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Abstract

Casimir forces of massive fermionic Dirac fields are calculated for parallel plates
geometry in spatial space with dimension d and imposing bag model boundary
conditions. It is shown that in the range of ma>>1 where m is mass of fields quanta
and a is the separation distance of the plates, it is equal to massive bosonic fields
Casimir force for each degree of freedom. We argue this equality exists for any
massive anyonic field in two-dimensional spatial space. Also the ratio of massless
fermionic field Casimir force to its bosonic correspondent in d-dimensional spatial

space is (1- 2Ld).

Introduction

Casimir effect of vacuum fluctuations has been

extensively investigated in various contexts [1-8]. The

calculation for massive bosonic field between two parallel
and confining plates has been carried out [9-11].

In the range of ma>>1, the corresponding Casimir

md2+l

force is attractive and is equal to 7
(4na)

exq(-2ma) per

degree of freedom, where d stands for the spatial space
dimension. The calculation of this effect has also been
carried out for zero-mass fermonic fields by Ken Johnsen
and others for the first time [12-13]. It turns out that the
contribution of each degree of freedom of zero-mass

fermionic field in Casimir force is % the contribution of

the corresponding photonic field. It is well known in
statistical physics that the pressure due to free fermion
and boson degree of freedom at finite temperature is

related by the same -Z— factor [14]. In the first part of this
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article, we prove that in the range of ma>>1, the
contribution of each degree of freedom of massive
fermionic field in Casimir force is the same as the
corresponding massive bosonic field in any spatial space
dimension.

The second part of the discussion is restricted to two-
dimensional spatial spaces and concludes that this equality
is conserved by any massive anyonic field which exists
only in a two-dimensional spatial space. The third part of
the calculation is confined to massless fields in d-
dimensional spatial spaces and the ratios of these forces
are calculated in this case.

Massive Fermionic Fields
The Hamiltonian for a quantized massive fermionic
field between two parrallel plates in d-dimensional spatial
space is

Tk,
H= (ORE), T [bike., bak., - ik, Bie, ] Ok
4 g; | 2n T T 1 (kky T

6]
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where A = +1 is a spin index, k is quantized momentum
normal to plates; k. is a (d-1)- -dimensional continuous
transverse momentum; and @Ok, —(k + kT m2)”2 and
% =1 is assumed. DRF stands for dimensional

regularization factor [15]. Here the operator

bakk b{kk counts the number of fermions in the mode

(A k, k;) while Gk, Gui, counts the number of
antiparticles in the menuoned mode. Since the
ek, e, Operator appears in the Hamiltonian, the
vacuum state will have a divergent zero-point energy
which gives rise to the Casimir effect. On the two
confining plates, the field is required to satisfy the MIT
boundary conditions [16], leading to

=" withn=135,... @
2a
The expectation value of H in vacuum state is
d:l 1
<OIHIO> = (DRF) 2 T @k, €)
em™!

In a homogeneous and isotropic d-dimensional space we
have [9].

§ £ (K)dek = 20" e gk dk @)
I' (d2)

Since the (d-1)-dimensional plates are homogeneous
and isotropic, (4) may be used to cast (3) into

;oo

(DRE/4) J k82 ok, diy

<0IHIO> = - —

&)

Replacing the integration parameter k. by [(K2+m3t]'2,
(5) becomes

<OHI0>=- (DRF/4) 2 m2)d/2 (@3
240D ra1)2) Ak .
(1+02dt ©)

Now using the integral form of beta function

B(1+41, -s-1-1)= L (140 dt
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where B(q.p)= ———= %)
re+q
(6) will be reduced to
<OIHIO> = - ORE/ATA2) 5 g2,y ®
22 ) £1
2 an
OlEi0>= ORE/ALC42) 5. [(n@n-1) 2] 9
i@y i L 4@ i
Since
5 [(1:(2n ), mz] [(1:(2n 1) mz] )
=l 42 n,.,,

(9) can be arranged in the form

<QHI0>=

OREAI(42) 1 [(1:(211-1»2 '+ mz]“”
W g @2 1/2) 2 0oL 427
11
For determining the infinite series in (11) we compute it
as follows.
Let us consider the theta function v,(x) which is

defined as [17-18]

v,0= exp [-n @ 1_)2x] 12)
WS 2
and define S as
S=[ & x 22 exp(- 12 x) v, /) 3
T

By using the integral form of gamma function, S can be
written as

S=nd2T (9 2:4 [(2_.)3;1 2, (%)2] o (14)
Comparing (14) and (11) gives
<0 |HI 0> = 2 S (DRF/4) (15)

Thus calculating <OIHIO> turns to finding S. Changing
the integration parameter x into y in (13), S becomes

" ay yeory, (L . m2
s=| dvy v (e 1 (16)
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v,(x) and v (x) are related by the relation
v, (a2L>=a«ry'v4 @y)’ arn
y

where v,(x) is

Vi)=Y 1) exp (x n’x) ' (18)

n= -0

Now (16) may be rearranged by using (17) and (18) to

Seaf dy Yo exp (B2 1+ 3 (1 exp (0 )

n=-oo

n#0
19
(m )@*“’2} "dt £ exp(y) [1+ z 1y
nw0
exp (ﬁzf‘ti“i)] 20)

The integral form of gamma function may be used for the
first term

S=a @7 [ gLy
= 2

(1) [ dtt92 exp [- 1+ M)] [73))

n:-e-o

nwd

Then changing t — | anm | t’- (21) can be written as

S=a @242 r gl ),
o4 2

2 -1) Ianml(d"l)ﬂf dt v 4" exp [- lanml (¢ + l)]]

n= -0

n#0

22

The integral form of modified Bessel functions may
be used to simplify (22), we have

X @=L] eptLe+Lic @3)

and with (23) we get
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S=3a (l'l'l )(d+1)/2[ r (_Ql_-__) + Z a l)n K(d"*l)ﬂ (2l anm l)]

s anm I(d+l)/2 4
n#0
249
By applying (24) to (15) we obtain
QVH0>=4 (ﬂ-)“‘*“” e L) + 42 1
Ka+1)2 (21 anm 1) (DRF) 25)

| anm @+

The first term in (25) gives rise to a force independent of
"a" and can be dropped.

