Short Communication

Synthesis of Isoxazoles and Cyanopyridines Bearing Benzo(b)thiophene Nucleus as Potential Antitubercular and Antimicrobial Agents

V.V. Kachhadia, M.R. Patel, and H.S. Joshi*

Department of Chemistry, Saurashtra University, Rajkot-360 005, India

Abstract

Isoxazole (2a-l) and cyanopyridine (3a-l) derivatives have been prepared by condensing chalcones (1a-l) with hydroxylamine hydrochloride and malononitrile respectively. While compounds 1a-l have been synthesized by the reaction of p-(3'-chloro-2'-benzo(b)thiophenoylamino)-acetophenone with different aldehydes. All the compounds were screened for their antitubercular and antimicrobial activities. The structures of newly synthesized compounds were established on the basis of elemental analyses, IR, ¹H NMR and Mass spectral data.

Keywords: Isoxazole; Cyanopyridine; Chalcone; Antitubercular activity; Antimicrobial activity

Introduction

Isoxazole derivatives constitute a unique class of nitrogen and oxygen containing five member heterocycles while cyanopyridine constitutes a six heterocycles. During member the past years considerable evidence has accumulated to demonstrate the importance of isoxazole and cyanopyridine derivatives. They are associated with wide spectrum of biological activities such as antiviral [1], anthelmintics [2], anti-inflammatory [3], anticonvulsant [4] and insecticidal [5] activity etc. Hence, it appeared of to prepare some new isoxazole interest and cyanopyridine derivatives.

The starting compounds 1-[p-(3'-chloro-2'benzo(b)thiophenoylamino)-phenyl]-3-aryl-2-propen-1ones (**1a-l**) were synthesized [6] by the reaction of p-(3'-chloro-2'-benzo(b)thiophenoylamino)-acetophenone with different aldehydes. Compounds **1a-1** on cyclization [7] with hydroxylamine hydrochloride in presence of sodium acetate furnished 1-[p-(3'-chloro-2'-benzo(b)thiophenoylamino)-phenyl]-5-aryl-isoxazoles (**2a-1**) while cyclo condensation [8] of compounds 1a-1 with malononitrile in presence of ammonium acetate furnished 2-amino-3-cyano-4-p-methoxyphenyl-6-[benzo(b)thiophenoyl amino)-phenyl]-pyridine.

Elemental and spectral analyses supported the constitution of all products. The product was screened for their antitubercular and antimicrobial activities.

Results and Discussion

Antitubercular Activity

The antitubercular evaluation of the compounds was carried out at Tuberculosis and Antimicrobial

^{*} E-mail: drhsjoshi@yahoo.com

Reaction Scheme

Acquisition Co-ordinating Facility (TAACF) USA. Antitubercular activity was evaluated at 6.25 μ g/ml concentration against *Mycobacterium tuberculosis* $H_{37}Rv$ in BACTEC 12B medium using the ALAMAR radiometric system. The antimycobacterial activity data were compared with standard drug Rifampin at 0.25 μ g/ml concentration which showed 98% inhibition.

From the result it has been found that 1g, 1i, 2d, 2g, 2i, 3c, 3d, and 3i compounds showed activity against *Mycobacterium tuberculosis* $H_{37}Rv$ (Table 1).

Antimicrobial Activity

Antimicrobial activity was assayed by using the cupplate agar diffusion method against bacteria *Escheriachia coli, Proteus vulgaris, Bacillus megaterium, Staphylococcus aureus* and fungus *Aspergillus niger* at 40 µg/ml concentration using amoxycillin, ampicillin, ciprofloxacin, erythromycin and griseofulvin as standards.

From the result it is found that the compounds 1d, 1f, 2e, 3c, 3e were highly active against *E. coli*, compounds 1a, 1d, 2d, 2j, 3k were highly active against *P. vulgaries*, and compounds 3d, 3j were highly active against *B. mega* in addition all the compounds showed activity against *S. aureus* and *A. niger* (Table 1).

