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Abstract 

The empirical Bayes estimators of treatment effects in a factorial experiment 
were derived and their asymptotic properties were explored. It was shown that 
they were asymptotically optimal and the estimator of the scale parameter had a 
limiting gamma distribution while the estimators of the factor effects had a 
limiting multivariate normal distribution. A Bootstrap analysis was performed to 
illustrate the theoretical results empirically. 
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Introduction 

In our previous study [3], the empirical Bayes 
estimators of the scale parameter and treatment effects 
for a factorial experiment under an Inverse Gaussian 
model were derived. To provide a concise background 
for the sake of easier reference, let for each i and j, the 
observations Yijk be a random sample from an Inverse 
Gaussian distribution. That is, 

3 1/ 2 2 2

( | , )

{ / 2 } exp{ ( ) / 2 }

ijk ij

ijk ijk ij ijk ij

f y

y y y

θ λ

λ π λ θ

=

− − θ
 

, , 0ijk ijy λ θ > , . i 1,..., I, j 1,..., J, 1,...,k n= = =

Here the mean is modeled in terms of drift, i.e., the sum 

of factor effects: 

1
ij i j ijθ μ α β γ− = + + + , 

1 1 1 1

0
I J I J

i j ij ij
i j i j

α β γ γ
= = = =

= = = =∑ ∑ ∑ ∑ . 

Taking account of constraints imposed on factor 
effects, the parameter vector Φ , is defined as: 

1 1[ , , , , , , , ]i Iμ −= K Kα β γ γ γΦ , 1 1[ , , ]Iα α α −= K , 

1 1[ , ]Jβ β −= Kβ , 1 ,[ , , ]i i i J 1γ γ −= Kγ , i = 1,…,I − 1. 

Then the likelihood function is: 
/ 2( , ) exp{ [ 2 ] / 2}nIJL n IJr dλ λ λ ′ ′∝ − − +y MKΦ Φ Φ Φ  

where 

111 112[ , , , , , ]ijk IJny y y y=y K K , 1
ij ijθ − ′= X Φ , 

11 12( , , , IJX X X )′ =X K , 

D = diag , 11. . .{ , , , ,ij IJy y yK K }
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( ) ( )
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+++

= = =

= =∑∑∑K . 

The following conjugate priors are used for λ  and 
Φ: 

( , / 2)Gamma a bλ �  and 1( | ) ( , )Nλ η λ−�Φ Δ , 

with 

1 2[ , , , ]IJη η η= Kη , 2 2
1{ , , }IJdiag δ δ= KΔ . 

The posterior means of λ  and Φ provide the Bayes 
estimators under squared error loss. The empirical 
Bayes estimators are obtained by substituting the 
estimators of hyperparameters  and 0 0( , )a b 0 0( , )Δη  for 
corresponding values in the Bayes estimators. These 
estimators are: 

1 0 1 02 /[ ( )]EB k Qλ = η  (1.1) 

with estimated variance 
2 2

0 1 0 1var( | ) 4 /[ ( )] [ ] /EBk Q kλ = =y η 0λ

)

, (1.2) 

and 
* 1

1 0 0 0 0( ) (EB n n−= = + +M I dΦ Δ Δη η , (1.3) 

with estimated variance 
1

0 1 0var( | ) [2( 1)] ( )k Q−= − ΨyΦ η 0

= + 1 1
0 0 0( )n − −= +MΨ Δ Δ

*

. (1.4) 

In (1.1) to (1.4), 

0 00.5( 2 )k nIJ a , , 

1 * 1
1 0 0 0 0 0 0( )Q r b − −

+++
′′= + + −Δ Ψη η η η η . 

Using the results given by Chhikara and Folks [2], 
the moments of the marginal distributions of 

, and those of various means , , 1
ijk ijkR Y −= .ijR ..iR . .jR  

and  are also obtained. It is known that: ...R

1 1 1 2
. 1

1

( ) ~
n

ij ijk ij n
k

V Y Y λ χ− − −
−

=

= −∑ , 

i = 1,…,I,   j=1,…,J. 

