J.8ci. }.R. Iran

Vol.10 Ne.3
Summer 1999

A RESEARCH NOTE ON THE SECOND ORDER
DIFFERENTIAL EQUATION

A.J. Akbarfam and E. Pourreza

Faculty of Mathematical Sciences, Tabriz University, Tabriz, Islamic Republic of Iran

Abstract
Let U(t, N) be solution of the Dirichlet problem

y"+(M-q(®)y=0

1<tk

y(-1)=0=y(X),
with variable t on (-1, x), for fixed x, which satisfies the initial condition

U(-1, V=0,

U _
St M= 1.

In this paper, the asymptotic representation of the corresponding eigenfunctions
of the eigen values has been investigated. Furthermore, the leading term of the

X

asymptotic formula for Ll (x, A(x)), X (x) and I vU? (v, \)dvis obtained where )\n(x)
A

-1

is a negative eigenvalue of the Dirichlet problem on [-1, x] with fixed x < 0.

1. Introduction
1 The asymptotic nature of the approximation solution
of the differential equation,
y"+(A-q(t))y=0 1<l ®
subject to boundary conditions
y(-1)= 0 = y(x).
has been investigated in [1], where g(¢) is a continuous
function in the interval [-1, 11, x €[-1, 1], is fixed and A
is a real parameter. Let U (¢, A) solve the initial value
problem (1) with initial condition

U1, N=0, 9;1(-1, N=1. @
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By Halvorson'sresult[3], U(x, M) isanentire function
of order -;-for each x. The function U(x, A) has a zero set

for each x, say {A (x)}, so that U(x, Afx)) = 0, which
corresponds to eigenvalues of the Dirichlet problem for
equation (1) on the closed interval [-1, x]. Note that

A, (x)#0 for any x by Sturm's comparison theorem since
we assume that 0 < g(0).

Indeed, each non-negative continuous function g(x)
defines U (x, A, g), which is C 2 in x and A (x, g) solves
Ux, A(x,q))=0.1t is known that for a non-negative
continuous function g(x), the eigenvalues of the Dirichlet
problem for (1) on [-1, x], are real and simple (See[4]
$10.61), hence,

%”; (, A (D) #0

for each fixed x. The Dirichlet problem corresponding to
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~ equation(1) on [-1, x] where x< 0 is fixed, has an infinite

number of negative eigenvalues { A (x)}. The asymptotic
distribution of each function A(x) is of the form

VA= —tE—+ O(rll_) ,x<0

Vi
B
and
m dx) =-o0  AX)>hE)>..
x—>-1

. Formore details see [2].

For x €(0, 11, fixed, the Dirichlet problem for (1) on
[-1, x] has an infinite number of positive and negative

eigenvalues which we denote by {u ()}, {r,(®},
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respectively.
The positive eigenvalues u (x) admit the asymptotic
representation .
) =iE=zf 4 1 1ol @)
N 2nm n?
; Veds
0
where
Ti= .._i....% 21(_‘3. dt
FEd t
72 { Viar °
4]

~ Similarly, the negative eigenvalues, r (x), admit the
~asymptotic representation of the form

P ;'r“'=z.z£_zu4_+_..n+0(_; 0)

_ 2nm n?
f Vrdt
4

. where

“In [1], it was shown that
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(140(’,.1._.)33:};@(:)1‘[) f-1<1<0
(-x
RAio) ( 2 E—e M(Jﬁ)} i1=0
e P2
———-:{e%ﬂoos(g-tmﬁ-nﬂ)q-
t
”ﬁlm(_:mﬂ: n4)) {140(&) f0<t
©
and

A u+otA) cod«(p(owfb £-151<0
n‘ﬂk““&(o){_egyjq- ad m«:xx} (=0

“‘f..e ‘?ﬁ (.-t”zﬂ -

]
|

e;;y: m(%sﬂﬁ x#)){lw(a.}} #o<sl
@)
where
t
pit)= [ dv
, 4 8)
AlQ) =t B Bi0)=-— B
3#repy 3 ras)
2. Eigenfunctions

We now state a theorem which gives asymptotic
approximation for the eigenfunctions of the Sturm-
Liouville equation in one turning point case.

Theorem 1. Let U(f, A) be the solution of the Dirichlet
problem (1) with variable ¢ on (-1, x), for fixed x which
satisfies the initial condition(2). Then

a) For x€-1, 0) fixed, the corresponding eigenfunctions
of the negative elgenvalues A(x), has asymptotic
representation,

: . p(x)sin .._f.(.t_
U (6 My =——L28_ 1+0d))
: (-t)a nw
and
U (1, M) = () £ c0s 2D {1101y}
p&) n
where p(x) is defined in (8).

