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Abstract
A segmented regression model for the description of microbial growth has been
suggested. The model is able to predict the exponential growth, logistic growth,
logistic growth with a phase of decline, diauxic growth, microbial growth in
synchronous cultures and the oscillatory growth.

Introduction

During the last few decades of this century numerous
mathematical expressions for microbial growth rate have
been proposed and published in the literatures. [1-3]
Some of them are used for better understanding of the
microbial growth rate, and others are used for bioprocess
modelling.

These models are interesting, but generally speaking,
when there are many plateaus and extremes in the response
curve, among the unstructured models, the segmented

" regression models {4] are the most appropriate ones. So
far such models have not been suggested for description
of microbial growth. In this work a segmented regression
model containing exponential terms is proposed which,
with its increased complexity, gives a good description of
microbial growth in.a variety of situations.

The Model

Simple mathematical expressions of growth rate can
be elaborated upon and gradually made more complex. As
they become more complex they come to resemble reality
more, One of these simple expressions is the logistic
equation (Verhulst Equation) which is actually a Riccati
Equation [1] with constant coefficients. To elaborate, the
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coefficients may be assumed to be functions of time.
Integration of a Riccati Equation of the following
form

& -k x-2 exp 4f (1)
dt b1 dt
results in the equation
x=— Kot @
1-xo (o - £)/by

which may be used to describe the microbial growth at
different conditions. Where x, and x are the initial cell
concentration and cellconcentrationat time t respectively.
k and b, are constants and f is an arbitrary function of
time. As t increases, x approaches K(t)= k .b,.exp(k,t)/
(df/dv), so f is a function which determines the pattern of
the growth. £ is the value of this function at time zero.
Choosing a function of the following form for f

£= (e51) ﬁ[——L“ 14ed ] 3

22| 1.4byelt t4ad

and substituting for f from this equation into Equation (1)
results in the general explicit algebraic equation
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which is able to describe the microbial growthinavariety =
~ of the situations as described below. Later in this work it~
will be shown that by function f (Equation (3)) the cell.

- cycle concept is ‘introduced into the modified logistic
equation (Equation (1)). In Equation (4),k, b, and t , (i=
1,23,...,n) are constants. As t approaches infinity, x

tends towards the stationary value, x=b..b,.b,...b.. The =

initial value of x is x, and depending on the values of b,

x from Equation (4) is able to follow different patterns

between its initial and stationary values. As can be seen f
is segmented, i.e. it may be written in the form: f=
f.[.f,...f.. Each segment in f (i.e. f,
adaptable to a specific segment of experimental data.

Results and Discussion

1) When b =00, Equation (4) results in the well-known f '

exponential growth equation
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Figure 1. Growth curve as predicted by Equation (7).
® Experimental data obtairied by author and A. Nimasa in

growing Escherichia coli 026 in a medium containing glucose
andmineral salts. k;=0.78,k,=0.047, b=0.442,t_,=66.46, x =

0.011.
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2)Whenb=t =0, i=23,4,...,n, Equation (4) results
- in the logistic curve.
= ._._X_o;ef’i___ ©6)
1% (1),

The logistic curve is sigmoidal and leads to astationary
- growth x = b,. The shortcoming in logistic equation is its
failure to predict a phase of decline after the stationary
growth.
3)Whenb=0fori>1,andt =0fori>2, Equation (4)
results in the modified loglstlc curve,

X0 Cklt

Q)
" T (1650 [1+6552] ] by

. which is able to predict a phase of decline. This has been
shown in Figure 1. Here t_, is the time at which cell
concentration approaches the value b /2, i.e. half the
stationary growth, x = b, as predicted by the logistic
curve, i.e. Equation (6).

