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Abstract 

So far the static properties of hadrons have been introduced in various models. 
The static properties of hadrons (charge radius, magnetic moment, etc.) are useful 
for understanding the quark structure of hadron. In this work we have introduced 
the hypercentral constituent quark and isospin dependent potentials. Here 
constituent quarks interact with each other via a potential in which we have taken 
into account the three body force effect and standard two-body potential 
contributions. According to our model the static properties of hadrons containing 
u, d, and s quarks are better than the other models and closer to the experiment. 
The two key ingredients of this improvement are the effective quark-gluon 
hypercentral potentials, the hyperfine interaction and isospin-dependence 
potential. 
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Introduction 

The Constituent Quark Model (CQM) has been 
extensively applied to the description of baryon 
properties. There are many approaches where the three-
quark problem is solved numerically [1]. 

The idea of multiquark forces has been already 
considered in the early days of the quark model. The 
main ingredient of this model is the interquark potential, 
which contains a spin-independent and spin dependent 
terms characterized by the presence of a long range part 
giving rise to confinement. The 3q-interactions are more 
easily introduced and treated within the hypercentral 
interaction. 

The internal three quark motion is described by the 

Jacobi coordinates ρ and λ [2]. In order to describe the 
three-quark dynamics it is convenient to introduce the 
hyperspherical coordinates, which are obtained by 
substituting the absolute value of ρ and λ in 

22 λρ +=x , where x is the hyperradius. 
The spin independed potential is hypercentral and 

hence depends only on hyperradius x. In this model 
there are 3 hypercentral interacting potentials. First, the 
six-dimensional hyper Coulomb potential [2,3] which is 
attractive for small separations, originating from the 
color charge: 

x
c

x
kxV s

hyc −==
α)( . (1) 
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while at large separations a hyper linear term gives rise 
to quark confinement [4] 

( )conV x bx= . (2) 

However there have been some interesting attempts 
to interpolate between  and  [5-10]. )(xVhyc )(xVcon

From Equations 1 and 2, the interaction potential can 

be taken as Colomb term plus confining term )(
x
cbx −  

as suggested by the lattice QCD calculations [11,12]. In 
this article we have added the six-dimension harmonic 
oscillator (h.o.) potential, which has a two-body 
character, and turns out to be exactly hypercentral since 

3
2 2

. .
1 3( )
2 2

i

h o i j
i j

V k r r kx
=

<

= − = =∑ 2ax  (3) 

Here the interaction potential is assumed (from Eqs. 
1, 2 and 3) as below: 

x
cbxaxxA −+= 2)( . (4) 

The hypercentral interaction potential (4) acts as 
nonperturbative potential. In This article the quark 
interacting potential also contains hyperfine spin- 
isospin interaction form [2] and we use this as a 
perturbation potential which improves the results. In 
section (2) we calculated the relativistic nonpertubative 
wave function for valence quarks. 

In section (3) we obtained pertubative wave function 
)(xγψ  using nonconfining hyperfine potential. The 

magnetic moments in section (4) and the charge radius 
in section (5) were found for different quark masses. 
The results indicate that this potential is useful for 
quarks having masses in the range used in the 
phenomenological analysis of quark model. By 
determining the magnetic moment and charge radius in 
our model it is concluded that there is a reasonable 
consistency between the calculated values and the 
experimental results. 

Hypercentral Relativistic Wave Function for 
Three Quarks in a Nucleon 

If we denote the quark wave function satisfying the 
Dirac equation by )(rrψ , then 

0
[ . ( ( ))] ( )i m U r rαγ ε γ ψ+ ∇ − + =

rr 0r

}

 (5) 

where . Summing the three equations in (5) 
we obtain the hypercentral constituent quark equation. 

{1, 2,3,α ∈

The hypercentral potential , which leads to 
analytical solution in our model, would be 

( )U x

)()1(
2
1)( 0 xAexU γ+=  (6) 

with the potentials ( )A x  given by (4) 
The parameter e  is arbitrary [13-15], so we take in 

to be 1. 
This potential has interesting properties and yields 

reasonable physical results and the solution of Dirac 
equation can be worked out analytically. The quark 
potential  is assumed to depend on the 
hyperradius x only. The eigenspinor of (5) denoted by 

 is rewritten as 

( )U x

0
3jjψ

3

0 ( )jj x
ϕ

ψ
χ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (7) 

Now combining Equations 4-7, we get: 

0 0

0 0

( . ) ( ( ) ( ))

( . ) ( ( ) ( ))

P m U x V x

P m U x V x

σ χ ϕ εϕ

σ ϕ χ εχ

+ + + =

− + − =
 (8) 

where 3( ) ( )
l

j
k jg x y xϕ =  and . 3( ) ( )

l

j
k jif x y xχ ′=

Here  and  are the scalar hypercentral 
and the vector hypercentral potentials, respectively. For 
Dirac upper component we combine two equations in 
(8) and use Equations 4 and 6 to obtain 

0 ( )U x 0 ( )V x

2 ( ) ( ( )) ( )P g x m A x g x
m

ε
ε

0+ − + =
+

 (9) 

