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Abstract

An analysis of selected fission fragment angular distributions from helium-ion
induced fission is made using an exact theoretical expression. Theoretical anisotropies
obtained with the transition state model are compared with their corresponding values
deduced from the statistical scission model. The nuclear moment of inertia extracted
from the model calculations are compared with their estimated values from a
microscopic theory, which includes the nuclear pairing interaction [ 1]. Single particle
levels of Nilsson et al. are utilized. Itis found that the value of the statistical parameter,
Ko*(Ko?=Jeff T/h?) is very sensitive to the energy gap parameter, A. The reduction of
energy gap results in an increase in the moment of inertia. The effect of pairing
interaction on the inertia parameters is illustrated and discussed.

Introduction

There is considerable evidence that the statistical
transition model (TSM) provides a good representation of
experimental fission fragment angular distributions at
low spin values and moderate excitation energies. The
fundamental assumption of this model is that the spin
projection, K, on the nuclear symmetry axis remains
unchanged during the fission process. For heavy reaction
systems, where the angular momentum and excitation
energy are large, fission fragment angular distributions
are analyzed with the statistical scission model (SSM).
_Versions of this model have been published by Rossner et
al. 2] and Bond [3]. Although the formal equation in the
two models is of the same structure, variances in the
distributions of angular momentum projections on the
fission direction are established at very different stages of
the fission process in the two models. The properties of
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transition state complex were studied by various authors
{4-6]. Nuclear moments of inertia were extracted from
the measured fission fragment anisotropies, Huizenga et
al. {7]. AsharpdecreaseinJ_/J  with Z*/A atrelatively
low spin has been observed calling for shell and/or pairing
effects [8].

In the present work, we have developed a special

computer code to deduce the statistical parameterKg (K12;=
J_, T/h?), from experimental angular anisotropies using

the exact theoretical expressions. The Kﬁ values have also
been evaluated by employing the microscopic theory of
interacting fermions using the single particle levels of the
Nilsson model. Our microscopic calculations of the inertia
parameters are in satisfactory agreement with experiment,
especially at lower spin values and moderate excitation
energies. In Section 2, we review the basic theoretical
framework. Variances of the spin distribution obtained
from model calculations based on both the transition state
and the statistical scission models are presented in Section
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~ 3.a. In Section 3.b, the dependence of Kz on excitation
energy and nuclear deformation will be presented and the
- resulting inertia parameters, obtained from microscopic

theory, will be compared with their correspondmg ‘

expenmental values.

. Excitation Energies

The excited levels in the transition nucleus are

“described by statistical theory. The K-distributions of

these levels are predicted by Halpern ef al. [9] to be.

~Gaussian

2 .
F(K) < exp (£ -
2Ko
. and the variance of the distributions is
Kg :j off T
2
h

o The effecuve moment of inertia is J = J,J J(Jn + J j_) =
T where.f and J, are nuclear moment of inertia aboutan =
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distribution for a fixed energy E is given by Griffin [12]

W (@< 2 QI+DT 2 {(2I+1)!d (e)f*exp

=0 Kl
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Where the transmission coefficients are written as T,
since [=Iwhen M=0.

Equation .(5) is an exact theoretical expression for
computation of fission fragment angular distribution when
both the target and projectile spins are zero. If the target
and projectile spins are included, an exact expression for
the fission fragment angular distribution is [11, 12]

R
5 Z g @« 1)’I}icm,,,mﬁcm amiosiP)
10 Mjpue 720 jul keghbpmd,
‘ 2 @+ DT
1=0
i ‘ .
Kg; {<2I+i)tdmr<9>?exp< )/z exp <L91 ©

“axis perpendlcu!ar and paraliel to symmetry axisand Tis -

the temperature of the nucleus in the transition state.