Let V  and c be the sample mean and coefficient of 

variation of . Then, for  we obtain: ijV 2 2 /( 1)c n> −

2 2
0 [2( 1) 3] /[( 1) 2]a n c n n c= − + − − − , 

0 02( 1) /( 1)b a V n= − − , 

and 0 0 0a b= = . Furthermore, in the two-way table of 

observations, each cell has n replicates . Let , 

, 

ijkR 2
ijS

2
.iS 2

. jS , and  denote the sample variances of , 

, 

2S .ijR

..iR . .jR  and , respectively. By equating the 

sample and theoretical moments, we will have: 
...R

1,0 .. 0 0/ 2( 1)ir b aη = − − , 1,0 .. ...i ir rη + = − , 

,0 . . ...I j jr rη + = − , ( ) ,0 . .. . . ..I i J I j ij i jr r r r .η + − + = − − +  

i = 1,…,I,   j=1,…,J. (1.5) 

Similarly, we obtain: 
2 2

1,0 0 0 1,0

0 0 0 0

2( 1) / /

[2( 1) ] / 2 ( 1)( 2)

a S b nIJ

b a nIJ nIJ a a

δ η= − −

,− − + − −
 

2 2
1,0 0 . 0 1,0 1,0 1,0

0 0 0

2( 1) / ( ) /

[2( 1) ] / 2 ( 2),

i i ia S b nJ

b a nJ nJ a

2δ η η δ+ += − − + −

− − + −
 

2 2
,0 0 . 0 1,0 1 ,0 1,0

0 0 0 0

2( 1) / ( ) /

[2( 1) ] / 2 ( 1)( 2),

I j j ja S b nI

b a nI nI a a

2δ η η δ+ += − − + −

− − + − −
 

2
( 1) ,0 0 0

1,0 1,0 ,0 ( 1)

2 2 2
1,0 1,0 ,0

0 0 0 0

2( 1) /

( )

( )

[2( 1) ] / 2 ( 1)( 2).

I i J j ij

i I j I i J j

i I j

a S b

n

b a n n a a

δ

η η η η

δ δ δ

+ − +

+ + + − +

+ +

= −

− + + +

− + +

− − + − −

/

]

 

 (1.6) 

Now, we arrange them as: 

0 1,0 2,0 ,0[ , , , IJη η η= Kη  and 

2 2 2
0 1,0 2,0{ , , , }IJdiag δ δ δ= KΔ ,0 . 

The large sample properties of the empirical Bayes 
estimators,  and , are derived in section 2. In 
section 3, the limiting distribution of an alternative 
estimator of Φ respective to a truncated normal prior is 
studied. The findings from a limited Bootstrap study are 
reported in section 4. 

1EBλ 1EBΦ
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2. Large Sample Properties 

To establish the large sample properties of our 
empirical Bayes estimators, we utilize the following 
well-known facts. In deriving the estimates of the 
hyperparameters we have used the sample means of 
some random variables. Thus for large sample size, n, 
all these means converge in probability to their 
respective expected values. Their continuous functions 
behave in the same manner, as well. Thus, we have: 
Lemma 1.  When , we have: n →∞

0
pa a⎯⎯→ , 0

pb b⎯⎯→ , 0
pk k⎯⎯→ , 

0
p⎯⎯→η η , 0

p⎯⎯→Δ Δ , 

which imply: 

1 0 1( ) ( )pQ Q⎯⎯→η η . 

Proof.  These are the straight forward implications of 
the weak law of large numbers. □ 

Consequently, we have: 
Theorem 1.  As , the n →∞ 1 1

p
EB Bλ λ⎯⎯→ . More-

over, its asymptotic distribution converges to a gamma 
distribution, i.e., 

1 1~ [ , ( )EB Gamma k Qλ η / 2]

1

. 

