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Abstract
Inthis paper we will give the character table of theirreducible rational representations
of G=SL(2, q) where q=p" p prime, n>0 by using the character table and the Schur

indices of SL(2, g).

Introduction

Let G be a finite group and 3 be an irreducible;
(x)denote the Schurindex
of yover Q. tLetI'(yx)be the%aloxs group Q(y)over Q.

complex characterof G. Letm

It is known that

Zaery mox® ™

isacharacterof an irreducible Q (G)-module [4, Corollary

" 10.2(b)]. So, by knowing the character table of a group!

-and Schur indices we can find the rational character table

of that group.

In this paper we will give the character table of the -
irreducible rational representations of G=SL(2, g) where
q=p", p prime, n>0, by using the character table and the

the Schur indices of SL{2, g).

Background

Webegin with a brief summary of facts relevant to the'
irreducible complex characters and Schur indices of

special linear groups.

Theorem 2.1. Let F be the finite field of g=p” elements,
panodd prime, and let v be a generator of the cyclic group

of F¥=F.{0]}.
Denote
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in G = SL(2, F). G contains an element b of order g+1.
For any x € G, let (x) denote the conjugacy class of G
containing x. Then G has exactly g+4 conjugacy classes

g3
), @, (), @), (zc), @D, (@), @),..., @7), b)),
g-1

(Db 2), for 11 < (g-3)/2, 1 S m S (g-1)/2 (See
Table 1).

Denote £=(-1)4P2, Let pe C be a primitive (g-1)-th root
of 1, oeC a primitive (g+1)-th root of 1. Then the
complex character table of G for 1 i<(g-3)/2,1<j<(q-
1)/2, 1 €1<(g-3)/2, 1 £ m< (g-1)/2 is given in Table 2.
(The columns for the classes (zc) and (zd) are missing in
this table. These values are obtained from the relations

_x() = X2
2(z0) = 2a )x(c) 2@d = 20 x @,

for all irreducible characters  of G.)
Proof. See {2, 38.1].

Theorem 2.2. Let F be the finite field of ¢ = 2" elements,
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Table 1. Table of conjugacy classes of SL(2, p*)
x 1 z c d zc zd a4 -
ol 1 1 | Lz ilgzllgz|Lg21 1) |a(g-1
(%) 2(4 ) 2’(4 ) 2(q ) 2(4 )r(q+) a(q-1)
Table 2. Character table of SL(2, p”)
1 z c d a4 b
1, 1 1 1 1 1 1
v q q 0 0 1 -1
X g+l (-1¥(q+1) 1 1 p4pt 0
) g1 | (y@n| - 1 0 |-
3 Ly | Le@ Lisveg| Laven | Y 0
3 -;—(q+l) L g(g+1) é-(l-ﬁ}) %(ufe?) -1y 0
mo | Lo | -Le@n|lasvalen) o |
n | gD | -Lle@n|levap|ledep) 0 | e
2 2 2 2 ‘
and let v be a generator of the cyclic group F*= F-{0}. <m<ql2 ,s given in Table 4.
Denote '
Proof. See [2, 38.2].
' ( 10 } ( 10 } ( v 0 )
1= c= a= .
.1 : .
, 01 11 0 v ‘Table 4, Character table of SL(2, 2"
in G= SL(2, F). G contains an element b of order g+1. :
Forany x € G, let (x) denote the conjugacy class of G 1 c a4 b
containing x. Then G has exactly g+1 conjugacy classes -
), (©), (@), (@),...(d*), (b), (b)....,(b¥), where 1, 1 1 1 1
(See Table 3). .
_ Let p e C beaprimitive (g-1)-throotof 1, o€ Ca
primitive (g+1)-th root of 1. Then the character table of " R ‘ o g o
GoverCfor1<i<(g-2)2,15j5q2,151<(g-D2, 1 % 7
. - - 0 - (O/m4G )
Table 3. Table of conjugacy classes of SL(2, % e | (cF+a)

Theorem 2.3. Let G = SL(2, g). If g is a power of 2, then
the Schur index of any irreducible character of G over the
rational numbers Q is 1. If ¢ is a power of an odd prime p,
then the Schur indices of the irreducible characters of G
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over the rational numbers Q are as follows:
(See Table 5).

