THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

M. Amini, H.A. Azarnoosh and A. Bozorgnia

Department of Statistics, Faculty of Mathematics, Ferdowsi University, Mashhad, Islamic Republic of Iran

Abstract

In this paper we study the almost universal convergence of weighted sums \(\sum_{n=1}^{\infty} a_n X_n \) for sequence \(\{X_n, n \geq 1\} \) of negatively dependent (ND) uniformly bounded random variables, where \(a_n, n \geq 1 \) is an array of nonnegative real numbers such that \(\sum_{j=1}^{\infty} a_j^2 = O(k^\beta) \) for every \(\beta > 0 \) and \(E|X_n|F_n = 0, F_n = \sigma(X_1, \ldots, X_n) \) for every \(n > 1 \).

Introduction

In many stochastic models the assumption of independent random variables is not plausible. In fact, increases in some random variables are often related to decreases in other random variables and the assumption of negative dependent is more appropriate than an independent assumption. Lehmann (1966) investigated various concepts of positive and negative dependence in the bivariate case. Strong concepts of bivariate positive negative dependence were introduced by Esary and Proschem (1972). Also Esary, Proschen and Walkup (1967) introduced a concept of association which implied a strong form of positive dependence. Their concept has been very useful in reliability theory and applications. Multivariate generalizations of these concepts of dependence were initiated by Harris (1970) and Brindley and Thompson (1972) and later developed by Ebrahimi and Ghosh (1981), Karlin (1980), Block and Ting (1981), Block, Savits and Shaked (1982). Moreover, Matula (1992) studied the almost sure convergence of sums of ND random variables, and Bozorgnia, Patterson and Taylor (1996) studied limit theorems for dependent random variables. Let \(\{X_n, n \geq 1\} \) be a sequence of ND uniformly bounded random variables where \(a_n, n \geq 1, k \geq 1 \) is an array of nonnegative real numbers such that \(\sum_{i=1}^{\infty} a_i^2 = O(k^\beta) \) for every \(\beta > 0 \) and \(E|X_n|F_n = 0, F_n = \sigma(X_1, \ldots, X_n) \) for every \(n \geq 1 \). Some convergence theorems for \(T_n = \sum_{i=1}^{\infty} a_i X_i \) have been studied by Chow (1966) for the case where \(\{X_n, n \geq 1\} \) is an independent sequence, the case of m-dependent has been discussed by Ouy (1967). Here we study the strong law of large numbers for the weighted sums \(T_n = \sum_{i=1}^{\infty} a_i X_i \) under certain uniformly bounded conditions on the negatively dependent random variables.

Definition

The random variables \(X_1, \ldots, X_n \) are said to be ND if we have

\[
P \left[\cap_{j=1}^{\infty} (X_j \leq x_j) \right] \leq \prod_{j=1}^{\infty} P \left[X_j \leq x_j \right]
\]

and

\[
P \left[\cap_{j=1}^{\infty} (X_j \leq x_j) \right] \leq \prod_{j=1}^{\infty} P \left[X_j \leq x_j \right]
\]

for all \(x_1, \ldots, x_n \in \mathbb{R} \). Conditions (1) and (2) are equivalent.
for \(n=2 \). However, Ebrahimii and Ghosh (1981) show that these definitions do not agree for \(n \geq 3 \). An infinite sequence \(\{X_n, n \geq 1\} \) is said to be ND if every finite subset \(X_1, \ldots, X_n \) is ND. The following example shows that the sum and the absolute value of ND random variables may not be a ND variable.

Example

i) Suppose \(X_1, X_2, X_3 \) are given by a joint probability distribution \(f(0,0,0)=f(1,0,1)=0, f(0,0,1)=f(0,1,0)=0.2, f(0,1,1)=f(1,1,0)=f(1,1,1)=0.1, f(1,0,0)=0.3 \)

a) Then \(X_1, X_2, X_3 \) are ND random variables, Ebrahimii and Ghosh (1981).

b) \(Y=X_1+X_2 \) and \(X_3 \) are not ND random variables.

Because for every \(1 \leq y < 2, 0 \leq x < 1 \) we have

\[
P[Y \leq y, X_2 \leq x] = 5/10 > P[Y \leq y] P[X_2 \leq x] = 48/100
\]

ii) Suppose \(X_1, X_2 \) are random variables with p.d.f.