Experimental

Thin layer chromatography was used for reaction follow up and purity of the synthesized compounds. The melting points were determined in open capillary tubes and are uncorrected. IR spectra (KBr) were recorded on a Shimadzu FTIR-8400 instrument, ¹H NMR spectra on a Bruker AC-300 MHz FT NMR spectrometer using TMS as an internal standard and mass spectra on a Jeol D-300 spectrometer. All the compounds gave satisfactory elemental analyses.

Synthesis of 1[p-(3'-chloro-2'benzo(b)thiophenoylamino)-phenyl]-3-(p-methoxy phenyl)-2-propen-1-ones (1f)

An ethanolic solution of p-(3'-chloro-2'benzo(b)thiophenoylamino)-acetophenone (3.30 g, 0.01 mol) and p-methoxy benzaldehydes(1.35 g, 0.01 mol) in presence of catalytic amount of 40% KOH was stirred for 24 h at room temperature. It was then poured over crushed ice and the product formed was crystallized from ethanol. *If* (78%), m.p. 158°C, $C_{25}H_{18}CINO_3S$ Found: C, 67.11, H, 3.57, N, 3.12; requires: C, 67.09, H, 3.54, N, 3.13%. **v**_{max} 3055(CH=CH, aromatic), 2958 (CH₃ asym.), 1659 (C=O), 730 (C-S-C), 545 (C-Cl)

Compound	% Inhibition	Zones of inhibition in mm						
-	antitubercular	Antibacterial activity		Antifungal activity				
	activity	E. coli	P. vulgaries	B. mega	S. aureus	A. niger		
1a	00	16	21	15	23	18		
1b	19	14	15	19	17	17		
1c	00	17	19	18	28	14		
1d	00	22	20	16	23	21		
1e	23	20	10	06	21	18		
1f	47	21	18	12	27	15		
1g	74	11	16	13	19	09		
1h	56	13	14	15	19	22		
1i	97	14	15	18	18	14		
1j	51	08	12	13	28	16		
1k	39	14	19	14	19	14		
11	23	17	16	18	24	23		
2a	08	15	17	16	28	14		
2b	20	14	14	25	26	26		
2c	23	17	13	13	27	21		
2d	69	19	23	14	22	18		
2e	05	21	20	15	24	08		
2f	10	11	19	16	26	12		
2g	70	16	18	19	24	18		
2h	55	08	24	18	21	16		
2i	69	21	20	23	20	24		
2j	43	07	22	15	19	14		
2k	11	12	13	19	23	18		
21	43	06	17	18	25	20		
3a	-	16	12	21	20	23		
3b	-	13	19	18	23	15		
3c	87	21	16	17	23	17		
3d	75	10	18	22	27	21		
3e	-	21	14	13	17	15		
3f	54	19	12	17	17	18		
3g	-	16	13	21	20	14		
3h	-	18	15	17	20	21		
3i	61	03	19	13	31	20		
3i	-	09	18	22	24	16		
3k	-	15	21	16	25	13		
31	-	03	14	19	30	18		
Ampcillin	-	16	15	15	18	00		
Amoxycillin	-	17	25	16	22	00		
Ciprofloxacin	-	2.0	28	15	28	00		
Erythromycin	-	25	26	20	-0	00		
Griseofulvin	-	00	00	_0 00	00	22		

Table 1. Antitubercular and antimicrobial screening results of compounds 1a-l, 2a-l, and 3a-l