Assuming that the fragments separate along thé,
symmetry axis and that K is a good quantum number B

- during the fission process, then the fragment angular -~
. distribution from a state with quantum numbers K andM -
- {projection of total spin I along the space fixed axis) is

- given by [10]

R S PR 2
Wm (G)»—— [+ 1)‘/4n/} d M’K(B)‘
o “The normalized dlm(e) functions are defined by [11]

@
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- The quantities 1,sand;j are the tatgetspin projectile spin

and channel spm, wspecuvely The channel spin j is

 defined by the relation j = I, ® s. The total anguiar
" momentum Lis given by the sum of the channel spin and
orbital angular momentum: I = j @ L, The projection of To

on the space-fixed axis is given by u, whereas the
projection of j (and I) on this axis is M.
The useof Equamms (5) or (6) requires the evaluation

of many dm,xi(e;) functxons and the Clebsch»(}mdan ;

~ coefficients, hence these equations have rarely been used

for data analysis.In the present paper, we have developed
a special computer code to run these more cumbersome

‘theoretical expresswns and thereby deduce the statistical

;Em (sn (82)° ™" (cos (g2)" * M @
T (1-K-X)! M- X)! (X +K-M! X!
, Wﬁére‘thesamxso'&er)(-{) 1,2,... and contains all terms

_in'which no negative value appears in the denominator of
- the sum for any one of the quantities in parentheses.
-If the target and projectile spins are zero and no

variarice K5, Wehave found quite dxfferent values of K as
compared to the va!ues from the approximate expressmn

: [13-15}

2.b. Formalism tﬁ’ the Stat:stiwl Scission Model
Accordmg tothe statistical scission model, the relanve
cross-section, W(B) for fission fragments to beemitted in

' the direction 1\ fmming angle @with the beam axis, when
~ the target projectile spms are zero, is given by Huizenga

‘pamcleemxssmﬁomthelmualcompoundnucieus occurs <

before fission (ie. M = 0), then the overall angular
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et al. {16]
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7).
Here again the distribution of spin projection m (the

projection of total angular momentum 1 along n )is taken

to be a Gaussian with variance Sa, where Sa for spherical
fission fragments is given by either of the following
equations {2]

202 {[262 + (R ThD)] /(R THY} ,

=
Q@I ThD) [2 Jgn+ LR [ IRC]

®

Where o?=Jg Th’=2 MR TH
5

The quantities Ton , T,M and R, are the moment of
inertia, nuclear temperature mass and radius of one of the
symmetric fission fragments. Rc is the distance between
centers of fragments at scission configuration and is equal

toRe =1.225 (A1 + 42" (¢0)* (A1 and A2 are mass
numbers of fission fragments). Fora scission configuration
of two unattached deformed fragments, the variance So?
is given by either of two equations {2]

20 f {207+ (TuRe /WD) /[ (TyRe /h)) +202 - 207} ,

[2J0 T’} @ Ji + R [(URS +2 5, - 2 )]
€))

Where 6%, 6,%,J, and J | are spin cut-off parameters and
moments of inertia of a single fission fragment rotating
about an axis parallel and perpendicular to the symmetry
axis, respectively. The primary fission fragments are
assumed to have spheroidal shapes with the principal one-
half axes of magnitude in terms of their ratio c/a namely
[16]

c=rA"(c/fa)? and a=rA"(c/a)'? (10)
Where A is the mass number of each fission fragment. The
formula (7) is similar to the corresponding equation in the
transition state model. However, as seen from Equations

(8) and (9), the variance S<2> is calculated in a completely
different way. The total intrinsic excitation energy in the
two fission fragments at scission is given by

E=E_+Q-E,-E_-E_ (11)
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Where Q represents the difference in energy between the
entrance channel nuclei and the ground state of the two
fission fragments. E, + E__ is the sum of the kinetic and
deformation energies at the instant of scission and E_ is
the rotational energy of the scission configuration. The
kinetic energy is estimated by use of the expression

2
E, MeV) =0.107 Z— + 22
Al/3

Where Z and A are the charge and mass number of the
composite system. The rotational energy E_ of the system
atscission configuration for spin I and projection m on the
scission axis is

(12)

[a+12) -min’

Emt= 2
2URC +4J

(13)

U is the reduced mass of the fission fragments. The
temperature of each fission fragment was assumed to be
given by
T= [(E/2)/LDP]'2 14)

The variances of the spin distribution can also be
estimated withamicroscopic theory of interacting fermions
using arealistic set of single particle levels. For deformed
fission fragments with axial symmetry, the single particle
states are from the motion of a nucleon in the deformed
average potential. They are characterized by the projection
Q of the angular momentum on the nuclear symmetry
axis.

