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Abstract
The dynamical behavior of a map on the unit interval has been the subject of
much contemporary research. In this paper, we will consider the relation be-

tween the continuity of the map @, and w, for some positive integer k, where f

1s a continuous map from the unit interval to itself, and

W, 1s a function which

takes any element of the unit interval to the set of all subsequential limits of the
orbit of x under f. Also, it is shown that for any £, the continuity of ®, implies

the equicontinuity of the iterates { f”}.

Introduction

Suppose we are studying a social or physical sys-

tem on which we make measurements at regular inter-
vals. For example, suppose we are measuring the
population of a simple species each year. Suppose that
the population changes at a rate that is directly propor-
tional to the population at the given time. Let P (¢)
denote the population at time ¢, then we have:

dP ) p.
dt
With the assumption of P, = P(0) the solution to

this differential equation is P (t)= P,e*. Note that in
this extremely simple situation, we did not take into
account the obvious factors such as immigration,
deathrate, overcrowding, etc. Let P denote the popu-
lation after n generation, and use the most highly sim-
plified method, that is, the population in the n + 1
generation is directly proportional to the population of
the n” generation with the constant of proportionality
A. Hence,
Pn+l = an'

Letf (x) = Ax. If x= P, then f (x) = PL.f(fx)=r,,
F(f(f(x))) = P,, and so on. Experience shows these
models are highly idealized. Therefore, to get a better
retlection of reality we incorporate an additional con-
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straint or parameter. That is, we assume there is some
[imiting value P for the population. A reasonable
model would then be a generalized logistic equation

P.. =AP (1-P_[P).

The dynamical behavior of this equation and even
its more simplified version f(x) = Ax(1-x), which
again 1s known as the logistic equation, have been the
subject of much contemporary research, and lead to
one of the most complicated dynamical systems (for
more details see 51, [4] and [9]), namely, the orbits of
relatively close points may be far apart. Indeed, there
1s a set of points § (countable or even having a posi-
tive measure [10]) such that forany x, y € §, x # Y,

imsup| £ () -£(3)|>0.
iimint| /() -£ ()] =0.

In other words f is chaotic in the sense of [6] (see also
[11], [12] and [1]). |

The datailed dynamical behavior of function f(x) =
Ax (1-x) for different A can be found in [5]. Indeed, it
1s proved that for A =4, f is chaotic on the entire inter-
val [0, 1]. For behavior of non-periodic flows and in-
finite limit set of iterated maps on an interval one may
see [ 7] and [8].

Letf: I — I be a continuous function where I is the
unit interval. For x €/ we define the orbit of x to be
the set of points x, f (x), f %(x),..., and we show this
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set by 0(x), where f"*l= f(f" (x)) for n =1, 2,.... The
attractor set of x under f is defined to be the set of all
subsequential limits of 0(x), and we denote this set by
w(x, ). In the next section, we will consider the be-
havior of the map which takes an element x € [ 1O

w(x, ). This map is denoted by o Also, we will find
conditions under which continuity of this map and the
map @, for an integer k is related to the
equicontinuity of the family of iterates {f"}.

Regularity
The following lemma will connect the concepts of
continuity of W, and W In the following f: I — [ 18

assumed to be a continuous function.
Lemma (2,1). Let k£ be any positive integer, then

k-1
0(x.f) = Ui 0(F.f).

Proof. For x € w(x,f), choose A= {n, n,,...}, such
that {f i(x)} converges to x,. For 0<j <k, define Aj =

{me A: there existsan/ eN such that m =k{ + j}. That

k- |
is, we partition A, and hence A = U;=0Aj. Suppose for’

some 0 £ j, < k, AjO is infinite. Enumerate A jo and

jO

suppose that Aj={m] “.ieN}, then { fm’} will con-
verge to x,. Hence € @ ° (), f°). The rest is clear.

Let W denote the set of all nonempty compact sub-
sets of 1. For A, B € W, we define p(A, B) to be equal
the distance between these sets. That is p(A, B)=dist
(A, B). Then (W, p) is a compact metric space.

Proposition (2, 2). If for some Kk, o be continu-
ous, then @, is continuous.