" b) For x€(0, 1] fixed, the corresponding eigenfunctions

186.

of the positive eigenvalues, u (x), admit the asymptotic
representation,
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ki Y720
ez‘ﬁ)i [2 7] ( EF 4 p(x) sin. e 1
U (6 tn)= 3’“_”1(") 4_ 1oy (1+oby)
th (2 = )' ¢ t)“ nm

and

—a—(x u,.(x))—-t«se?(,(x))an[z r( 4) ”1{1+0(1->}
where

/(x)=|[ Yvdv x>0
0

¢) For x€(0, 1] fixed, the corresponding eigenfunctions

of the negative eigenvalues,  (x), admit the asymptotic
representation,

U(t,ra (x)) = 1
t3nm

2 o1 cos [fam (14-ni) - A1 1+0(1n))

a3‘{(::, ) =15 Wsin - L - 1A)(1+0(1)

Proof. a) In this case the eigenvalues are negative.
Substituting the asymptotic form (3) in (6) and noting
that

=iV A0

we can get

U, ) = “""("(‘” Ad0) ) (1v0))
R e

(' t)4(zV - An(x))

nPO (005 0L + cosPDE gn 0L
- p) n p(x) n 1+ 0(’17)}

1
' 22+ 0d)]
p® z

@290 10l
0 n?

- "~ rody)
)22 1+ 0L
p®) n?

187

and similarly inserting the asymptotic form (3) in (7) we

obtain

%L Ao =cosh @OV H411406)
= cos OV (HH{1+0D)
=cos (™29 | oLyy-di1+0d
=C0s (np(x) + 0(;1-))(4)4 { 1+0(7[)}
= {cos (TP 1y . gn™®D gn oY% 1
—{oos(p(x) cos O - sin g sin 0D {1+0()}
- PO 14+0(L) - sn@™® Do)y -ns 1
{oos("—@% e sn("——p L POCNDA1+06))
= (¥ oos 2Dy 1106
p) "

Notice that in the above equation a long but straight
forward calculation, we used the following facts for
large n.

1y = 14+0(L)
cosO(n) 1+0(n2)

sin 0(,11_) = 0(;11.)

b) By inserting the asymptotic form (4) in (6), we get

[ 4_,01] 3
B costZ tz[—d- 0(’11\ pap
UGt ) = 3 4oy
:“p"”—’z-‘m(,,x
)
2[ % l
¥ [1+0(1)1(eos2-z Cig oos0(1>+m{lr CEgmob)
- Lk
‘ 4
4 ody
W 08
(10
Zﬁ 3k
P cos{ltz(“‘g
= 1 3,, (1+ody)
- NI - =
=4
)
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Similarly, inserting the distribution of positive
eigenvalues U, (x) in (7), we obtain

-—(x, Unx))= -t‘%fﬁ{’;;)io(1 ]sil{z ;{nﬂ- 3 +0(1 ) -E}{HO(—)}
o 3 M
n-&
=- t41¢z%(7(;‘)iw(;lz')]sm[2 t; [M- %-ll 0050 +cos [z-t%[mr«-f- Z
3 ) 4 n 3 fo 4
mobji+ody
1 Z(TE inn-Z&

=3 g2 A 4y 1
=-t e sn[gt (%3-—) %]{1+0(;l.)}

¢) By noting that r (x)-for large enough n is negative.
Hence, inserting the asymptotic form of A= r (x) in (6)
and (7) we get the result.

3. Example in the classical Case
In the classical case there are some examples which
provide easy formulas for the A (x).
For instance, letus consider the Dirichlet problem for

y'+(At-q())y=0

on [-1, x], for fixed x< 0, where

_The two linearly independent solutions of this equation
are of the form

1(,)3a( 12

yO=olAes -1<1<0

where d = é—i‘ﬁﬂ#. The solution which satisfies the

initial conditions

U1, =0 Y 1,n=1
o
is
U= Gnp VIR 1<0, ©)
Viria
with p(x)= [ v¥-wdv. The eigenvalues of this problem are
E
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M) =222 . 14 x<0. (10
P
Consequently, ‘
YA G144 =i A%,
j 6]
Inserting in (9) we get
Ut M) = —‘ ‘) D snh p(p i LZ
J 65
p(x)
= P9 gnmp®
% p®

We see that the leading term is in agreement with our
results.

