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Abstract
This paper brings to light a method based on Multiphase algorithm for single
variable equation using Newton's correction. Newton's method is derived through the
logarithmic differentiation of polynomial equation. A correction term which enhances
the high speed of convergence is hereby introduced. A translation of Newton's method
to Total Step and Single Step Methods (T. S. M and S. S. M) respectively, forms the
peak of discussion. Our method, so derived, is also discussed in the light of numerical

evidence.

1. Introduction
A mapping ® of a subset of complex sequences
into @ is called a sequence transformation (or simply
summability method), for such a mapping ®(z) =z if z,
—» z. When this holds for all convergent sequences, ® is
said to be regular. We say that @ is accelerative for z if
one can find z, — z and

z,-2=0(z,-2)

Often times, numerical analysts are interested in
mappings that are accelerative, precisely and strongly

accelerative in the sense thatz, — z as fast as possible for
as large a class of convergent sequences.

In this paper, we are concerned with the problem of
approximating zeros of nonlinear equation.

pP@=0 1.1
where p is assumed to be continuous in its domain of

Keywords: Newton's method; Weierstrass' method; Newton's
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definition. We also assumed that P is monotone of an
interval z® € . By using interval arithmetic, it is
possible to compute a zero of P in the interval [a,b]. Itis
also assumed thatthe derivative of p (z) wherez e z© has
an interval extension p'(z)e &,z Cz® with the properties

p' (z)e p” (z) for all

zezCz® (1.2)
p@Cp@ ifzCz9 (1.3)
d(p’(z) C d(z) forall z C z(0) 14

Observe that condition (1.4) defines Lipschtz
continuity of the point derivative p’(z). It is worthwhile
to note that the interval method we wish to discuss in this
paper will break down if zero of polynomial p does not
exist in an interval under consideration.

This paper is arranged as follows; In section 2, we
have presented a family of Weierstrass' methods as a
prelude to discussing Newton's method. Thus, our method
is in the same spirit as those works. Section 3 discusses
the so called Total Step Method (T.S.M) and Single Step
Method (S.S.M) of Newton. In section 4, we have
-resented some numerical results to support our claims.
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2. The Multiphase Algorithm of Newton's we obtain
Method p'(z‘,) Wi . Z u
_For a polynomial of degrec n we define PZ) Z, & TZi-E

p@=r"+az™ + . . +anz+a=-" .. @-EF*
- where
#1}#24— .ot k=N

and repeated zeros are counted according to their

multiplicities so that the number of zeros are exact. In - -

case of simple zeros, we have 1 =1 =1 =y =y and
k=n. ‘
‘Given n pairwise distinct approximants (Z, Z,, ...,
Z) € « for the n pairwise
zefos(&: , &,
degree n > 3, one iteration step of Durand Kemer's
method (see [3]) reads: '

zIV oz Qn
(i=1,2,3,..n),m=0,1,.. -
wh;re
W= _..___.’?_(_Z.x(_m.)l_..__ (2,2)
@” -z
fier-s

j=li
is called Weierstrass' correction. Method (2.1) has been
modiﬁed in many ways by different authors (see [5, 6] ):

20D _ 7 w

n W!("‘)

j= 1 Z(rn) (m)
i

*2.3)
. .

+ W,—("')

Method (2.3) is the popular Weierstrass method
(oftencalled Nourine's method) which has a fourth order

- of convergence. (See [3} for more details).

- Many methods exist for deriving Newton's method”,

whichis based on fixed point principle. In this paper, we

shall adopt the approach of logarithmic differentation of
polynomial

P@=@-&[l @- & @24)
j=1 .
el -

where it is supposed that (€, &2, ... Ea) are approximate

- zerosto Z,,Z,, ... Z . Taking log_of both sides of (2.4),
wehave

LogeP(2) = piL.oge i - §) + ilLoge @8 @9

j=1
l’l

If we differentiate Equation (2.5) with respect to Z ;.

distinct
... &) €@” of a monic polynomial p of

i=1

Rearranging terms, we get

.ﬂmzwz + 3 B | (2.6)
zi-& P@ ~i-!Z«"§f :

Taking mverse of both sides of Equation (2.6) and
réarranging common terms, we have

=¢= i Q.7

P (Zx) aul
[P (Z‘) ;gl Zl - §¢]

which implies xhat
&=2Zi - K (2.8)

PE) < W
[P Z) ;gl Zi- §.]

