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~ Abstract
In this paper we describe how the degrees of the irreducible characters of the affine
subgroups of the classical groups under consideration can be found inductively. In [4]
Gow obtained certain character degrees for all of the affine subgroups of the classical
groups. We apply the method of Fischer to the above groups and, in addition to the
character degrees given in [4], we obtain some new character degrees for these

groups.

1. Introduction

‘Let G be one of the symplectic, unitary or orthogonal
groups defined over V= V(n, q), the vector space of
dimension n over the field with q elements. The subgroups
of G which fix a certain non-zero vector of V are called
affine subgroups of G. Let us call one of these groups A.
In [4] certain irreducible characters of A are found. In [4]
Gow also found certain irreducible characters of the
affine subgroups of the general linear group. These
characters have also been studied in [10] for the symplectic
case. Our aim in this paper is to employ the powerful and
interesting method of Fischer described in [2] and [3] to
obtain all the irreducible characters of A inductively in the
cases that Fischer’s method is applicable. This method
has already been applied to the general linear groups and
the symplectic groups in [1], certain wreath products in
(7] and certain extensions of the symmetric groupsin (8].
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We refer the reader to the books {5] and {6] for notations
concerning the above groups and character theory. All the
characters concerned are over the complex field C.

Let H be a group and V <|H. Let Irr(V) denote the set
of all the irreducible characters of V. Then H acts on
Irr(V) and for y € Irr(V) the stabilizer of ¥ in H, denoted
by I, is called the inertia group of x in H. Clearly V < 0

and the factor group/ =1 /V is called the inertia factor of
I . We say that g € Irr(Vf is extendible to an irreducible
character ¢ of its inertia group in Hif ¢ L = x. In [2] a
method is presented to calculate the character table of any
group extension H = V.G provided that every irreducible
character of V extends to an irreducible character of its

inertia group in H. This is the case if / = \Z is a split
extension and g is a linear character o% V (see problem
6.18 [6]). Since for all the affine groups concerned in this
paper [ , where ) is a linear character, is in the above form
therefore we are able to use Fischer’s method.

If y is an irreducible character of V and % denotes its
extension to I, then by Clifford’s theorem [6] every

irreducible character of H is of the form (.B)T* where B
is an irreducible character of /. with the property that V
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;kerﬂ Here the corresponding irreducible character of I

isalso denoted by B. Evaluation of (¥.8)THon an element
h which maps to a conjugacy class x of G involves a

matrix which is denoted by F, * and is called the Fischer

maftrix of xat the class x. The precise description of this
matrix is given in [71,[8] and [9]. Moreover if ¥, ,....x, are
representatives of the orbits of H acting on the irreducible

charactersof Vand M= { vlixv contains anelementin k)=
- -

{V,....,,}, then the Fischer matrix of Hat his F"=

Moreover if C; is the part of the character table of
Ii,.consisting‘ of the columns corresponding to the classes

of ;; which fuse to x in G, then the character table of H
at the classes x,,...,X, is given by the matrix product
C;.F{,-, 1<i<s, where x,,....k, are all the conjugacy
classes of H which map to x. -

2. The Affine Symplectic Group

In this section we follow [4] for a description of the
affine symplectic group. Let V(2n,q) be the vector space
of dimension 2n defined over GF(q), q a power of the
prime p. Let {e .e,.....¢, | be a basis for V(2r,q) and let f
be the non-degenerate symplectic form on V(2n,q) defined
by fle, e)= &i, 2n+1-j), 1<i<j<2n and f(x,x) = 0 for all x
€ V(2n,q) Then the subgroup of GL(2n,q) leaving f
invariant -is G(n) = SP(2n,q). The group G(n) acts
transitively on the non-zero vectors of V(2n,q) and the
stabilizer of e, under G(n) is the group A(n). In [4] Gow
- has shown that A(n) is a split extension of a p-group P(n)

of grder g**' by a group isomorphic to SP(2n-2,).