4. Some Properties of the Eigenfunctions
in the Classical Case
Now we study some results in connection with the
eigenfunctions corresponding to the eigenvalues in the
classical case.
The infinite number of negative eigenvalues, A  (x)are
the zeros of U(x, A). Since U(x, A) is an entire functions

of order % for each.x, it therefore holds that by Hadamard's

theorem (see [5], page 24), the product formula
U, = ] -
IS ve

where c is a constant independent of A but may depend o1
x because the genus of U is zero. In order to estimate ¢, we
rewrite the infinite product as

Ux, N =c[] (1-—A)
I Anx)

A0) - A
An(x)
= C1H -——A' - }‘x)

=c
axg

n
with

Cr=

Mx)

where Z = L(’% p(x) is defined in (8). Note that since
p(x
.22
2_= 1+0(1/m?),
Am (%)
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.52

the infinite product H k;'; is absolutely convergent on
' X

any compact subinterval of (-1,0) by the following theorem

.72
. m

(2). The function is continuous and so the O-term is

®
uniformly bounded in x.

Now we will first approximate the infinite products, ther
by using the asymptotic form of U(x, M), we will determine
¢,. The foilowing theorems play an important role in
estimating the infinite product.

Thorem 2. o (1+p») converges absolutely if, and only if

2 ; p,converges absolutely where the p, are arbitrary
complex constants.

Proof. See [5]1§18. 13.

Theorem 3. If p (2) is analytic in a simply connected
domainD and if Z o [p (z}] converges uniformly inevery
closed region R of D, then

[1 a+pd2)
0

converges uniformly to f{z) in every such R and f{z) is
analytic in D.

Proof. See [5] §18. 19.
Theorem 4. (a) Suppose A M, N>1 are complex
numbers satisfying

gam;-.-.O(] 1 I) m#n

m2-n?

then, for each i< n,

= 130081
H (I+amm = 1+0(T)

1sm.main

(b) In addition, if b, 1< n is a square summable
sequence of complex numbers, then
[1 (+ambr<e

mpl,men

Proof, See [6], p. 165.

Theorem §.Letz = ﬁ(I% and X (x), 1< mbe a sequence
pix
of continuous functions such that for each x

An(x) =- 222 4 O(1)
pH®)

-l<x<a<0

- e
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where p(x)= f Y=t dt. Then the infinite product
i
H A= An(x)
ism 22
is an entire function of X for fixed x in (-1, 0) whose
roots are precisely A (x), 1< m. Moreover,

[ &2, snhp@R 1, odogny,
1sm

22 PR,
22
uniformly on the circles |A] =2y

pAx)

Proof. Let x be fixed. By the uniform boundedness of
Ami(x) + m2® for i<m,

P
3 A=) ’ltz A-O(1)
i<m| 22 fsm| 220

convergesuniformly onbounded subsetsof the complex
plane. Therefore by Theorem (3), the infinite product
converges to an entire function of A whose roots are
precisely A _(x), 1<m.

Now, since the infinite product form of sinh z is

sinh z=z[] (1+-2
z zH( +m21r2)

see [7], Therefore,

sinh cvz= c\EH (1+..£3?..)

min? (12)
=cE]] (1+-z-?;)
(13)

Consequently,

ﬁp(x) ._.H (1+__l_)
265118 22

thus, the quotient of the infinite productsof (11)and (12)
is

A - An(%)
H 22 x Alm
=] (XA,

2
ITa +;7;—) lom A+z-

Furthermore

At

l).-{-zi

P22 Lo
l?wl-zz PM-M;__Z?_
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2
Therefore, on the circles |A] 2V uniform
P
estimates

.y =/ 1+0(1/n)
Z+h | 1HO( W)
hold. By Theorem (4),
11;[”‘ ;%.i.t..&m(l-p 0(%.))(1+.0(£§_".))= {1+ 0(25;”_)}

z2
m

fm=n
m#n/

uniformly on these circles. Therefore
Athn() _snhpoVR 1, ologny,
z? PeVA n

i<m

Theorem 6. For-1<x <0,
A-A(x)

U =29 1] -
k

(_x)lﬁ

where p(x)= [ Y-td:and U(r, \) is a solution of the initial
v

. value problem (2) for the Equation (1) and { A (x)} is the

sequence of eigenvalues for the Dirichlet probiem

associated with (1) on [-1, x], i.e.,

y('LA) =0 =y(x’ x)

here z = L a5 ysual.
P

Proof. From (11) and (6). we have
UM =al] }._A_;.Q‘l
z

k

= 1 1 :
= (1+0CL) sink (poh)
("% \(77) *

where p(x) is defined in (8).