Table 5. Table of Schur indices

qg=1mod4 q=3 mod 4
, | o1 1
v 1 1
X 2 (i odd) 2 (i odd)
1 (i even) 1 (i even)
6, 2 (j odd) 2 (j odd)
1 (j even) 1 (j even)
¢ 1 1
3 1 1
n, 2 1
m 2 1
Proof. See [5].

Character Table of Irreducible Rational
Representations of G= SL(2,9)

Lemma 3.1. Let & be a primitive n-th root of unity. Then
E+E" is rational if and only if n = 1,2,3,4,6. The values
which occur are as follows:

Table 6.
n 1|2 3 4| 6
g+ef2 |2 | 4] 0|1

Proof. The result is clear for n = 1 or n=2 50 that we may
assume that n > 3. :
As 2-(E+E x+1= (x-E) (x-E), the index (Q(E): Q&
+E&1))=2unless§ e Q, thatis, unless n=1 or 2. It follows
that £ + &' € Q if and only if ¢ (n) = (QE): Q) =2.
Examination of the possibilities shows that ¢(n) =2 if and
only if n =34 or 6. ‘
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Corollary 3.2. Let be a primitive n-th root of unity. Let
1<j<n. Then & + &is rational if and only if n=j, 2j, 3j,

&;.

_Proof. Let (j, n) denote the greatest common divisor of j

and n. Write j = a(j, n) and n= b(j, n) so that g and b are
coprime and 0 < 2< 1,

As & is a primitive b-th root of unity, Lemma 3.1
shows that & + &7 is rational if and only if b = 1,2,3.4 or
6. For these values of b, the corresponding possibilities

for!larel,L,_,&,,l_’_,_l_,andi. ASI=—q-n,[he
b 23 3 4 46 6 b
result follows.

Corollary 3.3. Let & be a primitive n-th root of unity and
n#2. Then (QE): QE+&MH)=2and QE+§M: Q) =

Lon).
2

Proof. This follows from the fact that (x-€) (x-&")=x*-(§
+E") x+1and (QE) : Q)= ¢ln).
Lemma 3.4. Let € be a primitive n-th root of unity, i € Z

andd,= (i, n).1f n > 2d,, then (Q(£'+ £): Q)= % oLy,

Proof. Since n > 2d,son # 2.If i = 1, then the result
follows from Corollary 3.3. Soleti#1.By Corollary 3.2,

gi+&+e Qifandonlyif £=1234,63, 4and6.
di 2’3 5
Since L € Zandn#d,2d;so &+ &+ e Qifandonly if,

1

B =3,4,6. But ¢(3) = p(4) = P(6) =2 and (Q(§'+ &)

Q)= lin these cases, so the result follows for the case &
+&ie Q.

Now let £+ E7¢ Q. Since E'is aprimitivedL - throot
of unity, so by Corollary 3.3 (Q(€9) : Q€'+ §)=2.
Therefore (Q(¢' + £ ): Q) = % 9.

Corollary 3.5. Let £ be a primitive a-th root of unity and
1<i<f Then Q¢ +£): Q=L o)
2 2 di

where d,= (i, n)
Proof. This follows from Lemma 3.4.

Let M be a field of characteristic zero and let K be a
subfield of M. Suppose that M is a finite and normal
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extension of K with Galois group I'=T" (M: K). For any
a € M define the trace

T, (@)=Z_ a"

Lemma 3.6, LetK < L <M befieldsandlet M bea
finite and normal extension of K. Then

It (Tr,,,(0)) = Tr,,_,(x)
where x e M.

Proof It is obvious.

Lemma 3.7. Let £ be a primitive n-th root of unity. Let
ie Zandd=(i,n)andletn+d, 2d. Then

L6 +E)=n (f-')
where I',=[(Q(& + £ %) : Q) and p is the M&bius function.