These groups may be described as follows. If again f
denotes the restriction of the above form to V(2n-2,9)
genmted by {ez, 1/ » then P(n) is isomorphic to the
group consisting of [V al,ve V(2n-2,q),a € GF(q), with
multiplication [v, a] [u, bl= [v+u, a+b+f(vu)]. A(n) is
- isomorphic tothe group P(n).G(5-1), where G(n-1) consists

- of the matrices in GL(2n-2,q) leaving f invariant. The

action of G(n-1) on P(n) is as follows:
[v.al*=[A", a] where ve V(2n-2,9),a € GF(q), A e
G(n-1). Furthermore the action of A(n) on P(n) is as
follows:
[v;al“*¥= [A'y, a+2f (v, u)l where u,ve V(2n-2,q),a,b
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€ GF(q), A € G(n-1).

If g is even, then P(n) is an elementary abelian 2-group
and when q is odd, then P(n) is a special p-group. We
apply Fischer’s method for linear characters of P(n).

Theorem 1. Let G(n).= SP(2n, q), q odd, and let A(n)
denote the stabilizer of a non-zero vector. Then degrees of
some of the irreducible characters of A(n) are as follows:
the degrees of the irreducible characters of SP(2n-2,q),
the degrees of the irreducible characters of A(n-1)

. multiplied by g**-2-1.

Proof. Since A(n) is a split extension of P(n) by G(n-1),
then for any linear character y € Irr(V), / B is a split

extension of P(n) by I,. Hence we will only consider linear
characters of P(n). Since P(n)'= Z(P(n))= {[0, all a €
GF(q)} is a group of order q, therefore P(n) has ¢°**linear
characters. These linear characters may be described as
follows. Let GF(p) be the prime subfield of GF(q) and
tr : GF(q) — GF(p) be the trace map. Let € be a primitive

“p* root of unity in C. It is-easy to.verify that for each u €

V(2n-2, q), the function;, : P(n) — C givenby X, ([v, al)=

g« is a linear character of P(n) and that all the ¢***

linear characters of P(n) arise in this way.
Now if x, is invariant under A € G(n-1), then

12 (v.a)=xu(v,al) for all v € V(2n-2,q), a € GF(g).
Considering the action of G(n-1) on P(n) we obtain
tr{f{Au-u,v)) =0, forall ve V(2n-2,q). Suppose Au-u=w
#0. Since f is non-degenerate, the linear functional g :
V—GF(q) givenby ¢ (v)=f{w,v)isonto. Therefore all the
elements of GF(q) are of the form f{w,v) for some v €
V(2n-2,q). But this implies that the trace function is
identically zero which is a contradiction. Hence Au = u.
If u=0, then {y,} is an orbit with inertia factor group G(n-
1), and if u 20, then {x lu € V(2n-2, q)*} is another orbit
with inertia factor group A(n-1).

‘Now we find degrees of some of the irreducible
characters of the group A(n) and for this we must find the

first entry of the matrices Fx'f ,i= 12, where x, is a
representative from each: of the two orbits of linear
characters of P(n). Buat the first entry of each of the above
matrices is the orbit size in the case of linear characters
which are 1, g**2-1 respectively. Since some part of the
first column of the character table of the group A(n)

equals the first column of the matrix product Cy, .Fy, , i
= 1,2, hence the theorem follows.ll

The above theorem shows that if we know the character
degrees of G(k), k<n, then some character degrees of A(n)
can be obtained using induction on n. Using only the
existence of the identity character in G(k) we obtain the
following Corollary.
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Corollary 2. The group A(n) has irreducible characters of
degree (¢°+2-1)...(¢**-1).