Ao

From Theorem (5), uniformly on the circles

A '-‘-»-—-———(le ))2 i . we have
pPAX,

A- M) _sink @@VE) 1, dogny
I 22 ok )

o 2
- where on the circles [A] =OH2)
P®
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a=—U&d __ p®) g, pdgny
A-Ai(x)  (0m n
===
k
we get
Cci= M.
(-x)1n
o

We will often use the abbreviated notation U =

Theorem 7. Let U(t, A) be the solution of boundary value
problem

Y +Ar-qy=0 -1<t<d
where d is arbitrary but fixed and
wn=0=ya)  Zn=1.
o
Then
d
U,

Ud, WU, N = [

4

Proof. Differentiating the equation with respect to A

yields

U+ U+ M- @)U =0
Multiplying this equation by U, the original equation
by U and taking the difference we obtain
U'U - UU"+U =0,

hence

r'
f U%dt=Ud, ) Ud,N)
o

since U(-1, )= 0 by (2).

Theorem 8. Let U(z, M) solve the initial value problem
(1) with initial condition (2) for <1<t < 0. :

Then
7
& 0 ploc) =LV (14 08y
o 20wy "

where p(x) is defined in (8)and A = A (x)isthesequence
of eigenvalues of the Dirichlet problem (1)on[-1,x] for
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x<0.

Proof. From Theorem (5)

s p1X =peVAT] 142y

k

where z,= A% eN,and p(x) is defined in (8), we have

469

. 2

d {sm}z p(x)‘lx H (- 'Z'”E' )
t<knut %,

=P
d peyWA Hb=l=

n’®

where

I1a- n) (n"*‘

k#n

For fixed x, from Theorem (6), we have

UG, \) = P(x) A- A0
el e
therefore,
oUu _ P A - M)
=22 [T
14
oA TN 4 ke z;?
- where
aU
_'""(xa )\ﬂ)
dA px) H An- M)
(_1.).'.”.193(_)6)_ (x)m1<k k#n z§~z’%
2nin?
Since
M-k o140 1 k#n
22-72 (] . nzl
k n
therefore by Theorem (4), we get
U =L (1, ologn)

2n2 m(-x)"

Theorem 9. For fixed x<0, let A (x) be the sequence of
negative eigenvalues of the equation (1) for the Dirichlet
problem on {-1, x] where 0 < g(f), so that U(x, A (N=0.
Then we have
a) A (x) is twice continously differentiable and
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xn(x)_Z(x) ﬂzmz {1+0{IOgn\} n—yoo
P
b)
fim 4 log Ai(x) = 2z,
k—)t»dx Zk
¢) The series

- An NilX) ,
nigk (e (0 - A2) M)

isuniformly convergent onany compact subsetof (-1,0),

d
WU, A dv= P3{") (1+0E 1Y)
b 2n’n2

n—yoo

where z,(x) = "( 7; and p(x) = f Y-td.
DX,

Proof. a) It is known that for a non-negative continuous
function g(x), the eigenvalues of the Dirichlet problem for
(1) on [-1, x] are real and simple (see [4], §10.61), i.e.,

%%’. (6, ) 20

for each x e(-1, (). It follows from the implicit function
theorem that A (x, g) is C* in x and

’ia?’-(x,x)\
=] A=),

" \%{-(x, /) I

From Theorems (1) and (6), we have

Ny = 2002 e cos (V- R} odes

n-yoo
A VE
By inserting
V-2 =240
p) "
in the above formula, we get
2002 o2 od
N = (x)"n cos{n:H ) (1+0(Eny) 1 seo
PO (1) n

By the mean value theorem we have
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cosod) =1+0(Ly
n n2
therefore,

12
}J,,(x)=M{1+0(w)} n—>o0
P n

(b)From (a) and the distribution of ¥ - A(x), we immediately
obtain (b).
(c) By (a) and (b), the sequence

Ak ()

A
is uniformly bounded on any compact subset of (-1, 0).
Thus, the above series is uniformly convergent by the M-
test.
d) From Theorem (7),

U (x5, mU'(x, M) = j WU dy

4

- Substiting the asymptotic form of Ux, A) and U(x, L)
from Theorem (6) and theorem (7), respectively and using
the mean value theorem for cos (nw+O(1/n)), we finally
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obtain the result.
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