Vol. 15 No. 1 Winter 2004

Compound	R	M.F.	m.p. (°C)	Yield%	% of Ni	trogen
					Calculated	Found
1a	C ₆ H ₅ -	C24H16CINO2S	224	65	3.35	3.32
1b	$3-Br-C_6H_4-$	C24H15BrClNO2S	152	63	2.82	2.79
1c	$2-Cl-C_6H_4-$	$C_{24}H_{15}Cl_2NO_2S$	149	70	3.09	3.07
1d	$3-Cl-C_6H_4-$	$C_{24}H_{15}Cl_2NO_2S$	158	68	3.09	3.06
1e	4-N(CH ₃) ₂ -C ₆ H ₄ -	$C_{26}H_{21}ClN_2O_2S$	182	67	6.08	6.05
1f	4-OCH ₃ -C ₆ H ₄ -	C ₂₅ H ₁₈ ClNO ₃ S	158	68	3.12	3.13
1g	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	C26H20ClNO4S	169	72	2.93	2.94
1h	3,4,5-(OCH ₃) ₃ -C ₆ H ₂ -	C ₂₇ H ₂₂ ClNO ₅ S	174	58	2.75	2.73
1i	$4-SCH_3-C_6H_4-$	C ₂₅ H ₁₈ ClNO ₂ S ₂	128	61	3.02	3.01
1j	2-NO ₂ -C ₆ H ₄ -	$C_{24}H_{15}ClN_2O_4S$	176	64	6.05	6.02
1k	4-NO ₂ -C ₆ H ₄ -	$C_{24}H_{15}ClN_2O_4S$	171	72	6.05	6.03
11	4-OC ₆ H ₅ -C ₆ H ₄ -	C ₃₀ H ₂₀ ClNO ₃ S	178	71	2.74	2.71
2a	C ₆ H ₅ -	$C_{24}H_{15}ClN_2O_2S$	228	65	6.51	6.48
2b	$3-Br-C_6H_4-$	C24H14BrClN2O2S	160	63	5.51	5.48
2c	$2-Cl-C_6H_4-$	$C_{24}H_{14}Cl_2N_2O_2S$	108	70	6.03	6.01
2d	$3-Cl-C_6H_4-$	$C_{24}H_{14}Cl_2N_2O_2S$	126	68	6.03	6.02
2e	4-N(CH ₃) ₂ -C ₆ H ₄ -	C26H20ClN3O2S	193	67	8.88	8.85
2f	4-OCH ₃ -C ₆ H ₄ -	C25H17ClN2O3S	180	68	6.09	6.05
2g	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	$C_{26}H_{19}ClN_2O_4S$	171	72	5.71	5.68
2h	3,4,5-(OCH ₃) ₃ -C ₆ H ₂ -	C27H21ClN2O5S	179	58	5.38	5.38
2i	$4-SCH_3-C_6H_4-$	$C_{25}H_{17}ClN_2O_2S_2$	122	61	5.88	5.85
2j	2-NO ₂ -C ₆ H ₄ -	$C_{24}H_{14}ClN_3O_4S$	156d	64	8.84	8.81
2k	4-NO ₂ -C ₆ H ₄ -	$C_{24}H_{14}ClN_3O_4S$	220	72	8.84	8.82
21	4-OC ₆ H ₅ -C ₆ H ₄ -	$C_{30}H_{19}ClN_2O_3S$	116d	71	5.36	5.38
3a	C ₆ H ₅ -	C ₂₇ H ₁₇ ClN ₄ OS	168	68	11.65	11.61
3b	$3-Br-C_6H_4-$	C27H16BrClN4OS	126	73	11.46	11.45
3c	$2-Cl-C_6H_4-$	$C_{27}H_{16}Cl_2N_4OS$	108	61	10.85	10.81
3d	$3-Cl-C_6H_4-$	$C_{27}H_{16}Cl_2N_4OS$	150	65	10.85	10.79
3e	4-N(CH ₃) ₂ -C ₆ H ₄ -	C29H22ClN5OS	180	70	13.37	13.31
3f	4-OCH ₃ -C ₆ H ₄ -	$C_{28}H_{19}ClN_4O_2S$	160	72	10.96	10.92
3g	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	$C_{29}H_{21}ClN_4O_3S$	92	63	10.36	10.28
3h	3,4,5-(OCH ₃) ₃ -C ₆ H ₂ -	$C_{30}H_{23}ClN_4O_4S$	96	61	9.81	9.75
3i	$4-SCH_3-C_6H_4-$	C ₂₈ H ₁₉ ClN ₄ OS ₂	124	68	10.63	10.61
3ј	2-NO ₂ -C ₆ H ₄ -	$C_{27}H_{16}ClN_5O_3S$	144	71	13.32	13.29
3k	4-NO ₂ -C ₆ H ₄ -	$C_{27}H_{16}ClN_5O_3S$	160	69	13.32	13.26
31	4-OC ₆ H ₅ -C ₆ H ₄ -	$C_{33}H_{21}ClN_4O_2S$	91	64	9.77	9.77

Table 2. Physical and analytical data of compounds 1a-l, 2a-l, and 3a-l

cm⁻¹. δ 3.83(3H, s, OCH₃), 7.04(1H, dd, CH=CH), 8.19(1H, dd, CH=CH), 7.02-8.04 (12H, m, ArH); MS=m/z (448, M⁺)

Similarly, other compounds were prepared. The physical data are recorded in Table 2.