4) When t_=b=0 for i >2, Equation (4) results in'the
equation ;

p L P—— et
1. (1) [1+eRet a2}
by [14b; . eBM)

®

As illustrated in Figure 2 this equation successfully
describes the diauxic batch growth. The eguation is able
to predict the lag time between growth in two substrates
in diauxic growth. In this case the maximum stationary -
growthisx =b.b, andt is the time at which x is almost:
equal to (b +b b,)/Z i.e. half the sum of the stationary
values of the first and second plateaus. As can be seen, b,
is equal to the ratio of the two stationary values. i.e. b2=
b,.b,/b,. In general b, is equal to the ratio of the stationary
values of the two successive (i and i-1) stages (in this case
plateaus). Thisknowledge makes the parameter estimation
easier. (

5)When b=x,k =k, =..=k=k.b=b=...= b=2.t =
@(-1)t-t fori>1.andt =0 (wheret, is the doubling time, -

- and t_is the age of the cell at the time of moculanon)
Equanon (4) results in
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Figure 2. Diauxic growth curve as predicted by Equation (8).
@ Experimental data is for Klebsiella oxyloca from reference
[3]. k=1.67. k= 0.73, b= 042, b= 238, t_= 12.62, x=
0.0038.

which is able to describe the microbial growth in
synchronous cultures. Synchronous cultures in which all
the cells are the same age and state of development are
used for studying the cell cycle.[1]. In Equation (9), t,
represents the length of the life cycle of the cell. In Figure
3, Equation 9 has been used to describe the stepwise
increase in cell number in a synchronous culture of the
yeast Schizosaccharomyces pombe. In Figure 3 the value
of k is equal to 6. In Figure 4 the curve has been drawn for
different values of k. As seen, when k=oo, Equation 9
predicts an ideal synchronous culture, and Equation 9
reduces to,

=Y @ x, . u (ttm) - (10)
i=l
where u(t-t ) is a step unit function [6] and t =(i-1)t, +t_

for i >1 and tm,=0. Equation (10) may be written in the
differential form.

& - 2“: @)™ %o+ 8 (t-tmi) 1D
dt =t

where 8(t-t ;) is the Dirac delta function [6]. t;; may be
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Figure 3. Growth curve in synchronous culture as predicted by
Equation (6).

@Experimental data for the yeast Schizosaccaromyces pombe
from reference [1], page 359. k=6, t =t /2=1.7, t_=(i-1)t -t for
i>l,t_=0.
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Figure 4. Growth curve in synchronous culture as predicted by

Equation (9) for different values of k. Parameters are the same
as in Figure 3. '
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divided into tne durations of the four main phases: G,
S(DNA replication), G,. and M (mitosis) and therefore i 1s
under the influence of the factors that regulate the cell
cycle [7]. Models based on cell cycle concepts have been
constructed to study the effects of the external perturbations
on cell proliferation [8] and tumour growth [9]. The
~modelpresented in this work (with only one parameter, t )
may be used to study the effects of the molecular
components that control the cell cycle progression. When
the inoculum consists of a heterogenous population of the
cells with different age, synchrony is not observed andthe
-growth can be described by the equation.

P ok
x=Y %€
Jreltiirasig

M 101-e9). ]
R

(12)

where Xy is the number of cells that have an age of t,at
time zero in the inoculum. There are p age groups at ume
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Figure §. Oscillatory growth curve as predicted by Equation
4.

® Experimental data for the protozoan Tetrahymenapyriformis
in a mixed culture from reference [1], page 873. k = 0.95, k=
1.7,k=1.96,k =2.49,k=4.8,k =6.1,b,=50.2,b,=0.147, b=
732, b=0.385,b=24,b=0.75,t_=0,t =4.06,t =7t =
833,t =1151,¢t ~12.83.

For i > 6 all of the terms have been cancelled.
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zero in the inoculum. With k= oo this equation reduces to.

=33 0" xwttw) 0D
i=] j

_M"’

where b G-Dt,+ 4 for i>1 and L™ 0

6) Whenb#0, and t 0, by choosing these parameters
properly, Equation (4) may be used to describe the
oscillation in ‘growth of a mixed population of
microorganisms. In Figure 5, Equation (4) has been
adopted to an oscillatory growth. t ., - 1, is equal to the
period of oscillation which may notbe necessarily constant.
Inthe case of oscillatory growth the value of b, is altemnately
less or greater than one. InFigure 5 the valuesof b, b,,and
b, are greater than one and the values of b,, b,, and b, are
less-than one. But it seems that as the time passes, both
series approach unity.

In conclusion, Equation (4) is a general one and by
choosing proper vdlues for b k. and t, (i=1,2,3,...,n) it
can be used to describe the microbial growth in a variety
of the situations. The main feature in Equation (4) is the
appearance of a growth phase duration parameter, t ..
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