to \mu$, $y_{\beta} \to \nu$, for some nets (x_{α}) , (y_{β}) in T with supp $y_{\beta} \to \infty$. Then eventually $c(y_{\beta}) = k$, since $\{k\}$ is open in $N \cup \{\infty\}$. In view of the definition of σ_k , for large β , $\sigma_k(x_{\alpha}y_{\beta}) = x_{\alpha}$. Since $\sigma_k^{\beta}(\mu\nu) = \lim_{\alpha} \lim_{\beta} \sigma_k(x_{\alpha}y_{\beta})$, it follows that $\sigma_k^{\beta}(\mu\nu) = \mu$, as claimed.

Proposition 4.3. Let $\mu_1, \mu_2 \in T^{\infty}, v \in H_k, k \in N$. Then $\mu_1 v = \mu_2 v$ implies that $\mu_1 = \mu_2$.

Proof. By Theorem 4.2, $\mu_1 = \sigma_k^{\beta}(\mu_1 v) = \sigma_k^{\beta}(\mu_2 v) = \mu_2$ and the result follows.

Definition 4.4. Let $x \in T$, $x = u_{i_1} u_{i_2} \dots u_{i_r}$ where $i_1 < i_2 < \dots < i_r$, and let $k \in N$. We define $\varphi_i: T \to T$ by

$$\varphi_k (u_{i_1} u_{i_2} \dots u_{i_r}) = \begin{cases} u_{i_1} u_{i_2} \dots u_{i_r} & \text{if } k \ge r \\ u_{i_{k+1}} u_{i_{k+2}} \dots u_{i_r} & \text{if } k < r. \end{cases}$$

Then φ_k extends to a unique continuous mapping φ_k^{β} from βT into itself.

Theorem 4.5. Let $\mu \in \beta T$, with $c^{\beta}(\mu) = k$, $k \in N$, and let $v \in T^{\infty}$. Then $\varphi_{k}^{\beta}(\mu v) = v$.

Proof. Analogous to that of Theorem 4.2.

Proposition 4.6. Let $\eta_1, \eta_2 \in T^{\infty}, v \in H_k, k \in N$. Then $v\eta_1 = v\eta_2$ implies that $\eta_1 = \eta_2$.

Proof. Analogous to that of Proposition 4.3. The next result is an immediate consequence of Propositions 4.3 and 4.6.

Theorem 4.7. The semigroup $H_1 \cup H_2 \cup ... \cup H_n \cup ...$ is cancellative.

We now come to the principal result of this section.

Theorem 4.8. For each $k \in N$, H_k generates a free semigroup in T^{∞} on 2° generators.

Proof. Let $\mu_1\mu_2...\mu_p = v_1v_2...v_q$ where $\mu_1,\mu_2,...,\mu_p,v_1,v_2,...,v_q \in H_k$, $k \in N$. Since $c^{\beta}(\mu_1\mu_2...\mu_p) = kp$, $c^{\beta}(v_1v_2...v_q) = kq$, it follows that p = q. By applying φ_k^{β} (similarly for σ_k^{β}) to the both sides, we obtain that $\mu_2...\mu_p = \varphi_k^{\beta}$ ($\mu_1\mu_2...\mu_p$) = φ_k^{β} ($v_1v_2...v_q$) = $v_2...v_q$. An application of Theorem 4.7 completes the proof.

Remark 4.9. Let $x \in T$ with $x = u_{i_1} u_{i_2} \dots u_{i_r}, i_1 < i_2 < \dots < i_r$, and let $k \in N$. Define $\lambda_k : T \to T$ by

$$\lambda_k (u_{i_1} u_{i_2} \dots u_{i_r}) = \begin{cases} u_{i_1} u_{i_2} \dots u_{i_r} & \text{if } r \leq k \\ u_{i_1} u_{i_2} \dots u_{i_k} & \text{if } k < r. \end{cases}$$

Then λ_k extends to a unique continuous function λ_k^{β} : $\beta T \to \beta T$, so that $\lambda_k^{\beta}(\mu \nu) = \mu$, whenever $\mu \in \beta T$ with $c^{\beta}(\mu) = k$, $\nu \in T^{\infty}$. Thus we obtain an alternative proof of 4.8 by using λ_k , $k \in N$.

Proposition 4.10. H_{∞} is nowhere dense in T^{∞} .

Proof. For each n, write $x_n = u_n u_{n+1} \dots u_n^2$. Put $X = \{x_n : n \in N\}$. Let 1_X be the indicator function of X (that is, the function whose value is 1 on X and O on $T \setminus X$). Then $(1_X^{\beta})^{-1}(1) \cap T^{\infty}$ is a non-empty open set in T^{∞} . Now X is countable and discrete, so that $(c1_{\beta T}X)$ is homeomorphic to βN and $(c1_{\beta T}X)\setminus X$ is homeomorphic to N^* ($=\beta N \setminus N$). Thus $\mu \in (c1_{\beta T}X)\setminus X$, if and only if, $\mu = \lim_j x_{n_j}$ for some subnet (x_n) of (x_n) with $n_j \to \infty$. Further, $(c1_{\beta T}X)\setminus X = (1_X^{\beta})^{-1}(1) \cap T^{\infty}$. So if $\mu \in (c1_{\beta T}X)\setminus X$, then $c^{\beta}(\mu) = \infty$, $\mu \in T^{\infty}$. Hence $(1_X^{\beta})^{-1}(1) \cap T^{\infty} \subseteq H_{\infty}$, and the result now follows.

References

- 1. Aminpour, A.M. Spaces of functions determined by iterated limits "at infinity" on an oid. *Math. Proc. Camb. Phil. Soc.*, 111-127, (1992).
- Aminpour, A.M. A subsemigroup of some Stone-Cech compactifications. Math. Nachr., 158, 207-218, (1992).
- Berglund, J.F., Junghenn, H.D. and Milnes, P. Analysis on semigroups. Wiley, (1989).
- 4. Comfort, W. and Negrepontis, S. The theory of ultrafilters. Springer-Verlag (1974).
- 5. Hindman, N. and Pym, J.S. Free groups and semigroups in βN. Semigroup Forum, 30, 177-193, (1984).
- 6. Pym, J.S. Semigroup structure in Stone-Cech compactifications. *J. London Math. Soc.*, 36, (2), 421-428, (1987).
- 7. Strauss, D Semigroup structures on βN. Semigroup Forum, 44, 238-244, (1992).
- 8. Walker, R.C. The Stone-Cech compactification. Springer, Berlin, (1974).