Employing the microscopic theory with nuclear
pairing, the spin cut-off parameter 6*(E) is defined by
(2,17]

GIP(E) = JIT/M? = %{): & sechz(%ﬂﬁpi) + XCPni sech?

dgE )} (15)
2

Where f§ = 1 (T is the nuclear temperature), Epi is the
T

proton quasi particle energy and E | is the neutron quasi
particle energy. The quasi particle energies E, are related
to the single particle energies €, by E= [(g, - A)* + A*]'2
where A is the chemical potential and A is the ground state
gap parameter. The quantity J Il is the moment of inertia
about an axis parallel to the symmetry axis. The spin cut-
off parameter GIP (E) is determined by the properties of
the intrinsic state. Hence Equation (15) is a definition of
the moment of inertia.
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In so far as the neutron-proton superfluids are
independent, the values of the thermodynamic functions
are the sum of those for neutrons and protons. For example,
the intrinsic excitation energy corresponding to a given
temperature is

E, = Efu + Ein (16)

Since the interaction between the neutron and proton is
neglected, the values of the moment of inertia are the sum
of the proton and neutron moments of inertia.

J=J +1, a7

The temperature dependence of J is investigated by
examining the data on angular distribution of fission
fragments. Such angular distributions depend on the
statistical variance K - discussed in Section 2.a. This
quantity is

Ki=Jog Th = (L —- L)1 T/ (18)
olfn® Ji

The dependence of Kzzx upon excitation energy is therefore
agood test of the persistence of superconducting effectsto

finite excitation energies. The dependence of K versus
the excitation energy for some typical cases of helium-
induced fission reactions has been tested and the results
will be given in the next section.

3.a. Results and Discussion
Several fission reactions are chosen to deduce the
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Figure1. Anisotropy, W(170)/ W(90), of fission fragments for
2(J(He,f) reaction with 42.8 MeV o.-particles. The theoretical
curve is calculated with Equation (5).
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statistical variance, Ks by fitting experimental fission
fragment angular distributions with exact theoretical
expressions which do and do not include the target and
projectile spins. Angular distributions have been studied
for fragments in the fission of '”’Au, 2Bi, **U, U, *U
and 2*U by 42.8 MeV helium-ions. Optical-model
transmission ceefficients are used in all calculations and
the a-particle transmission coefficients, Huizenga and Igo
[18], are kept fixed for the calculations with different
equations. The experimental anisotropy W(170)/W(90)
for U (He, f) reaction with 42.8 MeV is 1.52 taken from
Gindler ez al. [13]. The curve in Figure 1 illustrates the

theoretical dependence of anisotropy of Ksextracted from
Equation (5), which assumes that both the target and
projectile spins are zero. The curve in Figure 2 illustrates-

thetheoretical depéndence of anisotropy on K for B i(He,
f) reaction deduced from Equation (6), which includes the
target and projectile spins. The fission fragment angular

anisotropies together with the variances K%, obtained from
the listed anisotropies using the exact expressions, are
given in Table 1.

Examination of the Kagiven in Table I reveals that our

K3 values are in some cases smaller than their previously
reported values. Forexample, the experimental anisotropy
for ?Bi(He, f) reaction is 2.12. The results of our exact
theoretical calculation with spin of target and projectile
included is 46.5 as compared to its reported value of 56,
which is about 17% too small. This demonstrates the error
introduced by neglecting the target and projectile spins.
The measured fission fragment angular distributions at
42.8MeV helium-induced fission of '’ Auand **Bi, taken
from Chaudhry et al. [19], are fitted using the "best fit"

225 v T v 1 v ' 4 T
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~
-
<

T
i
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Figure 2. Anisotropy, W(170)/ W(90), of fission fragments for
29Bi(He, f) reaction with 42.8 MeV a-particles. The theoretical
curve is calculated with Equation (6).
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Table 1. Anisotropies, K? and S} values determined from the
exact theoretical fit to the data at 42.8 MeV helium ions

Behkami and Nazarzadeh

Target A0 gEs e g2e ghe
WO0)

19Au 247 39 375 331 46.2
9B 2.12 56 465 455 527
) 138 151 151.5 135 150
B4y 142 131 138 133 1354
5y 1.40 149 146 129 152.6
Y 1.52 108 1163 101 111

a) Anisotropy measurement taken from [13]
b) K§ calculated from [13]

c) K3 values obtained from the present work
d) Best fit values of S5 with = 20h

e) Theoretical values of s%

values of K(2; from Table I; the results are displayed in
Figure 3.

Variance S has been evaluated by fitting the listed
experimental fission fragmentangular distributions using
Equation (7) assuming [/ = 20h. Our best fit values are
given in Table L. It is seen that in some cases the deduced

values of S<2> are close to the values of Krz) calculated from
the TSM model.