Proof.  The first part follows from Lemma 1 and the 
continuous nature of  as a function of  and 

. 
1EBλ 0 0( , )a b

0 0( , )Δη
To prove the second part, note that: 

1
1 0 1 1 0 1{2[ ( )] / ( )}[ ( ) / ( )]EB k k k Q Q Qλ −= + − η η η , 

where by virtue of Lemma 1 and Slutsky’s theorem, the 
first factor on the right hand side converges in 
distribution to 1Bλ , the Bayes estimator of λ , and the 
second factor approaches in probability to 1. However, 
in our previous study [3] it was shown that 1Bλ , had a 

posterior distribution of gamma as stated above. □ 
To make the above result more practical, we prove: 

Corollary 1.  For large n, the unknown parameters in the 
limiting distribution of  can be substituted by their 
estimates, while the statement still remains valid, i.e., 

1EBλ

1 0 1[ , ( ) / 2]D
EB Gamma k Qλ ⎯⎯→ η0 . 

Proof.  By Theorem 1, the asymptotic cumulant 
generating function of  is: 1EBλ

1( ) log[1 2 / ( )]C t k it Q= − − η  

1 0
0 0

1 0 1

( )2[( ) ]log{1 }
( ) ( )

Qitk k k
Q Q

= − − + − ⋅
η

η η
 

which by Lemma 1 is asymptotically equivalent to: 

0 1( ) log[1 2 / ( )]C t k it Q= − − 0η . 

Hence the proof is complete. □ 
To obtain the asymptotic distribution of , we 

appeal to the multivariate central limit theorem along 
with Slutsky’s theorem. Finally, at the last stage, we 
apply the δ-method to derive asymptotically equivalent 
distribution. These techniques are well expounded by 
Rao [5] and Serfling [6]. 

1EBΦ

Let 

11[ , , , , ]k k ijk IJkR R R= K KR , 1, ,k n= K . 

By assumption Rk are independent and identically 
distributed random vectors with the marginal moments 

( ) [ / 2( 1)]k IE b aρ= = + −R Xη J1 , 

with 11[ , , ]IJρ ρ= Kρ  and  .]1[1 1,...,,IJ =1
Explicitly 

1 1 ( 1)

/ 2( 1)

/ 2( 1)

ij ij

i I j I I J j

X b a

b a

ρ

η η η η+ + + − +

′= + −

= + + + + −

η
 

and 

( ) [ / 2( 1)]{kVar b a ′= ∑ = −R X ΔX  

                                (2.1) [ / 2( 1)( 2)] }b a a+ + − −C E

with 

11{[ / 2( 2)], ,C diag X b aη′= + − K  

 [ / 2( 2)], ,[ / 2( 2)]}ij IJX b a X b aη η′ ′+ − +K −  

and IJ IJ′=E 1 1 . 
Now, it is obvious that all second moments are finite. 

Thus, the multivariate central limit theorem applies to: 

1

1

11. 1 . 1. . 1. .

.

[ , , , , , , , , , , ]

n

k
k

J i iJ I IJ

n

R R R R R R

−

=

=

=

∑
K K K K K

R R

.

 

That is, 
1/ 2

( ) ( ,Dn
−

− ⎯⎯→∑ . ρR )N 0 I . (2.2) 

This leads us to the limiting distribution of 0η . 
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Theorem 2.  The asymptotic distribution of 0η  is a 
multivariate normal, i.e., 

1/ 2
0( )[ ] [ ] ( , )Dn IJ N−′∑ − ⎯⎯→A A 0 Iη η , 

where 
1( ) [ / 2( 1)]IJ b a−η = ρ − −A e . 

Proof.  From (1.5), it is observed that 0η  is a linear 
function of R., which can be written as: 

1
0 0( ) [ / 2( 1)]0IJ b a−= − −A .η R e  (2.3) 

where  is a column vector of order IJ, with a 1 
in the first row, and zero elsewhere. 

