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Abstract

The purpose of this paper is to study the higher order asymptotic distributions
of the eigenvalues associated with a class of Sturm-Liouville problem with
equation of the form w " = (A*f (x)—-R(x)w (1), on [a,b], where A is a real
parameter and f (x) is a real valued function in C?(a,b) which has a single zero
(so called turning point) at point x =x, and R(x) is a continuously
differentiable function. We prove that, as a classical case, the asymptotic form of
eigenvalues of (1) with periodic boundary condition w (&) =w (b), w '(a) =w '(b)
as well as with Semi-periodic boundary condition w (a) =-w (b), w '(a) =-w (b)
are the same as Dirichlet boundary condition w (a) =0=w (b) . We also study the
asymptotic formula for the eigenvalues of (1) with boundary condition
w'(@)=0=w (b),aswellasw (a)=0=w (b) andw (@) =0=w (b).
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(iii) A is a real parameter.

1. Introduction By using Longer’s transformation ([8], 10.4.115)

Many differential  equations  occurring in )
mathematical physics are reducible to the form E(X) :_{JXO (f (t))%dt}g X <X,
W' = (A (x)-ROOW M 2
s00={[ O] x,<x
where Xo

(i) f,R:[a,b]— IR are n times continuously diffe- ) -
rentiable function, 2 <n and new dependent variable y(&) = f

(i) f(x,)=0, and 52 =h(x) is positive and twice (1) reduces the form
continuously differentiable within (a,b), where x, is y =U'¢-a@)y . 2
an interior point of (a,b) where

1
4

w the Equation
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R ~%d2 =
Q=== (FH
and
2_9 0 d&.o _4f(x)
:—l, f =
u (x)= ( ) ()

Under this transformation, let £ =c,d correspond to
the end points x =a,b respectively, where c <0<d .

In [1], it was derived the higher order asymptotic
formula for the positive eigenvalues (2) with Dirichlet
boundary condition y(c)=0=y(d). In [3], [5], and
[8] the distribution of eigenvalues for the classical case
of Sturm-Liouville problems with periodic boundary
condition is derived. It means that in these papers the
weight function f (x) in (1) dose not change sign in
[a,b]. In ([9], chapter 1.4.3) it has been proved that the
distribution of the semi-periodic problem has the same
asymptotic expansion as the Dirichlet problem for
equation (1) whenever f (x) does not have a turning
point.

In [10] Langer has expressed the solution of the
given equation in terms of the solution of a simple, so-
called “standard” equation which gives an adequate
description of the behavior of solution of the original
equation. Note that firstly, the asymptotic behavior of
these solutions simply described theory but rather
cumbersome to apply for getting the higher order
distribution of eigenvalues associated with periodic and
semi-periodic boundary conditions, so in this paper the
method of establishing the estimation is based on the
formal solution of (2) constructed by Olver [2].

2. Periodic Boundary Condition

Let =y,(&EA),y,=Y,(&,4) be two linear

independent solutions of (2). The eigenvalues of
equation (2) with periodic boundary conditions

y@=y().y'@=y'®b)
are the roots of
A, ) =W (Y. Y,)) -y, )y ,[d)-y,(d)y’,(c)
+Y,(€)y",(d)+y,(d)y ") +W (y..y,)([d)
=0

where W denotes the wronskian of y,,y,. Since by
Liouville-Abel formula, we have

w (yl’yZ)(C) =W (y17y2)(d):W (ylayz)(o) =W (0)
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hence

A, (U)=2W (0)-y,(C)y ,(d)-y,(d)y",()

+y, )y " (d)+y.(d)y',(c) ®)
=0
In studying the asymptotic behavior of the

eigenvalues, it is very convenient to use the asymptotic
solutions given in ([2], chapter 11, §7.2) as follows:

Theorem 1. The differential Equation (2) has, for each
value of u and each nonnegative integer n, a pair of
infinitely ~ differentiable  solutions W, (u,¢) and

W,(u,¢) given by their approximations W,,,,,(u,¢),
W2n+1,2 (u,&) where

W, (0.8) = Bu(u“:)zA (€)

LB 'U*PE) & B (f)
TEE SZ:(:) 02 +&5,,1.US),

A, (5)

Wi U,6) = AI(UZ/SS)Z
LA (Umf)z B (e‘)

+ 82n+1 2 (u 5)

where
A0(§)=l,
Bs(f)—zél,zf RWIA, M)A ¢)) 1/20<5
B, (§)=5C f)l,zj(R()A v)- A(v»( )m 0>¢,

1 1 ¢
A1) ==5B(§)+ ] RUIB, W)V,
&y U,E),1 =1,2, are error bounds, and Ai(u?%¢),
Bi (u*?&) are two independent solutions of
daw
de?

called Airy functions.