<table>
<thead>
<tr>
<th>(X_2)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>9/2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1/9</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2/9</td>
<td>1/2</td>
<td>1</td>
</tr>
</tbody>
</table>

Then \(X_1, X_2 \) are ND random variables but \(IX_1 \) and \(IX_2 \) are not, since for every \(0 \leq x < 1 \) and \(0 \leq y < 1 \) we have

\[
P[|X_1| \leq x, |X_2| \leq y] = 1/9 > P[|X_1| \leq x] P[|X_2| \leq y] = 6/81.\]

The following Lemmas are listed for reference in obtaining the main result in the next section. Detailed proofs can be found in the Bozorgnia, Patterson and Taylor (1996).

Lemma 1. Let \(\{X_n, n \geq 1\} \) be a sequence of ND random variables and \(\{f_n, n \geq 1\} \) be a sequence of Borel functions all of which are monotone increasing (or all are monotone decreasing). Then \(\{f_n(X_n), n \geq 1\} \) is a sequence of ND random variables.

Lemma 2. Let \(X_1, \ldots, X_n \) be a finite sequence of ND random variables and \(t_1, \ldots, t_n \) be all nonnegative (or nonpositive) then:

\[
E \left[e^{\sum_{i=1}^{n} t_i X_i} \right] \leq \prod_{i=1}^{n} E e^{t_i X_i}
\]

Lemma 3. Let \(X \) be a random variable with \(E(X)=0 \) and \(|X| \leq c<\infty \) a.e. then for every real number \(t \):

\[
E e^{tX} \leq e^{t^2 c^2} \quad \text{and} \quad E e^{t|X|} \leq 2e^{t^2 c^2}
\]

Proof. For \(c=1 \) Chow (1966). For general \(c \), apply the \(c=1 \) result with \(X \) replaced by \(X/c \).

Results

In this section, we first obtain exponential bounds for probabilities \(P[\max_{1 \leq j \leq m} |T_{j}\| \geq x] \) and \(P[|T_{j}| \geq x] \), then we prove that convergence a.e. and in probability for the sequence \(\{T_{nm}, m \geq 1\} \) are equivalent. Where:

\[
T_n = \sum_{k=1}^{m} a_k X_k, \quad T_m = \sum_{k=1}^{m} a_k X_k
\]

and

\[
A_m = \sum_{j=1}^{m} a_j^2 \quad \text{with} \quad E(X_n | F_{n-1}) = 0 \quad \text{and} \quad F_n = \sigma(X_1, \ldots, X_n)
\]

for every \(n \geq 1 \).

Theorem 1. Let \(\{X_n, n \geq 1\} \) be a sequence of ND random variables such that \(|X_n| \leq c<\infty \) a.e. for \(k \geq 1 \) then for every \(x > 0 \):

\[
P \left[\max_{1 \leq m} |T_{j}\| \leq x \right] \leq 2 \exp \left[-\frac{c^2}{4c^2 A_n} x^2 \right].
\]

Proof. By Lemmas 1, 2 and 3 for every \(h \geq 0 \) we have:

\[
E e^{h |T_{nm}|} \leq E e^{h T_{nm}} + E e^{-h T_{nm}} \leq
\]

\[
\prod_{k=1}^{m} E [e^{h a_k X_k}] + \frac{1}{2} \sum_{k=1}^{m} \sqrt{E e^{h a_k X_k}} \leq 2 \exp \left[\frac{h^2 - c^2}{4c^2 A_n} \right].
\]

Since \(\{T_{nm}, F_n, m \geq 1\} \) is martingale and \(\{T_{nm}, F_n\} \) is submartingale and \(\varphi(t) = e^{\varphi} \) for each \(h \geq 0 \) is increasing and convex function, then by submartingale inequality we have:

\[
P \left[\max_{1 \leq m} |T_{j}\| \geq x \right] = P \left[\max_{1 \leq m} \varphi(|T_{j}|) \geq \varphi(x) \right] \leq
\]

\[
E \left[\varphi(|T_{nm}|) \right] \leq 2 \exp \left[-hx + h^2 c^2 A_n \right].
\]

113
and for $h = \frac{x}{2c^2 A_n}$, we have:

$$P\left[\max_{j \in m} |T_{yj}| \geq x \right] \leq 2 \exp\left[-\frac{x^2}{4c^2 A_n}\right]$$