400
<0 HI0>= % (mi)“‘*”” zl 1P

Kg+1yz 2lanm ) pRE
ram R g o)

The asympiotic form of K | is

K (z) - %‘_exp (-z) forz>>1 @n
z

In the range ma>>1,(27) may be used in (26) and only the

first term has a significant contribution and the others

can be ignored. Then we have

<0 1HI 0> = - QRO o35 (2ma) 28)
2d+1 ad/z

By using F = - %3— and the approximation ma>>1,
a

Casimir force can be obtained

(DRF) md2+t

T exp (-2ma) (29)

F=-

Since we have four degrees of freedom for fermionic
fields, for finding Casimir force per each degree of
freedom we should divide (29) by (DRF)

mdlz +1
na

m--"_ exp(-2ma) per each degree (30)

This force is attractive and has the exact form of
Casimir force of massive bosonic fields in the range
ma>>1.
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Casimir Force in Two Space

It is well known that planar physical systems in two
space and one time dimensions display a peculiar
phenomena. There exist quantum states that carry angular
momentum which are not quantized in half-integer units
and whose statistics are neither bosonic nor fermionic.
The excitations with fractional statistics are oftenreferred
to as anyons [ 19]. Any non-relativistic system of anyons
may be represented by a system of bosons or fermions
plus an interaction which is characterized by a Chern-
Simon potential. Since the corresponding Lagrangian of
Chem-Simon fieldsis metric independent, its contribution
in energy-stress tensor T*' vanishs. Any quantized
massive field may be considered as an equivalent system
of non-relativistic gas for which the Chern-Simon theory
may be used to described its physical behaviour.

Due to the lack of energy-stress tensor in Chern-
Simon potentials, we can conclude that it does not
contribute in any way to the Casimir force. This can
explain why in two dimensions we get the same result for
bosonic and fermionic massive fields Casimir forces.

Now, as regards the Casimir force of massive anyonic
fields, in the range of ma>>1 the quantized massive
anyonic field may be considered anon-relativistic system
of bosons or fermions, plus a Chern-Simon interaction
term which has no contribution to the Casimir force.
Thus, we can conclude that we arrive at the same result
for any massive anyonic field we have obtained for
bosonic and fermionic massive fieldsin therange ma>>1.

Massless Fermionic Field
Now, first of all we would like to calculate the
Casimir force of massless fermionic field in an arbitrary
spatial space dimension and in this way find the ratio of
fermionic to bosonic massless Casimir force in general
case, which is 7/8 in three dimensions.
Using (19) and putting m = 0 we get

S= aj:dy YR [+ 3 (D exp(mntay)]l (1)

n#*0

Again the first term may be dropped because it gives
rise to a force independent of a. Changing the integration
parameter to t = wn?a’y, (31) gives

S=a§ Qi

— dt (@b
n:—w (ﬂ? nzaz)(d+1)ﬂ

exp (1) (32

By using the integral form of gamma function,(32) may
be rearranged to
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g=2aT (@ 1y2)
(naz)(d"'l)ﬁ

1P
P 63

The infinite series in (31) can be replaced by the following
closed form, let

S=3y

n=1

o (' _ 1 1
~ pd+l (%:indﬂ +e§nnd+l

‘= 1 1 1
%i nd+l + d+ g—; pd+l (34
(a2
Now we use the zeta function which gives
T dr=t@n (35)
and (34) becomes
ey _1 € (@+1)
§= %d i+l + ey (36)
On the other hand { (d+1) may be rearranged as
= + 5@
C((H-l) 2 d+1 + zn“ nd+1 Z nd-o-l 2d+1 (37)
even
So (37) gives
%‘; A= LD (38)

S°can be found by putting (38) in (36), we obtain

S'= (1-51;) L (d+1) (39)

S can be calculated from (33) by using (39) for S

2al ((d+1)2
-—-—«——ll(l-;g-)t;(mn

S=- (naz)(dﬂ)fz

40

(40) and (15) give <O HHI 0 > as

al” (@+1)/2)

@ & I L@ @D @n

<0 HI0>=-
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Casimir force may be obtained by F = - P
2

AT (@+1)2)

F= 2d-l(naz)(d+l)/2

(1- 217> ¢ (d+1) (DRF)

For finding Casimir force per degree of freedom we
should divide (42) by (DRF) and we get
= 4T (@ 1)2

F
(dra2)d+1?

43)

f-massless

a-LHg @y
2

Casimir force of massless bosonic field has been
calculated [6]. It is equal to

1

- 4T (@12
By e = - el £ @D (44)

Divifiing (43) by (44) we get the final result, the ratio of
fermionic to bosonic massless Casimir force inan arbitrary
spatial space with dimension d

Ft. massless =(1_IT)

45
Fb-umsless 2 ( )

In three dimensions, we get the same Z factor as
8

mentioned before and in two dimensions this ratio is 3.
4

Conclusion
We have shown that the Casimir forces of massive
fields have the same form and the ratio of massless

@)
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fermionic to bosonic field Casimir force is (1- _13_). This
2

number now needs only a physical explanation. We
think this work will help us to find a proper relativistic
theory of anyons. It is interesting to note that this ratio
depends on d and is close to one for larger d. This is
surprising as one would expect it to be a pure spin
dependent property and independent of spatial space
parameters.
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