Prootf. (gbserve that by lemma (2, 1), we have,

D (@O, W(BFNEP @), 0¥ .f)

In [3], Bruckner and Hu showed that on a compact
metric space (X, p), if f is a surjective map on X,
whose sequence of iterates {f } is equicontinuous,
then f is a homeomorphism. In particular if X 1s a
closed interval, then fZ is identity on X.

The connection of equicontinuity of {f”}and I'-
compactness of f 1s described in [2]. We state the fol-
lowing definition and proposition for later use.

Definition (2, 3). f: I — [ is said to be I'-compact
if every sequence of iterates {f”} has a subsequence
which is uniformly convergent on compact subsets of /.

On the compact set / = [0, 1], the criterion for I -
compactness of a map f have been seen ([2]) to be
dependent only on the connectedness of the fixed
point set of the function . For proof of the following
proposition see [2].
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Proposition (2, 4). f : I — [ is I'-compact if and
only if the sequence {f "} 18 equicontinuous.
Proposition (2, 5). Let f: [ — I be given, and F,

be the set of fixed points of £2. Then F, = Mao /() if
and only if {f"} is equicontinuous.

Proof. First suppose Fz-:m:ilf"(l). Then F, 18
connected. Hence f is T-compact. Thus, by proposition

(2, 4) the sequence of iterates {f"} IS equicontinuous.
Conversely, suppose {f} is equicontinuous, then fis a

homeomorphism on the interval M= f (), and
hence f2 is identity on this interval. Therefore

F2 = r-\m=1f’1 (1)

Theorem (2, 6). The family of iterates {f*} 18
equicontinuous if and only if there exists a positive
integer k such that O is continuous.

Remark. Equicontinuity of {f”} implies the conti-
nuity of oM for any k.

 Proof. Let {f"} be equicontinuous. It 1s clear that
for ke N, the family of iterates () s
equicontinuous. Hence, for the given positive €, there
exists a positive &, such that Ix - y <& implies | f*" (x)

- Al < i for all n. Suppose x, be a given element

of @ (x, f ). Then there exists a sequence {n;} such
that I (x) - Xl < il, for all i. Thus, if Ix -yl < 0, then

£ () - Xol < % Therefore,

Pt} 0.f ) <E/2.

Likewise for any y, in @(y, f*) we will have
P iy} w0 f N <E/l2.

for all x with Ix - yl < 8. Thus, |x - yl < 6 implies
p@Gf) 00 ) <e

Suppose there exists k € N such that o, is continu-
ous. Thus, by proposition (2,2) o is continuous. With-

out loss of generality we may assume that My i) is
a non-degenerate closed interval, say [a, b]. Let F, be
the set of fixed points of the function f ¢ for i=1,2,....
Suppose there exist two different points o, p € F such
that (o, B) M F, = ¢. Without loss of generality, we
may assume that f(x) > x on (a, ). Define I, = {x €
(o, B): f (x) = B}. If I, # ¢, we choose an element x, €
I, and define [, = (x €(a, B): f(x) = x }. Next pick up
an element x, €/,, and so on. By induction, we will
have a sequence (x_ ) such that f "(x,) = f for
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n=1,2,..., and (x ) is a decreasing sequence converg-
ing to a. Thus, by continuity of w,, a= . If I, = ¢,
then for any x €(a, B), w(x, f) = {B}. which again by
continuity of ® , We must have o= fB. Therefore, F | is
a connected set.

Now suppose {f"} is not equicontinuous, then by
proposition (2,5) there exists an x €[a, b] such that
f2(x) # x. Since F | is connected and f([a, b]) = [a, b],

there must be at least two different points y, 0 € |a, b]

such that F, M (7, 0) = ¢. Hence, there exists a se-
quence {x_} converging to ysuch that (x ,f?) = {8}.

But continuity of o, implies {y, f () }= {0, f (0)}.

Thus, Y= f (8), § = f(¥). So f % has a fixed point in (7,
d), which is a contradiction.

As an application of theorem (2,6) in the following
we shall see an “inverse™ version of proposttion (2,2).

Corollary (2,7). It o is continuous, then Dy 1S
continuous for any positive integer k.
Proof. The continuity of o implies the

equicontinuity of {f ?}. Thus, for any k, {f *"} is
equicontinuous, hence by theorem (2,6) and proposi-
tion (2.5) o IS continuous.
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