We now consider the case when q is even. In this case
P(n) is an elementary abelian 2-group and A(n) has 2¢
orbits on P(n). If V is a vector space of even dimension
over GF(q), q even, then there are two non-equivalent
quadratic forms defined over V which are denoted by Q*
and Q ~. If dim V= 2m, then the subgroup of GL(2m, q),
leaving these forms invariant, are denoted by 0* (2m, q)
and O ~(2m,q) respectively.

Theorem 3. Let G(n) = SP (21, q), q even,‘and let A(n)
denote the stabilizer of a non-zero vector. Then the

degreesof the irreducible characters of A(n) are as follows:
the degrees of the irreducible characters of SP(2n-2,q),

the degrees of the irreducible characters of A(n-1)-
multiplied by ¢*?*-1, the degrees of the irreducible’

characters of 0*(2n-2, q) multiplied by L ¢™*(g”! + 1) and
) ‘

the degrees of the irreducible characters of O ~(2n-2,q)
multiplied by 1 ¢™}(g™! - 1). Moreover the number of
2

characters in each of the last two cases is g-1.

Proof. As we remarked earlier in this case, P(n) is an
elementary abelian 2-group of order ¢**! and is isomorphic
to the group consistingof {v,al,v e V(2n-2,9),a € GF(qg),
with multiplication [v, a} [u, b]=[v + u, a+b+ f(v.u)]. We
also know that the action of A{(n) on P(n) is as follows:

[val= [Aly, a], A € SP(2n-2, q); [v.al, [u.b] € P(n).

Therefore A(n) has 2q orbits on P(n). The number of
the orbits of A(n) on Irr(P(n)) is also 2q which will be
described as follows. ‘

Similar to the proof of Theorem 1, for every vector u
in V(2n-2,q) the function x: P(n) — C given by x ([v.a])
= (-1)""«" is an irreducible character of P(n). Here of
course tr maps GF(q) onto GF(2). The group G(n-1)
acting on the set of characters of this type produces two
orbits of sizes 1 and g*?-1 with inertia factor groups G(n-
1) and A(n-1) respectively.

Let Q% e=11, be the representatives of the two classes
of quadratic forms with associated bilinear form f. Then
itis easy to check that for.any field elementb € GF(g)the

function x,; P(n) — C given by x, ([v.al)= (-1)"®€ o)
is alinear characterof P(n). If b and c are distinct elements
of GF(q), then y, and y_lie in different orbits under G(n-
1). Because if 23 = x for some A € G(n-1), then 22 ([0,
a}) = 1,([0,a)) for all @ € GF(q) which implies that tr((b-
¢)a)=0and since b # ¢ this implies that the trace function
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is identically zero. Therefore if b runs through the g-1
non-zero elements of GF(q) we have 2(q-1) orbit

representatives x, for the orbits of G(n-1) on Irr(P(n)).
The orbit sizes are%-q"“(q"“ +¢) wheree=+1, Now asin

[4] it can be shown that the stabilizer of ¥, in G(n-1), 0
b e GF(q), is a group isomorphic to 0%(2n-2,q) if ¥, is

taken from an orbit of length %q’*l(q'*us). Now a

similar argument as that given at the end of the proof of
Theorem 1 gives the result.ll

Again considering the above theorem and the identity
character we obtain the following Corollary, in addition
to the degrees which are obtained by Gow in {4].

Corollary4. The group A(n) has g-1 ireducible characters

of degree -é—q'*‘(q'*1 +g)and foreach k, 1 £k <pn-2ithas

g-1 irreducible characters of degree —;—q’*"'l(q'*“-fe)

@*%-1)...(g"#*-1) where e = +1.

3. The Affine Unitary Group

Let V(n, ¢°) denote the vector space of dimension n
over the Galois field equipped with a non-degenerate
Hermitian form f. Then the unitary group defined on
V(n.q?) is denoted by U(n,4?). This group acts transitively
on the set of non-zero isotopic vectors of V(n, ¢°) and the
affine unitary group is defined to be the stabilizerof anon-
zero isotropic vector under the action of U(n, ¢%). We set
G(n)= U(n,g%) and denote the affine unitary group by
A(n). Therefore we have [G(n): A(m)l=(g"-(-1)"g™'+
(-1)) and according to [4] the group A(n) is a split
extension of a special p-group P(n) of order ¢** by a
subgroup isomorphic to G(n-2).