Synthesis of 1-[p-(3'-chloro-2'-benzo(b)thiophenoyl amino)-phenyl]-5-aryl-isoxazoles (2f)

Compound *If* (4.47 g, 0.01 mol) in ethanol and anhydrous sodium acetate (0.81 g, 0.01 mol) dissolved in minimum amount of acetic acid was added to a solution of hydroxylamine hydrochloride. Then the reaction mixture was refluxed on oil-bath for 7-8 h. The product was isolated and crystallized from ethanol. *2f* (69%), m.p. 180°C, Anal. Calcd for C₂₅H₁₇ClN₂O₃S Found: C, 65.21, H, 3.69, N, 6.09 %. requires: C, 65.19, H,3.64, N, 6.05 %. **v**_{max} 1461 (C=N, isoxazole ring), 837 (N-O, isoxazole ring), 755 (C-Cl) cm⁻¹. δ 3.84 (3H, s, OCH₃), 7.58-8.11 (12H, m, ArH); MS=m/z (460, M⁺);

Similarly, other compounds were prepared. The physical data are recorded in Table 2.

Synthesis of 2-amino-3-cyano-4-p-methoxyphenyl-6-[benzo(b)thiophenoyl amino)-phenyl]- pyridine (3f)

A mixture of 1-[p-(3-Chlorobenzo(b)thiophenoyl amino)-phenyl]-3-p-methoxy phenyl-2-propen-1-one (4.48 g, 0.01 mol), malononitrile (0.66 g, 0.01 mol) in presence of ammonium acetate (6.61 g, 0.08 mol) dissolved in ethanol (20 ml), was heated under reflux for 12 h. The products was isolated and recrystallized from ethanol. **3***f* (72%), m.p. 160 Anal. Calcd. for $C_{28}H_{19}C_1N_4O_2S$; Requires:C, 67.42; H, 3.53; N, 11.55%;

Found: C, 67.37; H, 3.51; N, 11.51%. **v**_{max} 2204 (CN), 1578 (C=N, pyridine ring), 754 (C-Cl)cm⁻¹. δ 3.84(3H, s, OCH₃), 7.56-8.06 (13H, m, ArH); MS=m/z (510, M⁺);

Similarly, other compounds were prepared. The physical data are recorded in Table 2.

Acknowledgement

The authors are thankful to Prof. and Head of the Department of Chemistry, Saurashtra University, for cooperation and authors are also thankful to R.S.I.C., Chandigarh, C.D.R.I., Lucknow for spectral analytical data and TAACF, U.S.A. for providing antitubercular screening data.

References

- Schimidt J. and Widmann K. Lab Pure and Pharm., Lem. Royal Technochschule, *Stultgart Ber.* 41: 1252-1260 (May 9); *Chem. Abstr.*, 2: 2249 (1908).
- 2. Hansen J.F. and Stronge S.A. J. Heterocyclic Chem., 14: 1289 (1977).
- Tayade V.B. and Jamode V.S. Asian J. Chem., 9(4): 866-868 (1997); Chem. Abstr., 128: 88824s (1998).
- 4. Balalaie S., Sharifi A., and Ahangarian B. Indian J. Heterocyclic Chem., 10: 149-150 (2000).
- Tibor M., Neil P.S., and Henry Gount S.P. PCT Int. Appl. WO 9414, 782 (Cl. C07 D 261/08); Chem. Abstr., 121: 255784t (1994). Holla B.S. and Ambekar S.Y. J. Indian Chem. Soc., 50: 673 (1973).
- Crawley L.S. and Fanshawe W.J. J. Heterocycl Chem., 14: 531 (1977).
- Sakurai A. and Midoricawa N. Bull. Chem. Soc. Japan, 41: 430 (1968).
- 8. Barry A.L. *The Antimicrobial Susceptibility Test: Principle and Practices.* Illuslea & Febiger, Philadelphia (1977).