Lemma 4. Let $\{X_{nk}, n \geq 1\}$ be a sequence of ND random variables with $|X_{nk}| \leq c < \infty$ a.e. for every n. Then for every $\epsilon > 0$ and $h > 0$, we have:

$$E e^{\epsilon T_n} \leq \exp\left[h^2 c^2 A_n\right].$$

and

$$P\left[|T_n| > \epsilon \right] \leq 2 \exp\left[-\frac{\epsilon^2}{4c^2 A_n}\right].$$

Proof. By Fatou's Lemma and Lemmas 1.2 and 3 we have:

$$E e^{\epsilon T_n} \leq \exp\left[h^2 c^2 A_n\right].$$

Now following the proof of Theorem 1 we have:

$$P\left[|T_n| > \epsilon \right] \leq 2 \exp\left[-\frac{\epsilon^2}{4c^2 A_n}\right]\Box$$

Theorem 2. Under assumptions of Theorem 1

i) If $\{T_{mj}, m \geq 1\}$ converges in probability for every n then it converges a.e.

ii) $T_n = \sum_{k=1}^{n} a_{nk} X_k$ converges a.e. for each n.

Proof. i) Let $T_{mj} \to l_m$ in probability for every n then there exists a subsequence $\{m_k, k \geq 1\}$ such that $T_{mj} \to l_m$ a.e.,

We define:

$$S_{nk} = \max_{m_k < m \leq m_{k+1}} |T_{nm} - T_{nm_k}|$$

by Theorem 1 we have:

$$P\left[S_{nk} > \epsilon \right] \leq 2 \exp\left[-\frac{\epsilon^2}{4c^2 \sum_{m_k+1}^{n} a_{nk}^2}\right].$$

Hence, by Borel Cantelli's Lemma $S_{nk} \to 0$ a.e. $k \to \infty$.

Thus

$$|T_{mn} - l_n| \leq S_{nk} + |T_{m_k} - l_n| \to 0. \quad a.e.$$

The sequences on the right side converge to zero and the proof is complete.

ii) For every $N > m$ by Lemma 4 and part (i) we have:

$$P\left[|T_{nN} - T_{mN}| > \epsilon \right] \leq 2 \exp\left[-\frac{\epsilon^2}{4c^2 \sum_{m+1}^{N} \epsilon_{2j}}\right].$$

If $m \to \infty$, the left hand side of the above inequality tends to zero, hence T_{mn} converges in probability by Cauchy criterion. Now part (i) shows that T_n converges a.e.

Theorem 3. Let $\{X_{nk}, k \geq 1\}$ be an array of rowwise ND random variables with $\sup_n |X_{nk}| \leq c < \infty$ for every n and $E[X_{mn}|F_{m-1}] = 0, m \geq 1$, where $F_m = \sigma(X_1, \ldots, X_m)$. Then

i) $T_n = \sum_{k=1}^{n} a_{nk} X_{nk}$ converges a.e. for each n.

ii) If $\sum_{n=1}^{\infty} \exp\left[-\frac{\epsilon^2}{4c^2 A_n}\right] < \infty$ for every $\epsilon > 0$ then:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_{nk} X_{nk} = 0. \quad a.e.$$a.e.

Proof. (i) follows by Theorem 1 and 2.

ii) By Lemma 4 we have:

$$\sum_{n=1}^{\infty} P\left[\sum_{k=1}^{n} a_{nk} X_{nk} \geq \epsilon\right] \leq 2 \sum_{n=1}^{\infty} \exp\left[-\frac{\epsilon^2}{4c^2 A_n}\right] < \infty \Box$$

Theorem 4. Let $\{X_{nk}, n \geq 1\}$ be a sequence of ND random variables with $|X_{nk}| \leq c < \infty a.e.$ Then

i) If $\lim_{n \to \infty} \sum_{k=1}^{n} a_{nk}^2 = I$, $(0 < I < \infty)$. Then for every $\beta > 0$

$$\lim_{n \to \infty} n^{\beta} \sum_{k=1}^{n} a_{nk} X_k = 0. \quad a.e. \quad(3)$$

ii) If $0 < a_{nk} \leq B_n, k \leq n$ for some $0 < B < \infty$ and $\beta > 1/2$. Then

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_{nk} X_k = 0. \quad a.e. \quad(4)$$