=UPEW(&).

Proof. See ([2], chapter 11, §7.2).
Note that A (£) and B (&) are infinitely

differentiable. The error bounds for large u are uniform
with respect to &. The asymptotic form of Ai (u®?3&)
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and Bi(u??¢) for £>0 is not the same as for £<0.
Therefore, the solutions W, ,,(u,&) or W, ,,(u.<$)
have different asymptotic forms for £>0 and £ <0.
In the rest of this paper we shall use the symbols
W *"u,&), W (u,&) to signify the asymptotic form of
W u,é) for £>0, £<0, respectively,as u — .

Lemmal. The asymptotic forms of Aiu?3&),
Ai !(u 2/35) , Bi (U 2/35) and Bi !(u 2/35) are given by
(for u > 0),

_;uﬁaz
Ai U**6) 0 W;f 1y (zufs/z)
for &3>0,

u1/6§1/4e*3“f o

A- 1f,,2/3 D
| (U 5) 2 1/2 z( ) 53/2)

for £>0

Al (U26) 0

1 2 3/2
PN (_5)1/4 {COS(EU (_f)

N gy Y
22 G

+sin(§u (-¢£)*?

R Gy

for £<0,
A| !(u Z/Sé;) [

(l/f) {Sln( U( éj(5)3/2

"”2()(2(6“W

—CO%§U(—§Y”

_z x _15 v2$+1
4)522(;( ) (%u(_§)3/2)25+1}

for £<0,

Zu5

00
JETER 1/6 z(; 3/2
3

s=0

Bi (u2%&) ]

for £>0,

s LI

72_1/2 ~ (% 3/2
for £>0,
Bi (&)

1 .2 3/2
JETENT (_5)1/4 {_Sm(gu (=$)

“ﬂg(’(g(amw

+cos(§u (—£)*?

u2s+1
__)g( by (3u(_§)3/2)2s+1}

for £<0,

B| r(u 2/3§) 0 1/6( 5)1/4 {COS( U( 5)3/2

1/2
0

_T -1 Ve
4)522[;( ) (%u(_ég)S/Z)Zs

+sin(§u (—£)¥?

)§( ) (2 (é)3/2)25+1}

for £<0,
and

Ai(0)= , Ai'(0)=—

3? 3r(2/3)
where u, =1=v,

_ (25 +1)(2s +3)(2s +5)...(6s -1)
s (216)°s!

Proof. See ([2], chapter 11, §1.1 and §1.2)

3 3r(1/3)
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__Bi'(0)
3

In order to compute the asymptotic of these
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eigenvalues we use the flowing notations:

A©-32 B(o-3 242,

1(5) §(2u§3/2) 2(5) ;( )(2U§3/2)

RO=- iy PO=2 Y oy

R y R, ,

1(5) SZ_(;(Z 53/2)25 (g) g( )(2 53/2)25

K= 3y B KeO= 2 (0 (B

T.(0)= Z( S T O=2 (Y g B
1 Vv

L — 25+l Zs+1

1(5) = (%u§3/2)25+1 2(6) ZO( ) (2 é3/2)25+1

(&) = ue:” z

By theorem ([2], chapter 11, 87.2) using the above
notation we write,

yl(C,U) =:W2;+L1(C’u) =

A(©) . .
2% () {(=R,(=c)sin(c)

+T,(-c)cosa(—C)}

(%3) ‘B(c)
o —————{(K, (-c)cosa(—)

+L,(-c)sinao(—)}+0 (u“”%%j (4
d - p—

EW 2n+1,1 (C,U ) =

A'(c)+u*®B(c)

72'1/2U 1/6 (_C)l/4

y'i(c.u) =

{(=R,(=¢c)sin w(-c)

+T,(—c)cosw(—)}

(O AL +B )

7/6 _1/2
u "z

{(K,(—c)cosw(—)

+L,(—c)sin@(—¢)}+0 (u“”%j (5)
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yz(C,U) ::W2;1+1,2 (C,U) =
A(c)

+w{& (—¢c)cos ()

+T,(—¢)sinw(—)}

L(9)"'BE)

7/6 _1/2
u 'z

{K,(=¢c)sinw(-c)
-L,(—c)cosw(—c)}+0 (ﬁ)
y'.(c u)=:d—W iz UsC) =
,(C, de 2n+1,2\U>

%{Rz (—c)cos ()
U (=c)
+T,(—¢)sinw(—)}

1/4
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(6)

(—c) (A(cu’+B (C))rK ,(—¢)sinw(—c)

7/6 _1/2
u "z

-L,(-¢c)cos (-¢)}+0 (uzm%j

yl(d ,U) ::W2;+11(d ,U) =

zud 3/2

M, @A@) +0 ()

d Y% 2ud®?

