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Abstract
The purpose of this paper is to show that the ideas and techniques of the classical
methods of finding stability, such as the criteria of Leonhard and Nyq_uist, can be used to
derive simple algorithm to verify stability. This is enhanced by evaluating the argument of
the characteristic equation of a linear system in the neighbourhood of the origin of the

complex plane along the imaginary axis.

(1) Introduction

It is evident [1] that the essential properties of the
possible modes of the transient response of a linear
system having "a single response-variable x(t) are
determined by the nature of the roots of its characteristic
equation F (s) =0. As a result the stability of such a
system is determined by its characteristic roots. If the
characteristic roots are all located in the left hand-side of
the complex s-plane, the system is said to be
assymptotically stable [2]. The dynamical problem of
analysing the stability of a single or multi-variable
linear system is reduced to the algebraic problem of
investigating the roots of the appropriate characteristic
equation. If all the roots of this equation can be
computed, it is evident that the stability of the system
can be decided simply by examining the location of the
characteristic roots in the s-plane. However, the scope of
stability investigations which rely on the actual
computation of characteristic roots is limited. Therefore
by means of the stability criteria avaliable it is possible
to decide the stability of a linear system without actually
calculating the characteristic roots. One such method
which does not require the actual computation of the
roots or graph plotting is presented in the following

Keywords: Characteristic roots, Stability

144

sections.

(2) Theorems
In this section we present some theorems which

serve as a theoretical basis for our algorithm.
Theorem (2.1). Consider a rational algebraic function

of the complex variable s, having zeros at
S =Z |,Z 5,...Z; and poles at s =p ,,p,,...p, of the form

(s-2y) (5-23)...(8-2)

(s-p1) (5-P2)-..(s-Pn)

where A is a constant. If a contour C such as that shown
in Fig. 2. 1(a) is traversed once in the clockwise, the
change in the argument of the complex function H(s) is
given by 2nN, where N is the number of times the
origin in the H(s)-plane is encircled in the anti-clockwise
sense as the contour C is traversed once in the clockwise
sense. (The encirc!emﬁm theorem {1].)

Proof. It is evident from [1] that if a value is assigned
to s =o+i® , H(s) will itself be a complex number of
the form

H (s) =A 2D

H (s) = U(c,0) +iV(o,m).
In geometric terms, this ‘means that to any point
(o,w) in the s-plane there corresponds a point (U,V) in
the H(s) plane. It follows that if the point (6,0)
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traverses the contour C in the s-plane, the point U,v)
will describe a corresponding contour T in the H(s)-plane

(see Fig 2.1b).

(a)

H(s)

argH(s)

H(s)-plane

(b)

Fig. 2.1. Corresponding contours in the s-plane and the H(s)-
plane
Now consider any simple closed contour C such as
that shown in Fig. 2.1 (a). If C is traversed once in the
clockwise sense, the change in the argument of the
complex number represented by the point (U,V) in the

H(s)-plane will be given by

m n
AargH(s)=X Aarg(s-z »% Aarg (s- py) (2.2)
r=1 r=1

It is evident that Aarg(s-z ) is the change in the
angle of a vector drawn from z to a point s on the
contour C, thus it follows thatAarg (s- z,) is equal to
-2r or 0 according as the zero z, is inside or outside C
(see Fig. 2.1. (a)). Hence, if Z zeros of H (s) lie within
C, it may be inferred that

m
X Aarg(s-z)=-2nZ
r=1
Similarly, if P poles of H(s) lie within C, it is
evident that
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n
X Aarg(s-p,)=2mP.
r=1

It may therefore be deduced from equation (2.2) that
AargH(s) = 2r(P-Z), 2.3)
i.e., that

N=P-Z, (2.4)

where N=AargH(s)/ 2r. Since N is clearly the number of
times the origin in the H(s)-plane is encircled in the anti-
clockwise sense as the contour C is traversed once in the
clockwise sense, the result expressed by equation (2.4) or
(2.3) is called the encirclement theorem. It is important
to note that this theorem is valid only if no poles or
zeros of H(s) lie on the contour C. Also, provided the
last condition is satisfied, the validity of the theorem is
not restricted to rational algebraic functions.