Proof, Let A=Z_, (§'+E)"=Trgg isg-yq(€i+
§“)andletB—'Il'q¢.')_,Q(§'+§*)
Let&i+£+¢ Q. Thenby [1,Lemma3.4],B = 241(-3—)

and by Lemma 3.6,
B =Tiggisz)»q Mlogh s qeie e (€ + E) =
2Mrgeis e +EH=24

" Therefore A= p(-ﬂ-)

Now let & +§‘eQ ByLemma34,('+ (e Q
if and only if, f— =3,4,6. Butin this case, £ +§"-u(-ﬂ—)

and A=+ £,

 Lemma 3.8, Let £be a primitive n-th root of nity, i € Z,
d,=(i,n)andn#d,2d.LetT'=T (Q(+£): Q). Then

s PB)
Zl8'+87) ‘P(L) M(f‘-)

Proof. Let L= Q(& + £ -). Then by induction we can
prove that L, C L,. By Lemma 3.4,

L:Q)=1
@ Q 3 ﬂi_L)-
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So
L :L)=9®
. ')=¢(-ﬂ-)
di
Hence

Toy ou @ + &)= —1’(—<§+§>
dx

Now apply Lemmas 3.6 and 3.7. So

Try 50 €' + £ = (T oo (T 5 (€ + £ =

Try oo (P8 4 £ = P01y o + £ =
ruaq(m(?(§+§)) “ff')m Q '

o)
g @

Therefore Zae r (&' + & a=f(£.£)—u(£:)

i

Corollary 3.9. Let € be a primitive n-th root of unity and
1<i<k

2
Let Fé Q& + £): Q). Then
Tae i, gha_ o)
r¢+¢&) ¢(ﬂ_)u(d-”-‘_)
d;
where d, = (i, n).

Proof. This follows from Lemma 3.8.

Lemma3.10. LetG =SL(2,q) where g = p* for some odd

~ prime p. Then the Galois orbit sums in Irr(G) are as

176

follows:

(@) Zaerz.xwheree=(i,g-1)and 1<i <(g-3)2andT'=
rQQ,): Q;

(b)Zae o wheref=(j, g+1) and 1< < (g-1)/2 and =
I‘(Q(B) Q)

©Lw

@ 5 + &, and n, +.1, for odd n;

O] §, » &, 1, and 1, for even n.
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"~ Proof. Since (a) and (b) have similar proofs, we will
prove only (a).

Fix an integer i, 1 <i < 23, Recall that p is
primitive (g-1)-th root of uni%y. Since T(Q(x): Q)=
TQ + ) : Q)andp»‘isaprimiﬁvefi-’;{-m root of
- unitywhere e=(i,n),50 Zge ry e =Zie 4y Where A=
{i:e=(, n)and1<1<%§-}

(¢); (d) and (e) follow from the character table of SL(2, q)
in Theorem 2.1.

Lemma 3.11. Let 7 be a rational valued character of@G
' andletx,y € G with <t>=<y>. Then y () =2 ().

Proof. See [4, 5.22].
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1 x

01 ;
subgroup of G. Let N denote N(P). It can be proved that

(o il

01
are conjugate in N and that N = {diag(x,

Proof, LetP = {( }:xeF}.'I‘henPisaSylowp-

}areconjugateinGifandonly if they
X'y xe F*),

11

01
is easy to prove that

Letc={ )andd={l v ‘wherevgeneratesF*.It
011]

diag(%kl){l * )tﬁa.g(k‘,&):( 1 A% }
01 0 1

1rv)
01

Let 1= diag(4, 1') € N. Since <c> and <d> are
conjugate in G if and only if they are conjugate in N, so
<c> and <d> are conjugate in N if and only if Lellt=d

where A ¢ F* and d'.—-.{

Table 7. Character table of rational representations of SL(2, P"), p an odd prime, neven