Let {e,e,,....e,} be abasis for V(n, ¢*) and let f be the
non-degenerate Hermitian form on V(n, ¢°) defined by
fle, e) = 8(in+1-)), 1 i <j< n. In this case ¢, is an
isotropic vector and we let A(n) to be the stabilizer of e,
under the action of G(n). According to [4] the group P(n)
is isomorphic to the group P= {[v,ad} v e V(n-2, ¢%,ac
GF(¢?), tr(a) + f(v, v)= 0} where tr is the trace function
from GF(¢?) to GF(g) and where the multiplication in P is
given as follows:

v,al {u, bl=[v + u, a + b-fv, u).

The action of A(n) on P(n) is as follows; [v, a]“*!4=

[A-v, a+f(u, v)- f(u,v)], where the bar denotes the
involuntary automorphism of GF(¢®) sending eachelement
to its ¢* power. Therefore we see that A(n) on P(n) has 2q
orbits and hence the number of orbits of A(n) acting on the
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. setof the irreducible characters of P(n) is also 2q. We will
- find all orbits on the set of linear characters of P(n) in the
following theorem,

~ Tbeorem 5. Let G(n) Utn, ¢*) and let A(n) denote the

stabilizer of a non-zero isotropic vector. Then degrees of |

“-some of the irreducible characters of A(n) are as follows:
the degrees of the irreducible characters of U(n-2, ¢°); the
‘degrees of the irreducible characters of A(n-2) multiplied
by (g™~ (-1)") (g*>+(-1)"); the degrees of the irreducible
characters of U(n-3, ¢® multiplied by g™*g™*-(-1)".
" Furthermore there are q-1 irreducible characters of the
latter type. :

Proof. Itis easy to see that the center of the group P(n) is
equaltotheset {[0,a]la € GF(¢%),tr(a)=0) and therefore
P(n) has ¢>>* linear characters. These ¢** linear characters
may be described as follows. Let p be the characteristic of
GF(q) and tr denote the trace function from GF(g) to
'GF(p). If £ denotes a primitive p* root of unity in C, then
for each vector u € V(n-2, ¢°) the function x,: P(n) - C
given by x_ ([v, al) = e is a linear character of P(n).
All the ¢°* linear characters of P(n) are of the above
forms. Now if x is fixed by some A € G(n-2), thenas in
the proof of Theorem 1 we get Au = u. If u =0, then we
have one orbit of size 1 with the inertia factor group G(n-
: 2) If u#0and fu, u) =0, then since G(n-2) is transitive
on the set of non-zero isotropic vectors of V(n-2,¢*) we
get another orbit of size (g"2-(-1)* (¢**+(-1)") with inertia
factor group isomorphic to A(n-2). Since for a given O=c
€, GF(q} the. group G(n-2) acts transitively on the set of
vectors u € V(n-2,4%) such that f(u,u)=c, therefore we
obtain g-1 orbits each of size g**(g™*-(-1)") with inertia
factor groups isomorphic to G(n-3).

- Sofar we have obtained q+1 orbits of G(n-Z) ontheset
- of linear characters of P(n). Now considering the Fischer
matrices and the inertia factor groups we obtain the
msixlt.l ;

: Caml!ary 6. For integers n, k set @(n, k)=(g"*-(-1)")
' (q'*’-‘+(- Yo (g% (1)) (g*'+(-1)"). Then foreach k, 1

g ks {!‘-‘-21], the group A(n) has irreducible characters of

degﬂec ¢(n, k).Italsohasg- 1character degrees as follows:

- q*¥(g*2-(-1)"), and @(n.k)g*¥(q 2*2-(-1)") where 1 <k <

[9_4.],
2

- .. 4. The Affine Orthogonal Group

.. Inthis section first we consider the orthogonal groups

- in odd characteristics and odd dimensions. Therefore let
V=N@2n+1, q) be a (2n+1)-dimensional vector space

Darafsheh

184

J.Sci.I.R. Iran

over GF(q) with basis {e,.¢,.....¢, ., } and letfbe the non-
degenerate symmetric bxlmear form defined by f (e.e)=

&0, 2n4+2-)), 1Si<j<2n+1,0n V. Welet G(n) = O(2n+1,

q) to be the group of invertible linear transformations of
V leaving f invariant. In this case Q(v) = i- £ (v, v) defines

aquadratic form and G(x) acts transitively on the set of all
the non-zero isotropic vectors. We let the affine group
A(n) in this case be the stabilizer of a non-zero isotropic
vector namely ¢,. We have [G(n): A(n)}= g1,

Lemma 7. A(n) is the semi-direct product of an abelian
group of order ¢**' and a group isomorphic to G(n-1).

, be the matrix of f relaxxve to the basxs
} If a (2n+1) x (2n+1) matrix x fixes ¢, it

Proof. Let J,,,
{ex’ez' 2n+1
1 ua

musthavethe formx =| § 4 , |whereuandwarerow

L0 wb
vectors in dimension 2n-1, v is a column vector in

“dimension 2n-1, A is a (2n-1) X (2n-1) matrix and a,b €
'GF(q). Now since x must leave the form f invariant we
~ obtainb=1,w=0,AY, A=J, .2a+VJ, ,

- v=0and u=
-V, A. Therefore the general formofan element of A(n)

1 v Jzn.iA a

isx = 0 A v where 2a+v'J,  v=0,
0 0 1
100 ,
AU, A=J, WesetG={| o A o |IA'Fm1A=Tom
001
and
1 V' Jant a ]
P= 0 bt ¥ 12a +v' Janv=0
, 0 0 1 ;
Since X can be written as
[ 1t 7 a (100
X = 0 Int y 0AO0D therefore
0 0 1 L0 0 1

A(n) is the semi-direct product of a p-group P of order
q*'by agroup G which is isomorphic to O(2n-1, )}=G(n-
1). If the restriction of f to the (2n-1)-dimensional
subspace generated by {e,,....e,,} is again denoted by f,
then P is isomorphic to the group P(n) = {[v,alive V (2n-
1,9),a€ GF(q),2a+f(v, v)= 0}, where multiplication in
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P(n) is as follows: [v, @] [u, b]=[v + u, a+b-f(v,u)]. Since
fis symmetric therefore P(n) is an abelian group and the

lemma is proved.l
When qis odd, then Q(v) = lf (v, v)defines a quadratic
2 i

form on V(2n+1,q). Therefore P(rn) may be written as
P(n)= {[v, -Q(")1lv € V(2n-1, q)}. The multiplication of
elements of P(n) is given by [v, -Q(W)] [u, -Q(w)]= [v +u,
-Q(v+u)]. The action of A(n) on P(n) is as follows:

[v, -Q()] 2= [Aly, -Q(v)] where A is identified

~|100
with the matrix| o 4 o |and u,vare vectors of the (2n-

001
1)-dimensional vector space V (2n-1,g). Now we consider
the orbits of A(n) on P(n). The number of vectors v for
which Q(v)= 0is ¢”*2and A(n) has two orbits on the set of
these vectors, namely the zero vector and the set of non-
zero isotropic vectors with stabilizers isomorphic to
P(n).G(n-1) = A(n) and P(n).A(n-1) respectively. From
the action of A(n) on P(n) we see that for the vectors v,
where Q(v) = a is a fixed non-zero element of GF(q), the
set {[v,-Q(M]Iv e V(2n-1,q))} isan orbitof A(n). If aruns
through the square elements of GF(q), then we produce

ﬂorbits each of size ¢**"+¢*"' with stabilizers isomorphic
2
to P(n).0*(2n-2.q9), and if a runs through the non-square

elements in GF(q) then we obtain g1 orbits each of size
2

g**V-g*! with stabilizers isomorphic to P(n).0~ (2n-2,9).
Here O* represents the two classes of orthogonal groups
in even dimensions. Therefore we see that A(n) on P(n)
has q+1 orbits. We use this information in the following
theorem to find the degrees of the irreducible characters
of A(n).