][ 01,e =

A is an IJ×IJ block matrix defined by the following 
vectors and sub-matrices. Let 0m and 1m be m-vectors of 
zeros and 1’s, respectively. Define Ei as a matrix of 
order (I-J)×J with J′1  in the i-the row and J′0  
elsewhere. Let 

i i (I 1)I − ′=A E 1− J1 J, i = 1,…,I−1, and I (I 1)1− ′=A 1− , 

and 

(J 1) (J 1) JJ[ , ]− − ′=B I 0 1 1− . 

Then, A has the following structure which is 
conformable to left multiplication with R., 

1 2 ( 1)

( 1)

( 1)

( 1)

( 1)

( 1)

J J J J J

i I I

I

I

I

I

I

−

′ ′ ′ ′ ′⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − −
⎢ ⎥
⎢ ⎥− − − − −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − − − −⎢ ⎥
⎢ ⎥

− − − − −⎢ ⎥⎣ ⎦

1 1 1 1 1

A A A A A

B B B B B

B B B B B

B B B B B
A

B B B B B

B B B B B

B B B B B

K K

L L

L M

L L

L L

M M M M M

L L

M M M M M

L L

L L

 

Since in (2.3), 0 0/ 2( 1) / 2( 1)Pb a b a− ⎯⎯→ − , it 
follows that 

1
0 0 0( ) [ / 2( 1)] DIJ b a e−= − − ⎯ →AR.η ⎯  

 1( ) [ / 2( 1)]IJ b a− − −AR.

Thus, by Slutsky’s theorem the result follows. □ 
Now, we are able to find the asymptotic distribution 

of . EB1Φ
Theorem 3.  The empirical Bayes estimator 

1
EB1 0 0 0(n ) (n )−= + +M I dΦ Δ Δ η  

has a limiting multivariate normal distribution, i.e., 

* 1/ 2
1 1( )[ ] [ ] ( , )D

EB Bn IJ N−∑ − ⎯⎯→ 0 IΦ Φ , 

with 
1

1 (n ) (n )B
−= + +M I dΦ Δ Δ η  and 

* 1(n ) ( )(n ) 1I I− −′∑ = + ∑ +M A A MΔ Δ . 

Proof.  First, we employ the Cramer-Wold device, 
Serfling [6]. Note that by Lemma 1, for large n, 

0 0(n ) ( )

(n ) (n )P

n+ = −

+ + ⎯⎯→ +

M I M

M I M I

Δ Δ Δ

Δ Δ
 

and 

0 0 0

0 0

(n ) n( )

(n ) (n )D

+ = −

+ + ⎯⎯→ +

d d

d d

Δ Δ Δ

Δ Δ

η

η η
 

Applying Slutsky’s theorem at this stage, we have 
1

1 0 0[n( ) (n )] [n( )EB
−= − + + −M I dΦ Δ Δ ΔΜ Δ Δ  

1
0 0(n )] [n ] [n ]D −+ + ⎯⎯→ + +d M I dΔ Δ Δη η ,  

which is a linear function of 0η  whose asymptotic 
distribution is normal. Thus, the result follows from 
Theorem 2. □ 

In the above results, Δ and ∑ are unknown, making 
the theorem of limited use in practice. It will be more 
useful, however, if the replacement of Δ and ∑ by their 
estimates ∑0 and Δ0 can be justified. This is what we 
have in  
Theorem 4.  The empirical Bayes estimator 

1
EB1 0 0 0(n ) (n )−= + +M I dΦ Δ Δ η  

has an asymptotic multivariate normal distribution with 
mean 1BΦ  and variance 

* 1
0 0 0(n ) ( )(n ) 1− −′0M I A A M I∑ = Δ + ∑ Δ + . 