1 ’ z ‘ ¢ andd a 8
1, 1 1 1 1 1
v ool q ) q 0 1 -1
2. (q+1)A(e)B(e) (~1r(q+1)A(e)B(e)i A(e)B(e) Afe)B(e)tfe, &) 0
8, (¢-DC(NB( -1/q-UCHBY) | -COB() 0 -COHBOTL. )
&, Lig+1) Lig) L11vg) (-1 0
2 . 2 2
&, Lig+1) Lig+y) Lawmg) (-1)* 0
2 2 ; 2
) Ha-1)E) -La-1E0) LARDE) 0 (1) E(g)
7, i(“" 1E(q) . %{q-us(q) -;—(-1 FG)E(q) 0 (-1)r* E(q)
(The columns for the classes (ze) and (zd) are missing in this table. These are obtained from the relations y(zc) = z (( : x(c), x(zd) ‘
48!

_x@)

preTy 2= ¥ (d) where 7 is an irreducible character of )

177
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i f@smﬂwandsomeLmaxis,ifandonlyifl’=tv for
someA € F*,te N. -
Let H = <*>. Then the order of H is (g-1)/2.

Behravesh
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conjugacy classes of cyclic subgroups of G are

__represented by (1), (z), ©), (@), (z¢), (zd), (@) wherellg-

I nis even;menl-fz-l-_-llii‘_‘.: @i- 1)!i.z’f_land p-1

1(g-D/2. Sove H, as otherwise the order of v will beless
than or equal to (g-1)/2. This shows that tv ¢ H for all
te N.
. Ifn isodd, theng-1=p*~1= (p-1) (p*' + ... +1). But
p~i+... +1isodd,sop-1 1(g-1)/2. This shows that v €
H and that there exists 7 and A such that A*= tv.

' Theorem 3.13. The number of isomorphism types of
irreducible QG-modules is equal to the number of
conjugacy classes of cyclic subgroups of G.

Proof. See (3, 3.12]

Let d*(n) denote the number of divisors d of n such that

‘d<nf2~.

Lemma 3.14. The number of conjugacy classes of cyclic
subgroups of G = SL(2,q) where g = p", is equal to:

(a) 4+d*(g-1)+d*(g+1) if n is odd;

(b) 6+d*(g-1)+d*(g+1) if n is even.

Moreover, in case (a) the different conjugacy classes -

of cyclic subgroups of G are represented by (1), (2),
" (0), (z¢), (@) where 11 g-1 and 1 <1 <(g-1)/2 and (b™) where
mlg+1and 1 <m < (g+1)/2 and in case (b) the different

1 and1<i<(g-i2and (p") wheremig+land1Sm<
(g+Di2. . : '

Proof. In order to calculate the number of conjugacy
classes of cyclic subgroups of G we apply Theorem 3.13
and Lemmas 3.11 and 3.12. By considering the values of
win each conjugacy class it is easy to see that (g’ forall .
llg-1 and 1< 1< (g-1)/2,and (¢™) forall mig+1 and1<
m < (g+1)/2, are different conjugacy classes of cyclic
subgroups of G. Also, these conjugacy classesaredifferent
from (1), (2), (¢), (@), (c2) and (d2), as we can see by
considering the values of y. Hence the total number of
different conjugacy classes of subgroups (@) is d*(g-1)
and of different conjugacy classes of subgroups (b™) is
d'(g+1), as required.

‘Notation (1). Let G = SL(2, q) where g =p" for some
primep #2.

¢ and ¢ denote divisors of g-1 such that e < 25“1 and

g-1

e

2
f and f'denote divisors of g+1 such that f <

e’ <

g+l

and

g+l

f<

Table 8. Character table of rational representations of SI{ 2, p*), p an odd prime, n odd

1 2 ¢ a’ 4

1, 1 1 1 1 1

v 4 q 0 1 -1

Z (q+1)A(e)Ble) (-1¢(g+DA(e)Ble) |  Ale)Ble) Ble)z e, ¢) 0

g (a-1C(NB(N (-1/(g-1)CHB() -C(NB() 0 -B(fr (.1

4 g+1 &q+1) ¢ (-1)2 | 0

n’ (g-DE(g) -Elg-DE(g) -£E(q) 0 (-1) ™ 2E(q)
(The column for the class (zc) is missing in this table. This is obtained from the relation y(zc) = f_(% 7 (¢) where y is an irreducible

character of G)

178
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p, is a primitive Q_;l -th root of unity.

g, is a primitive g+1 -th root of unity.
f

1,z,c.d.a,b,p and o are as in Theorem 2.1.