Proof. By Lemma 4 for every $\epsilon > 0$ we have:

$$\sum_{n=1}^{\infty} P\left[\sum_{k=1}^{n} a_{nk} X_{nk} \geq \epsilon\right] \leq 2 \sum_{n=1}^{\infty} \exp\left[-\frac{\epsilon^2}{4c^2 \sum_{k=1}^{n} \epsilon_{2j}}\right] < \infty$$

and
\[
\sum_{n=1}^{\infty} P \left[\left| \sum_{k=1}^{n} a_k X_k \right| > \varepsilon \right] \leq \sum_{n=1}^{\infty} 2e^{-\frac{\varepsilon^2}{4c^2\sum_{k=1}^{n} a_k^2}} \leq \sum_{n=1}^{\infty} 2e^{-\frac{\varepsilon^2n^2B^2}{4c^2B^2}} \leq \infty.
\]

Now (3) and (4) are true by Borel Cantelli’s Lemma. □

Corollary 2. Let \(\{X_n, n \geq 1\} \) be a sequence of ND random variables with \(|X_n| \leq c < \infty \) a.e. for each \(n \). Then

i) If \(\sum_{k=1}^{n} a_k \exp \left[-\frac{\varepsilon^2}{4c^2A_n} \right] < \infty \) for every \(\varepsilon > 0 \) or \(A_n = 0 \left(\ln n \right) \), then:

\[
\lim_{n \to \infty} \sum_{k=1}^{n} a_k X_k = 0. \text{ a.e. (5)}
\]

ii) If \(S_n = \sum_{k=1}^{n} X_k \), then for some \(\alpha > 0 \)

\[
\lim_{n \to \infty} n^{\alpha/2} (n^{-(1+\alpha/2)} (n)S_n = 0 \text{ a.e. (6)}
\]

iii) If \(\sum_{k=1}^{n} a_k = O \left(n^{-\delta} \right) \) for some \(\alpha > 0 \) then:

\[
\lim_{n \to \infty} \sum_{k=1}^{n} a_k X_k = 0. \text{ a.e. (7)}
\]

Proof. By Lemma 4 and part (ii) of Theorem 3 we obtain (5) and (7).

To prove (ii) see Chow (1966). □

For uniformly bounded sequence of ND random variables we have the following example.

Example. Let \(\{X_n, n \geq 1\} \) be a sequence of ND random variables with \(P[X_n = 1] = 1 - P[X_n = -1] \) for \(n \geq 1 \). Then for some \(\beta > (1/2) \)

\[
\lim_{n \to \infty} \frac{1}{n^\beta} \sum_{k=1}^{n} X_k = 0. \text{ a.e.} □
\]

Theorem 5. Let \(\{X_n, n \geq 1\} \) and \(\{U_n, n \geq 1\} \) be two independent sequences and \(\{X_n, n \geq 1\} \) be a sequence of ND random variables with \(|X_n| \leq c \) a.e., \(E[X_k F_n] = 0 \) for every \(n \geq 1 \) and \(\{U_n, n \geq 1\} \) is a sequence of independent random variables. Let \(a_n \) be an array of non-negative real numbers such that \(\sum_{k=1}^{n} a_k^2 = O \left(k^\beta \right) \) for every \(\beta > 0 \).

Then \(\sum_{k=1}^{n} a_k X_k f(U_k) \) converges a.e., when \(f(x) \) is a nonnegative, monotone function and bounded by \(M \).

Proof. Let \(Y = X f(U_k) \), we know that by Theorem 1 in Lehmann (1966) if \(X \) and \(Y \) are ND and \(U \) and \(V \) are independent random variables and independent of \(X \) and \(Y \) then for every measurable, nondecreasing functions \(h \) and \(g \), \(h(X, U) \) and \(g(Y, V) \) are ND random variables. Thus \(\{Y_n, n \geq 1\} \) is a sequence of ND random variables and we have:

\[
E \exp[hY_n] = E[E[\exp[hX f(U_k)] | |U_k|] \leq E \exp[h2c2M^2] = \exp[h^2c^2M^2].
\]

Thus by Lemma 4 for \(\varepsilon > 0 \)

\[
P \left[\left| \sum_{k=1}^{n} a_k X_k f(U_k) \right| > \varepsilon \right] \leq 2e^{-\frac{\varepsilon^2}{4M^2}}
\]

hence Theorem 2 completes the proof. □

Conclusion

Let \(\{X_n, n \geq 1\} \) be a sequence of independent uniformly bounded random variables, then the assumption \(E[X_k F_n] = 0 \) can be replaced by \(E[X_k] = 0 \) and all the above results will be true in this case.

References