That is, 

*
0

1/ 2
EB1 B1n ( )[ ] [ ] ( , )DIJ N−∑ − ⎯⎯→Φ Φ 0 I . 

e , Proof.  By the consistent nature of Δ0 and ∑0, it is 
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obvious that ( ) P−∑ ∑ ⎯⎯→*
0 0 . Thus, 

1/ 2
1 1n ( )[ ( ) ] [ ]EB BIJ −−∑ ∑ ∑+ −* * *

0 Φ Φ  

 * 1/ 2
1 1n ( )[ ] [ ]D

EB BIJ −∑⎯⎯→ −Φ Φ . 

which completes the proof. □ 

3. The Case of Restricted Prior 

In our previous study [3], a univariate normal 
distribution truncated from the left at zero was used as 
an alternative prior for μ which is a positive parameter. 
Thus, 

1/ 2 1 2 2
2 1 1

1
1

( ) [ ( )] exp{ ( ) / 2 }

[ ( )] ( )

μ λ λ δ τ λ μ η δ1

τ μ λ

−

−

∝ − −

∝

q N

N q
 

1 1 0, , ,δ η μλ > , 

where N(τ) is the value of the standard normal 
distribution function at 1/ 2 * 1

1 11λ η ψτ −= . 
This modification of the previous prior renders a 

posterior for  as: ( | , )λ yΦ

1
2 1( | , ) [ ( )] ( | , )yλ ξ λ−∝q N qΦ yΦ , (3.1) 

where ( | , ) /Var ( | , )y yξ μ λ μ λ= E  and 1( | , )yλq Φ  
is the posterior corresponding to the unrestricted prior 
studied in section 2. 

Using the partitions 

2[ , ]μ=Φ Φ , , 1 2[ , ]η= ηη * * *
1 2[ , ]η=η η , 

and 

1211

21 22

ψ⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ
Ψ

Ψ Ψ
 

in the well-known identities 
1

22.1 22 21 11 12ψ −= −Ψ Ψ Ψ Ψ  and 11 22.1ψ=Ψ Ψ , 

We are able to decompose the quadratic form in the 
exponent of the posterior (3.1). Hence, we obtain the 
marginal posteriors 2 ( | )yμq  and 2 2 |( )yq Φ  whose 
means provide the Bayes estimators of μ and , 
respectively. To obtain the empirical Bayes estimators, 
we need some sort of estimates to replace for η and Δ in 
the Bayes estimators. 

2Φ

To estimate the hyperparameters of the truncated 
normal prior for μ along with those related to , we 
again apply the method of moments on R.. This 

procedure, which has been detailed in our previous 
study [3], leads to 

2Φ

1( ) kδ IJς ρ= = +E R. 1 , 

 1 1
1 2Var ( .) n n [ ]k k− −= = ∑− +R Ω E I

with 
1/ 20.82[ ( 0.5) / ]k b a a= − , 

1 1 1 1kδ [η kδ / ( 1)(2 3)]k b a a= + − − − , 

and 

2 1 /(2 3)k k b aδ= − . 

When the sample mean R. and the sample variance T 
are substituted for the respective theoretical moments, 
we obtain the following system of equations in η and Δ: 

0 0 0 1. η [ / 2( 1)] IJb a k δ= + −R X 1  

1,0 2,0k k= − +ET I∑ , (3.2) 

where the subscript 0 in the above quantities indicates 
the respective estimated values obtained by using a0 and 
b0 in place of a and b, respectively. Upon solving the 
system of equations (3.2), we arrive at: 

1 0
... 1( ) [ . (r )eIJη−′ ′= − −X X X Rη ] , 

and 
1 *( ) ) 1− −′ ′ ′=Δ X X X T X(X X , (3.3) 

where 
*

0 0 1,0 0 2,0[2( 1) / ]{ [ 1/( 2)] }a b k a k 1= − + − − −T T E −I D , 

with 

1 11 0 0

0 0 0 0

{ [ / 2( 1)] ,...,

[ / 2( 1)],..., [ / 2( 1)]}.

ij

IJ

diag b a

b a b a

′ ′= + −

′+ − + −

D X X

X

η η

η
 

Having found these estimates, we define the 
alternative empirical Bayes estimates relative to the 
truncated prior as: 

2 0 12 / ( )EB k Qλ = η , (3.4) 

with the estimated variance 

2
2 0 1Var( | ) 4 /[ ( )]EB y k Qλ = η . 