=l
. If we divide the Weight function of (2.8) by P (Z)/
P'(Z,), we obtain

&=2Z; -. wP 2y f @ 29
1-P@) . v Hj
P@EZ) j=1Zi-&
.
If £ is a reasonable approximation to Z we have

7 _WP@)/PE)
P@) 3
P (Z.) ng Z;- é.

(2.10)

Our method of Equation (2.10) has a cubic order of
convergence.

Deﬁne Z; =&; - Nj where
=P Z)/P'@)

'I‘henbynmphcatxon§J Z- N,andhencc,ourmeﬂlod
(2:10) now assumes the general form
Zi =Zi oo W(Z")/P(Zc‘)'

P (Zx) Hj
Pal) J"lZg ZJ"‘NJ

@2.11)

From meknowledge of R-orderof convergence using
the approach of Ortega and Rheinboldt {71, our method
in (2.11) has beem increased from cubic order to focus.
order method owing to the introduced term N, called
Newton's correction. We now bring to focus the
relationship existing between methods (2.3) and (2.11)
in the following setting:
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F &) 1. Pl @.12) , 2(1-25-G) [
P@)[F1Z 2N, 1T zize W) \Nij1- —— S|t W
j=1 il'll i~Zj+ W) 1-8-2G;+4(1-6-2G) +4&(1-2&-G)J
J=1
By carefully translating the term includes all the zeros sets of P.

The proof of Theorems 1 and 2 can be found in [9]
= P(Z) in line with Lagrange's interpolation It can be shown that the disk Z, - Z, + N, of our methoc
n Zi-Zi+ W) (2.11) does not contain the ongm by carefully adopting
j=1 the approach used in [8] for Weierstrass' method. As :

J=1

of polynomial (see [2 and 4]), the desired relationship
existing in the equality of Equation (2.12) holds.

We estimate, (in some sense) the radius of the approximate
zeros of polynomial P by using the Breass and Hadeler's
disk [2] given by:

IZ-ZiISn(Nj(Z)I (2.13)

From the well known techniques of G-erschgorine
Circle theorem for the inclusion of polynomial zeros, we
may adopt the some techniques used by Petkovic etal [9]
which was applied to Weierstrass' method (2.3) toinclude
all zero sets of polynomial P. As a result, we now state
Theorems 1 and 2 to press home our discussions.

Theorem 1 [9]

ForP€ {1,2,..,n} and £ € , let r be a positive
number bounded by
maX (|Z, Ni-x FIN;j<r< rnln (1Z;-Nj-x IN; Il
j=P+1 ..n
2.19)
such that
>h@)= | N | >0

j=P+1|Zj-Nj-§|+ INj1-r
then there are exactly P-zeros in the open disk with center
€ and radius r. The conditon in whichP=nand h n<l1
is also discussed in [9].

Theoren: 2 [9]

LetZ,..Z
distinct and set

&=INjImax1Z-E1", J=12, ... n)
J

€ €/{Z,Z,..Z ) be pairwise

G=Y Nl e, 2 .0
i=12Zj-
j=1

if Y1+8>V5 +VG: foranyI=1,2,
disk with centre Z, - Mid (N)) and radius

..., N, then the

consequence, we now state Theorem 3.

Theorem 3 [8]
Let r = max rad (ZJ.),j: 1,2,...n
d= rrlug ”! mid(Z) - mid(Z;) |

Y
i=j

Ifdfr24nand& e Z,=1.2, ....n, then the inversions in
our method (2. ll) exnst (ie)0dZ-Z + N foralli,je
{1,2,...n}.

In the next section we shall examine the convergence
speed of our method in (2.11) relative to the applications
in Total Step Method (T.S.M) and Single Step Method
(S.S.M).

3. Convergence Speed of Newton's Method
We set out to analyse the R-order of convergence of
Newton's Method of equation (2.11). The following

notation shall be adopted.
Let
B =1<max1Z® - 51,i=1,2,....,nk=0,1, ...

I = iterative process with limit point Z*

Definition 1

The quantity
o ifRp (I, Z*)=0fordl p 1, =]
inf{Pe[l,e]IRp({, Z*) =1}
Otherwise, it is called the R-order of I at Z*.