B(k)=<l if k is even
2 _otherwise
1 ifg=3 mod4
E@ =< 1
2 otherwise

A@=Lo@Ladcp=L @l
@=lo@Dmdch=1odD

-1
e P
Te. e) = Zaer (pf + p) =€ p@dy vy
(p(q-l; ee
ee’

Lemma 3.8 where I'=(Q(y,) : Q). [Note that I'=T"(Q(p,
+p,): Q.

/

+1

. .=
%, f) = Zaeri (0} + 07 )=—L _p@tl
&n"

where I'= I(Q(6) : Q). [Note that I'=T'(Q + ;") : Q)].
,and 6 are irreducible characters of G as in Theorem 2.1.
Then Zae r z2 where I = T(Q(x): Q), and Zae 1y 6,
where I, = I“(Q(OJ.) : Q), are rational valued characters of
G

X.=B(e) Zae r 2 Where e = @, q-1).
8=B(f) Zae 67 where f = (j, g+1).

&and 7)"denote the irreducible characters of the rational
representations of G arising from & (or §,) and 7, (or 1,)
respectively, where n is odd.

&, &, m,, 1, denote the irreducible characters of the
rational representations of G arising from &, £, n,, 1,
respectively, where n is even.

Lemma 3.15. In the notation (1), x,and 6, are irreducible
characters of rational representations of G and

(@

2.(1) = A(e) B(e) (q+1);

x.(2) = (-1)* A(e) B(e) (q+1);

2.(c) = x,(d) = A(e) B(e);

x(a) =B(e)t, (e, €);

20 =0;

(®)
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6(1) = C(f) B(f) (g-1);

(z) = (-1)/C(f) B(f) (g-1);
3{0 =6(d) = -C(f) B(f);

(a) = 0;
O/bf ) =B(f) T,(f.f).
Proof. Since the proofs of (a) and (b) are similar, we will
prove only part (a).

By Theorem 2.3, B(e) is equal to the Schur index of

x. over Q, so by (*) z, is the irreducible character of a

rational representation of G.
Now p is a primitive (g-1)-th root of unity, so p, is a

primitive g-1 -th root of unity where e = (i, g-1). By

Corollary 3.5,

Q@ +p): Q =QMp,+p.) : Q) = Ale).

By Lemma 3.8 we have

Zae T @pi+ph:Q (P + p) =
Zae D@ +p): @ 5 + PN =71 (e, €).

Now the result follows from the character table of Theorem
2.1.

Theorem 3.16. In the above notation the character table
of the irreducible rational representations of G are given
in Tables 7 and 8.

Notation (2). Let G = SL(2, g), where g = 2",

e and e’ denote divisors of g-1 such thate Sq—'l- and

e’< q—-l—
2

f andf” denote divisors of g+1 such that f Sﬂand
2

p, is a primitive _q-e_l -th root of unity.

. .. +1 .
0, is a primitive 9% _throot of unity.
f

1,c,a, b, p, and o are as in Theorem 2.2,
The functions 7, (e, '), 7, (. f ), A(e), C(f) are as in
Notation (1).

Lemma 3.17. The number of conjugacy classes of cyclic
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subgroups of G=SL(2, q), where ¢ =2* is equal to
2+d" (g-1)+d’(g+1) and the différent conjugacy classes
of cyclic subgroups of G are represented by (1), (c), (8")
and (bf), and the irreducible characters of rational
~ representations of G are 1, y, 7, and 6,.

Theorem 3.18. Let G =SL(2,g) whereg=2,. InNotation
(2) the character table of the irreducible rational

representations of G is as follows:
(See Table 9). '
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