Theorem 8. Let G(n) = O(2n+1,q), q odd, and A(n)
denote the stabilizer of a non-zero isotropic vector. Then
the degrees of the irreducible characters of A(n) are as
follows: the degrees of the irreducible characters of G(n-
1) = O(2n-1,q); the degrees of the irreducible characters
of A(n-1) multiplied by ¢>*-1; the degrees of the
irreducible characters of 0*(2n-2, q) multiplied by ¢
(g*'+1); and the degrees of the irreducible characters of
0-(2n-2, ¢) multiplied by g*'(q*'-1). Furthermore there

g-1

are =— irreducible characters for each of the two latter

families.

Proof. Since A(n) on P(n) has q+1 orbits, therefore A(n)
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has q+1 orbits on Irr(P(n)). Suppose u is a fixed vector of
V(2n-1,q) and tr is the trace map from GF(q) to GF(p) and
€ is a primitive p* root of unity in C. Then it is easy to see
that the function : P(n) — C defined by %,/ (v, -Q()D=
grfw is a linear character of P(n) and that all the g**'
irreducible characters of P(n) arise in this way as 4 runs in
V(2n-1, q). As before, we can prove that A € G(n-1) fixes
%, if and only if Au = u. Now from the description of the
orbits of A(n) on P(n), the orbits of A(n) on Irr(P(n)) are
as follows: {x,}, {x, | u is a non-zero isotropic vector},

ﬂ orbits of the form {x, 1Q(u) is a fixed non-zero square
2

in GF(q)} and g1 orbits of the form {x, | Q(u) is a fixed
2

non-square in GF(q)}. The inertia factor groups are
isomorphic to the groups G(n-1), A(n-1), 0*(2n-2,q) and
0 ~(2n-2, q) respectively. Now by considering the orbit
sizes and inertia factor groups we obtain the results.l

Corollary 9. For each k, 1 <k < n-1, the group A(n) has

characters of degree (q***-1)...(g?>%*-1). It has also %1-

character degrees as follows: ¢g*'(g™'+¢€) and (¢g***-1)...
(g**-1) g*+'(g™*'+€) where 1< k<n-2 and e=11.

We now consider the orthogonal groups in odd
characteristics and even dimensions. Therefore let V=
V(2n, q) be a 2n-dimensional vector space over GF(@), q
odd with a basis {e,.¢,....,¢,,}. In this case there are two
equivalence classes of symmetnc bilinear forms defined
on V. We denote these forms by f *+ and f - and they may
be givenas: f'(e, €)= &i2n+1-),1<i<j<2n andf(e,
€)= &i, 2n+1-)), for1<i <j<2n,(ij)#(n,n), (n+1, n+1)
andf(e e)=1f(e,.e,)=-a where a is a non-square
field element. The group of 2n x 2n invertible matrices
over GF(q) leaving invariant f * is denoted by G(n) =
0%(2n, @) = 0°(2n, g) where £ = * in this setting but later
on in formulae involving € we assume € = *1. There are
(q"™-€)(q™'+€) non-zero isotropic vectors in V on which
G(n) acts transitively. We let the affine orthogonal group
in this case be the stabilizer of a vector of this type namely
e, and denote this group by A(n). We have [G(n): A(n)]=
(q -€) (g™'+€). As in Lemma 7 we can prove that A(n)is
a semi-direct product of an abelian group of order ¢g***
with a group isomorphic to G(n-1). The group P(n) is
given by P(n)={[v,-Q*v)1lv € V(2n-2,q)} where