Oz (1.2*) =

Definition 2
R (I, Z*) is called the R-factor of I at Z* and is
defmed by

R (1,Z%) = sup {RP {Z®} 1{Z%}e C(1,Z’), I< P < oo}

) /zimsmlz“’-z'l"*,fp=1
where R, (Z())= ko

limsp1® -z " i > 1 I

je

and C (I, Z°) is the set of all sequences generated by I an¢
converging to Z°,
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Definition 3 NITIAL ROOTS
- Let 1 and 1, be two iterative processes with the same 0.800000000 | 0.000000000 |1.2000000000.000000000
limitZ", We say that, 1, is R-faster than 17 at Z” if there is 1.800000000 | 0.000000000 |2.300000000 |0.000000000
ap[1, ] such that R,,(l Z’) <R, (1,, Z°). Furthermore, 2.600000000 | 0.000000000 [3.10000000010.000000000
if 0,(1,,2°)>0,(1,,Z°),then 1, 1sR fasterthan 1, atz’. 3.800000000 | 0.000000000 }4.200000000]0.000000000
With all these preambles, we introduce the T. S. M and 4700000000 | 0.000000000 |5.200000000|0.000000000
S. S. M of method (2.11) for the case of simple zeros. 5.800000000 | 0.000000000 {6.2000000000.000000000
(T.S. M). 5.800000000 | 0.000000000 |7.3000000000.000000000
(m) m ITERATION 1
z.‘"’“’ =z" P @ P @) (3.1) 1.000000000 | 0.000000000 |1.000000000{0.000000000
PEZ” & 1 2.049987700 | 0.000000000 {2.049990000]0.000000000
2 oo 2849988000 | 0000000000 [2.849999000]0.000000000
P@iizlZi - Zi7 - N, 4.000000000 | 0.000000000 |4.200000000]0.000000000
S.SM 4.94998000 | 0.000000000 |4.949998000{0.000000000
(5.5.M) 6.000000000 | 0.000000000 {6.000000000] 0.000000000
Zm g PE™ P ™) 6.549936000 | 0.000000000 |6.549949900] 0.000000000
A 1 3 1 ITERATION 2 ,

PEm S 2" ™ NSz 2 NP 1.000000000 | 0.000000000 |1.000000000] 0.000000000
= 2.049977000 | 0.000000000 }2.049977000] 0.000000000
. It can be proven that method (3.2) converges Yaster 2.839977000 | 0.000000000 |2.849977000} 0.000000000
thanmethod (3.1) forinstance, see Alefeld and Herzberger :-g:ggg% 8300000000 2823382883 3-000000000
[1] for more . One thing about methods (3.1) and (3.2) is : 0000000014 .000000000
that they do not exhibit "zero divide in the course of the 6.549886000 | 0.000000000 |6.549886000} 0.000000000

iteration cycle. This is possible because the term P(Z,™/
P’(Z™)does exhibit "zero divide" in the course of the
iteration cycle.

4. Numerical Results
We apply our method (2.11) to the following
polynomial problem, using complex interval arithmetic.

(1)2" - 282°+3232%-1960z*+67692*+1306822-5040 = 0

The exactrootsare 1,2, 3,5,6and 7.

Using a test for the exclusion region to the polynomial
problem above, it is found that the initial disks are in the
intervals:
z.©=[08,1.2]
z,®=[138,2.3]

2,9 =[26,3.1]
2,9 =[3.8,4.2]
z,9=[538,6.2]
z,‘“’ =[6.9,7.3]

.uN—l

From the table above, it can be seen that convergence
was achieved after two iterations circles. It can also be
observed that the appropriate results obtained are also
close to the true values of the solution to the polynomial
problems.

Our method (2.11) was programmed to accommodate
polynomial with complex roots. Thus, the method works
well for the solutions of roots of polynomial, be itcomplex

&% real roots. The technique for the application of our
method (2.11) in interval arithmetic is simple, which we
expressed. Thus,

2 = iz . PmE) I PET g
1. % Pm@™) [ PmE)
: ™ ) (m)
i=t Z; -Zj +N;
“.1
were
M [a,b]=[a+ b]

and P’@™) has an interval extension of @™

The advantage which our interval method (4.1) has
over the real floating point method, (classical method) is
that it provide tighter bounds for both lower and upper
values of the sought results.

It is also on record that the interval method is self

~ validating and one does not need to start calculating

associated errors such as local truncation errors,
propagating errors, etc. that are inherent with real floating
point arithmetics. Thus, interval arithmetics is gaining
ground .in the field of scientific computings worldwide.
The only disadvantage which interval arithmetic has is the
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problem of "wrapping effects” caused by the over-
estimation of intervals which can be overcome in some
cases.
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