+W{P d)B (d)+O( n+1)}

d
du)=—W,,;,[d.u)=
y'd,u)= E d.u)=

2y93%/2
e:d ,
W{(Ml(d)(A @)

+u“"B (d N+0 (mm}

d¥% 2ud3/?

+W{P (d)(A@)?
7
+B'(dW?)+0 (= e )}

yz(d»u) ::W2;+12(d9u) =

Zuda /2

e 3
2 1/2, 1/6dl/4

M)A +O n+l)}

()

®)

©)

(10)
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d

ylz(dau)z 2n+12(d U)—

2432
e 3
2 1/2 1/6d 1/4 {M (d )(A (d)

+*°B(d))+0 (5 3n_1,3)} (11)
d V4 ~2ud3'? ,
W{Pz(d)(u A(d)
+B'(d))+0 (=7 3n+m)}
hence
y,(d.u)yc.u)=e 0y ,d.u)y,c.u)
(12)
—e 0 ()
as u —oo. And
_YAEu) s
m(d,u) =: v =u"""dB,+0 (),
(13)
d.u)= y',c,u) u“eB cosw (—))+O ()
prd,ur= y,(c,u)  cos@w (—c)+O@u)

The eigenvalues of the problem (2) with period
boundary condition are the root of (3) or taking into
account of (4-13) (after the simple calculation), we get

W 0)+e ™ Ou)+e ™ 0@)
+y,d,u)y,(C,u)[md,u)-p(c,u)]=0

or

26 W (0)+e M O u)+e M O W)
L (14)
+O(uw)yz(c,u)[m d.,u)-p(c.u)]=0.

Since m(d,u) and p(c,u) have different asymp-

totic forms, and the first three terms in (14) do not
influence the leading terms of zeros of A, (u)=0 (see

[4]), so asymptotic distribution of the zeros of
A,(u)=0 is therefore asymptotically determined by

that zeros of y,(c,u), where y,(c,u) is the solution of

(2) defined by (5), i.e. , the zeros of A, (u) satisfy
W .1,(Cu) = 0; (15)

as u—o. From this expression, we see that the

Jodayree Akbarfam and Kheiri
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asymptotic behavior of the eigenvalues depends
essentially on the positive part of the weight function
—£on [c,d] i.e.,,on =£on [c,0]. This is to be expected
by the theorem of Atkinson-Mingarelli [7] or the result
of Eberhard and Freilling [6].

Analogously to Theorem 3 in [1] we may have:

Theorem 1. Consider the differential equation
w =2 (x)+R(X)w,a<x <b

with boundary conditions w (@) =0 =w (b)

some point x, €[a,b]:

1) f(x,)=0

2) Lo

XX

, Where for

h(x) is a positive and twice continuously

differentiable function within (a, b).
3) R(x) is continuously differentiable,

4) The integral

1
H (a) _[ { 1/4 dX ((—f )1/4J

B R B 5(—f )1/2
()" 16(=¢)°

converges where £(x) as:

1dx

)=~ (F O)dF  x <x,, (16)

g(x):{j: fOdty  x, <x. 17)

Then the asymptotic distribution of the positive
eigenvalues of this problem is given by

mz—a4
[ @) et
1 5

+ {— +£H(a)}+
mz 72L°(—f )2t 6

Ay =

(18)

! > +1H (@)3}+

+ 2_ L Xo
4m°z 72L (f ))%dt ©

0 (%).

3. Semi-periodic Boundary Condition

The eigenvalues of Equation (2) with Semi-periodic
boundary conditions
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y@=-y®b).y'@=-y'®b)
are the zeros of
S, () =W (¥,.Y,)©)+Y, )y ") +y,[@)y",€)
~y,©)y @) -y, @)y L) +W (y,.y,)d)
=0
Similarly taking into account of (4-13) we obtain:

S (u) - % —(2/3)ud(3/2W (0)

e —(4/3)ud(3/2)o (u ) _e —(4/3)ud ‘3/2)0 (u )

O (————y,(,u)[md,u)-p(,u)]=0.