. 2 .
The variances Sy have also been calculated, assuming
spheroidal fragments at the scission configuration. These

theoretical values of S(z) are computed using Equation (9)
by assuming r,= 1.225 fm,a = A/8 and E_= 10 MeV.

Our theoretical values of S5 for deformed fragments
are considerably smaller than their corresponding
experimental values for uranium reactions. In order to
bring the predicted values into agreement with:the
experimental variances, the level density parameter "a"
would need to be increased from A/8 up to A/20. The
results are shown in the last column of Table 1.

We conclude that the variances K3 produced by the
TSM model for the 42.8 MeV helium-ion reactions give
generally a good agreement relative to the SSM model.
This reestablished the applicability of this model for
systems with well-defined deformation and lower spin
values at moderate energies.

Variances Kj determined from the listed angular
anisotropies at 42.8 MeV helium-ion induced fission are
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W(8) / W(90)

Angle (Degree)

Figure 3. The angular distributions of fragments in the helium-
ioninduced fission of '”Au and ?®Bi. The experimental data are
given by open circles, and the solid curve shows the "best fit"

K3 calculated angular distributions.
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Figure 4. Values K3 as a function of ZYA of the fissioning
nucleus. The calculated variances are labelled according to the
target nucleus:
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Figure 5. Comparison of the experimental values of J_/J .,
determined fiom helium-ion induced reactions with the liquid
drop model. Solid line curve represents the theoretical

nonrotating (LDM) model values of J, vh/Jgﬁ as a function of Z%/
A,

plotted in Figure 4 as a function of Z%/A of the fissioning

nucleus. It is seen from Figure 4 th;it the K5 values tend to
increase as the parameter Z%/A of the compound nucleus
increases. This is related to an increase in J , with Z%/A.

We have converted our "best fit" values of Kb to values
ofJ o 1J , using Equation (2) by utilizing the appropriate
nuclear temperature T. We have estimated the temperature
for first and second chance fission. In Figure 5 we show
results only for the assumption of first chance fission.
Ttis clear from Figure § that thére is a distinct increase
inJ §"/J° with decreasing Z¥/A. Thisis the effect observed

b eff

by Simmons et al. [20}, confirmed by others [21] and

discussed in connection with dependence of K& on the
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Figure 6. Temperature dependence of the neutron and proton
energy gap parameters for #**Pu nucleus
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excitation energy above fission barrier. The proposed
explanation involves pairing energy and/or shell effects
which will be discussed next.

3.b. Inertia Parameters

For determination of fission fragment anisotropies in
the superconducting model, the mostimportant parameter
to be calculated is J  T/h?, This quantity is directly related
to the average of K? over the particle spectrum and is
given by the spin cut-off parameter, o°, (E) = J,T/h’.

The microscopic theory is used to compute ¢*ll(E) by
way of Equation (15). Values of ¢*, (E) are calculated
with the rigid body moment of inertia for shape
corresponding to deformation & = 0.65, although this
assumption leads to an upper limit of ¢, for small spin.

K2 values are calculated as afunction of excitation energies
for the case of helium-induced fission of 2*U nucleus.

The energies and spins of the single particle levels were
calculated with a program and parameters of Nilsson ef al.
[22]. The values of the gap parameters A = 1.23 MeV and
Ap = 1.35 MeV used in the present calculations were
obtained from the newestmass table of G. Audi et al. [23].
Temperature dependence of the gap parameters for “2py
fissioning nucleus is shown in Figure 6.

In Figure 7, the moment of inertia for ?Pu is plotted
as a function of nuclear temperature. Intrinsic excitation
energy (a) and entropy (b) are plotted in Figure 8 as a
function of temperature.

Figure 9 shows experimental values of K3 versus the
excitation energy for 2?Pu together with theoretical
curves calculated from the superconducting model for the
shapes corresponding to §=0.37 and §= 0.65. It is seen
that the agreement between the calculation for the shape
corresponding to & = 0.65 and the experiment is very

100 — ey . .
apy T
A =1.23 MeV, A =1.37 MeV ]
) »
80 .
r 4
- i
e X
40} .
-'--’.--."—.---.'.n.-a--- P
20 -
3
) 1 . 1 N A N !
0.2 04 08 08 10 12

Temperature (MeV)

Figure 7. Temperature dependence of moments of inertia for
2Py nucleus
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