0*(v )= Lf*(v, v) is the quadratic form associated with f
2

t The product of elements of P(n) and the action of A(n)
on P(n) is the same as in the case n odd and q odd. Again
we have q+1 orbits of A(n) on P(r) and also on Irr(P(r)).
The inertia factor groups are G(n-1), A(n-1) and g-1
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groups isomorphic to O(2n-3, q). We state the following
theorem for the degrees of the irreducible characters of

A(nm).
Tl;iiv, , 10. Let G(n)=0(2n, q),qodd, and A(n) denote

 the. stabilizer of a non-zero isotropic vector. Then the

degms of the irreducible characters of the group A(n) are
asfollows: the degrees of 0%(2n-2, q), the degrees of A(n-
l)muluplwd by (g*'-€) (¢**+€), the degrees of O(2n-3, q)
multiplied by .g** (¢*'-€). Furthermore there are g-1
characters of the mentioned latter degrees.

Corollary 11. Foreachk, 1<k < n-2, the group A(n) has
characters of degrees (¢*'-€) (g**+6)...(g""-)(q"""'+£),
where & = +1. It has also g-1 character degrees as follows:
g*Hg'-e) and (¢*'-8) (g*+9)...(¢""-8) (g"+'+8) ¢™**
. (q*'-g) where 1 <k<n-3and e=zl.

Fmally we consider the orthogonal groups in
ch&actensnc two. If the dimension of the underlying
space is odd, then the orthogonal group in this case is
lsomerphlc to some symplectic group. Therefore we
assume that V=V(2n,q)is a vector space of dimension 2n
over the field GF(q), q a power of two, with a basis
{e,e;...€,}) The orthogonal groups in thiscase are defined
' wxﬁlrespectto anon-degenerate quadratic form. Let Q be
a quadratic form defined over V. We have Q(u+v) = Q(u)
+Q(v)+f(u, v) wherefis the bilinear form associated with
Q. The form f is alternating and we assume it is non-
degenerate. It is known that in this case there are two
equivalence classes of non-degenerate quadratic forms
defined on V. They are denoted by Q* and the group of
invertible 2nx2n matrices fixing Q* is denoted by G(n)=
- 0%2n,q)=0%2n, g). An isotropic vector in this case isa

vector v such that Q%(v)=0. Itis easy to show that there are ’

 (g™'+£) (g"-€) non-zero isotropic vectors on which G(n)
acts transitively. The stabilizer of such a vector is the
orthogonal affine group in this case and is denoted by
A(it) Wehave[G(r): Afn)]=(¢™' +€)(q"-€). Using similar
techniques as before it can be shown that A(n) is the semi-
direct product of an abelian group of order ¢**? with a
group isomorphic to G(n-1). The group P(n) consists of
* the pairs [v, 0°()], v € V(2n-2, @), where multiplication
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is as follows: [v, Q°(V)] [u, Q%)= [v+u, Q*(v+u)]. The
group A(n) actf on P(n) in the following manner: [v,
Q)= [A1y, Q%(v)].

Therefore A(n) has q+1 orbits on P(n) as well as on
br(P(n)). The orbits are as follows: {0}, {v € V(2n-2, ¢)*
I Q%(v) = 0} and q-1 orbits of the type {v € V(2n-2, @) |
Q%v)is a fixed non-zero field element }, with sizes 1, (¢
%+g) (q~'-€) and g-1 orbits of sizes q%(q™'-€) respectively.
The inertia factor groups are: G(n-1), A(n-1) and g-1
groups isomorphic to O(2n-3,g) respectively. Therefore
in this case we have exactly the same statement as in
Theorem 10 and Corollary 11 for the degrees of the
irreducible characters of the group A(n).
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