For the factorial effects, we have the alternative 
estimator 

1
2

* ( ) (EB n n− )= = + +Φ Δ M I Δdη η . (3.5) 
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Now, similar to the case of unrestricted prior, the 
asymptotic distributions of λEB1 and ΦEB2 can be 
derived. 
Corollary 2.  The asymptotic distribution of the 
empirical Bayes estimator λEB2 relative to the restricted 
prior for μ and an unrestricted prior for Φ2 is a gamma 
distribution, i.e., 

2 0[ , ( ) / 2]D
EB Gamma k Qλ ⎯⎯→ η1 . 

Due to similarity with Corollary 1, the proof is 
omitted. □ 

For the factorial effects, firstly we need to find the 
limiting distribution of η . To this end, note that by the 
multivariate central limit theorem, we have: 

1/ 2( ) [ . ] (0, )Dn ς− − ⎯⎯→Ω R N I . (3.6) 

Similar to the case of the unrestricted prior 
1

0 0 0 1( ) [ / 2( 1) ]IJ b a k δ−= − − +AR.η e , 

where A and e have been defined in (2.3). Thus, with 
regard to (3.6), Lemma 1, and consistency of 1δ , it 
follows that: 

1/ 2( )( ) [ ] ( , )Dn IJ N−′ − ⎯⎯→AΩA 0 Iη η . 

Now, we can obtain the limiting distribution of ΦEB2, 
as stated in 
Theorem 5.  As , the empirical Bayes estimator 
ΦEB2 converges in distribution to a normal vector, i.e., 

n →∞

1/ 2
2 2( )[ ] [ ] (0, )D

EB Bn IJ N−′ − ⎯⎯→AΩA Φ Φ I  

with 
* 1

2 11 10.21[( 0.5) ( ) / ]B k Q e kψ −= + − ΨΦ η η 1/ 2
.1 , 

where Ψ.1 is the first column of Ψ. 
Proof.  The proof is similar to the proof of Theorem 3.
 □ 
Theorem 6.  In Theorem 5, the unknown variance Ω can 
be replaced by its estimator 0 1,0 2,0k k= ∑ − +Ω E I , 

while its statement still remains valid. That is, 
1/ 2

2 2( )[ ] [ ] ( , )D
EB Bn IJ N−′ − ⎯⎯→AΩA Φ Φ 0 I . 

Proof.  The proof is similar to the proof of Theorem 4.
 □ 

 

4. A Bootstrap Study 

In order to verify the performance of our estimators 

empirically, a small scale Bootstrap analysis is 
considered. It is performed on a set of data which has 
been the subject of analyses by Ostle [4], Shuster and 
Muira [7], and Achcar and Rosales [1]. The estimates 
reported by Meshkani [3] show that the interaction 
effects are negligible. Therefore, assuming a 
nontruncated prior for the main effects, a two-factor 
model without interactions is considered for the 
Bootstrap analysis. The Bootstrap samples of size n=10 
are chosen from the observations of each treatment 
combination. They were repeated for B=100 times. The 
Bootstrap distribution of λEB1 of (1.1) and those of the 
elements of ΦEB1 of (1.3) are computed and plotted. 
Only Three plots of distributions are reported in Figures 
(4.1) to (4.3). We observe that λEB1 follows a gamma 
distribution and 1μ φ=  and φ53 =β  have normal 
distributions. These findings are in good agreement with 
our theoretical results. Furthermore, utilizing the 
quantiles of the Bootstrap distribution, the 95% 
confidence intervals are constructed which are only 
reported for λ, μ and β3. 

λ∈[0.95, 3.23], μ ∈[1.10, 1.42], and 3β ∈ [0.17, 
0.27]. 
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Figure 4.1.  The Bootstrap posterior distribution of 1EBλ . 
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Figure 4.2.  The Bootstrap posterior distribution of 1μ φ= . 
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Figure 4.3.  The Bootstrap posterior distribution of 3 5β φ= . 
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