(1/6)
Comparing A, (u) with S_(u), we see that the only

difference is the sign of some expressions which do not
influence of the distribution of the eigenvalues therefore
the zeros of S (u) satisfy

W, ,(u) > 0.

We have thus proved the following as classical case
(see [9], chapter 1.4.3).

Theorem 2. If R(x) is a smooth function, then the
eigenvalues of the semi-periodic problem and the
periodic problem have the same asymptotic expansion
as the Dirichlet boundary problem for equation (1), (i.e.
of the form (18)).

4, Other Cases

We now consider equation (2) with the boundary
conditions

y'c)=0

y'(d)=0. (19)

. 0
In this case we assume that | 2% %0, the
¢ 02

eigenvalues of the problem (2), (19) are the roots of
y'i(c.u)y’p(d,u) -y ,(c,u)y’(d,u) =0.

or, taking into account (5), (7), (9), (11) (after the
simple calculation)we obtain

d©/2

e @30 () +e @O )y’ (c,u) = 0.

(2/3)ud ¢’

Dividing throughout by u®%e and letting
u — oo we see that the eigenvalues of this case satisfy

78

d W2n+1‘2(csu)_)0 as u—ow

d¢
From (7) and (20), we have found that for large u

i{2w (-c)+r} _ F+iH
F—iH

e
where
= (UA'(~¢) +u’dB (<))R, (-¢)
~(=¢)* (A(=c)u” + B (=)L, (-¢),
H = (UA'(~c) +u’dB (-¢))T,(-¢)
+(—C)* (A(-C)u” +B(C))K ,(-¢).
By taking the logarithm in (21) we obtain

u _m;z—%+ 1 Iog{F—HH}
o) f(e)ixi LF-iH

where

Nk /iyk-s+l
F+iH = UZ(_C)% 0] AS(C:?VK_S
;; uk+s (; (_C)g)k—s
uik A0 Uiy
=0

k k—
u +S+2( ( C) ) S
k

1 Y B0 e B, (c)()*" SUk s

i uk+5( ( C) )k S

. (—C)%ZZ B () x (i)' :”vf_s

K K
keoso U (4(-c)?)

F—iH =-i(-c)*u? ZZ () A (©ui s

= OSOVkJrS( ( C) )k S

H&i l(J—i)“ A (O

k+s+2 (; (—C) 2 )k s

k=0 s=0
n k k—s
1 (=)"B (C)uk s
+u
észuk f(2(-¢)7)
k-s
|( C) (':) B (C)kas )
kOsOU+S( (—c)?)
Now we have
u (F+|H) By, +(—c)’ A Lulg,
us  u(=c)

Iran

(20)

(1)

(22)
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_(—Ac) on31 N Bl(cz)u0 N iv, (A, +7B o(C)) +O(u?m),
u?%(_c)i u u?

i()Ay, By,

U (F —iH) =B, -

u’ uZ(-c)?
Ay, () LBl
uiie) Ut
_I (_C) VO(A71+B O(C)) +O(U’Tm)

u 3
Consequently

F+!H =1+2Tiu " —2T
F-iH

+2i(L-Tut+0@u?),

(23)

where

_(e) | _ 5B,
B, ’ 48(-c)?

Substituting expression (23) into formula (22) and
using the expansion of the logarithm, we find:

mrz—7%
u, = 3
Z(=c)
it e@i - outrou )
4(—¢)*%i 3 ’
or
mrz-—% 1 2
TSR
3 . : . (24)
2L Tt +0@Uu ),
3(-¢) 3
First and second approximation is
mmz—=Z% B
=TT a0(m), (25)
i)

substituting this approximation (25) into (24), we find
the following approximation:

mz—7% 2(3)" 1
TS AR
2 (mr)© j dt

(71 )1 2

u. =

m

(26)

Let us consider the differential Equation (2) whit

Jodayree Akbarfam and Kheiri
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boundary conditions
y()=0=y'{d).

By applying the above similar method, we see that
the eigenvalues of this problem are zeros of

y,(c,u)=W, ,,(c,u)=0,

therefore the higher-order asymptotic distribution of
eigenvalues is of the form (18). The eigenvalues of
Sturm-Liouville Equation (2) with boundary condition

y'c)=0=y()

coincide with zeroes of

, d_
y 2(C,U) = EWZnJrlQ(C’u) =0,

therefore the distribution of eigenvalues of this case is
of the form (26).
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