Theorem (2.2). Let F(s), the characteristic
equation of a single or multi-variable linear system, be
of the form
s"+ 85"+ 88" . 4a
with constant real coefficients a;. F(s) is free of
roots in the right-hand side of the complex plane if the

change in the argument of F(s) around a quadrant of
radius R is zero, where

R = Sup “all i=1,.., n} +1.

Proof. Consider [3]-[4] the contour C as shown in Fig.
2.2.

7R

complex plane
Fi ig. 2.2. Comtour C, a quadrant of a circle of radius R.*

Since the coefficients of F(s) are assumed to be real,
it is well known that all the zeros of F(s) will appear
with conjugates [5)]. Thus, for stability consideration it
is sufficient to search for zeros in the upper right half
plane. Since F(s) is analytic around C, for the case F(s)
has no zeros on the real and the imaginary axis, by the



- Vol.2,No. 3,4
Summer & Autumn, 1991

theorem (2.1) it follows that :
A cargF (s) =2nN 2.5
where A denotes the change in the argument of F(s)
around the contour C and N denotes the number of zeros
of F(s) in C. For F(s) to have no zeros in C we require
that:
A ~argF(s) =0. (2.6)
Lemma. If F(s) satisfies the hypothesis of Theorem
(2.2), then for the purpose of stability verification it is
sufficient to evaluate the argument of F(s) along the
imaginary axis only. ;
Proof. The argument of the characteristic polynomial
F'(é) remains zero along the real axis part of the contour
C shown in Fig. 2.2. Therefore if there is any effective
change in the argument of F(s), leading to multiples of
21, it must appear while s is traversing the imaginary
axis part of the contour C towards the origin of the
- complex plane. This means that for stability verification
it is sufficient to calculate the argument of F(s) along
the imaginary axis for y varying from R= Sup

~ {,ai l:izl,..,,n} +1 to zero.

- The following algorithm obtains the argument’bf a
given function F(s) for as many points as desired with y
varying from R to zero. If the argument tends to zéro as
y tends to zero, then F(s) will represent a stable system,
if it tends to 2w, then F(s) will represent an unstable
system. ‘

(3) Algorithm ’
To determine stability by finding argument of F(s)
anng the imaginary axis where s=iy, for a given R.
INPUT: R, the radius of contour C enclosing the
roots of F(s);M, maximum number of iterations. ‘
OUTPUT: Message of stability for zero argument or
message of instability otherwise.
CSTEP 1 Set J=1.
STEP 2 = While J £ M do steps 3-5.
STEP 3 Sety = R/J;
u = ReF(iy);
v = ImF(iy);
c=luvl;
teta = arctan (c).
STEP 4 If u < 0 and v >0 then
 teta = teta + /2; ’
Ifu<Oandv<0then
teta = teta + ;
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ffu>0andv<0Othen

teta = teta + 3n/2.
STEP5)=J+1.
STEP 6 If teta < 21 then
OUTPUT ('System is stable.")
else OUTPUT ('System is unstable.
STOP.

- (4) Examples :
The following examples have been tested by the

above algorithm.
Example 4.1
Consider.”  F(s)=s’+5s7+17s+13
Results obtained by using the above algorithm show

" that the change in the argument of F(s) is zero, Thus

F(s) represents a stable system.

Examiple 4.2

Consider  F(s) = s2-s+exp (-0.5s)
which represents the characteristic equation of a linear
time-delayed system [6]. The results obtained by using
the above algorithm show that the change in the
argument of F(s) is 2x; thus F(s) represeﬁts an unstable
system. ‘ ' ‘

(3) Ceonclusion

The extent to which the Algorithm can be applied
can now be assessed very simply on the basis of
equation (2.5) and the stability condition (2.6). Thus,
provided that the characteristic function is such that the
conditions of Theorem (2.2) are satisfied, then the

* Algorithm presented in this paper indicates a simple
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method of determining stability.
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