The internal quark motion is usually described by 
means of the Jacobi relative coordinates. By separating 
the common motion, the P2 operator of a quark in the 3q 
system becomes ( 1c )= =h  [2] 

2 2
2 2 2

2 2

5 (( ) ( d d LP
x dxdx xρ λ

Ω
= − ∇ +∇ = − + +

) )  (10) 

Hence 

0)())()((

)()(5)(

2

2

2

2
=+−−

++′+′′

xgxAmm

x
xgLxg

x
xg

εε

γ  (11) 

with  given by (4), and  is the 
grand orbital operator and γ is the grand angular 
quantum number given by 

)(xA )4()(2 +−=Ω γγL

2n l lρ λγ = + + . 
Following the method used by Znojil [16,17], we 

make an ansatz 
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))(exp()( xhxg =γ  (12) 

with h  as )(x

21( ) ln
2

h x x x xα β δ= − + +  (13)  (13) 

[18-21]. [18-21]. 
This implies This implies 

= − + +

25 5( ) ( ) ( ) ( ) ( )hg x g x h x h x g x
x xγ γ γ

′⎡ ⎤′′ ′ ′′ ′+ = + +⎢ ⎥⎣ ⎦
 (14) 

Equations (14) and (11) yield α, β, γ and the 
constraints between the potential parameters a, b, and c. 
These read 

1
2

1
2 2 2

( ( ))

2 (3 ) ( )

( )(5 2 ) ( )
2

, 4

a m

m

b mm c

α ε

β α γ ε

εβ γ ε
α

δ γ γ

⎧
= +⎪

⎪ ⎡ ⎤⎪ = − + − −⎢ ⎥⎪
⎣ ⎦⎨

⎪ +
⎪ + = − + = −
⎪
⎪ = − −⎩

 

Taking γδ = , leads to a wavefunction which is well 
behaved at the origin. 

We try to solve this problem by taking into account 
the center of mass correction. Using Jacobian 
coordinates, the distance between particles would 
separate into three equations for ρ, λ, and R, where R is 
the center of mass of the three quarks system with equal 
mass (m), 

)(
3
1

321 rrrR
rrrr

++=  (16) 

and the two other equations, ρ and λ, were combined to 
give the hypercentral equations which we discussed 
previously. For three quarks with energy ε and mass m, 
from Equation 9, we have 

2 33 3
2 2

2
1 1 1

( ) ( ) 3( )i i
i i ii

d m A r m
dr

ε ε
= = =

⎡
+ + − − =⎢ ⎥

⎣ ⎦
∑ ∑ ∏ 0ϕ

⎤  (17) 

Let R3=η , then 

0)()()( 22
12

2
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+− ηϕεη

η
mA

d
d  (18) 

Now it is obvious that the center of mass energy is 

2
1

22 )( mEcm −= ε . (19) 

Finally we have shown that for three quarks, with 
energy ε and mass m, with the potential U x  the 
center of mass energy is ( ) . 

( )
2 2 1/ 2mε −

As is well known Bogoliuabv’s assumption is 

ε3=+=′ cmEMM  (20) 

In which M ′  and  are corrected nucleon mass 
and center of mass energy, respectively. 

cmE

From Equations 20 and 21, assuming 

ε
ξ m
=  (21) 

we get 

213 ξ
ε

−−
=

M  and 

⎟
⎟
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2
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m

M
m

M
mξ  (22) 

(15-1)

(15-2)

(15-3)
then  and the strength of h.o. potential are as 
follows 

cmE

2

2
1

2

13

)1(

ξ

ξ

−−

−
=

M
Ecm , (23) 

2
1

213

)1(
⎥
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⎦

⎤

⎢
⎢
⎣

⎡

−−

+
=

ξ

ξα aM
. (24) 

From Equations 12, 14, 15, 15-1, 15-2, and 15-3, the 
upper component of Dirac spinor of the nucleon is as 
below: 

1
2 2 21( ) exp 2 (3 ) ( )

2
2g x x x m xγ

γ α α γ ε
⎧ ⎫⎡ ⎤⎪ ⎪= − − + − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 (25) 

Equations 15-2, 19, and 23 are used to summarized 
( )g xγ  which reads 

21( ) exp 2 (3 )
2

cmE xg x x e x xγ
γ α α γ⎡ ⎤= − − +⎢ ⎥⎣ ⎦

 (26) 

The lower component  of the Dirac hyper-

central spinor can be found from (8,26). The normalized 

spin 

)(xfγ

1
2

 positive parity solution of the quark under 

standard hyperspherical potential (4 and 6) is introduced 
by the following form. 
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 (27) 
where ti is the isospin operator of the quark and  

is the relative quark pair coordinate. The second one is a 
spin-isospin interaction, given by 

ijrx =

2

2( )1 ( . )( . )
( )

ij

sI

r

sI sI i j i j
i j sI

H A e s sσ

πσ

−

<

= ∑ t t  (30) By using this wavefunction and introducing 
hyperfine interaction of the standard form as the 
pertubertive, we can treat this function. 

Hamiltonian with the Hyperfine Interaction 
(Depending on Spin and Isospin) 

The standard hyperfine interaction is used in order to 
reproduce the splitting within the SU (6) multiplets. It 
contains a δ-like term which is an illegal operator [2]: 

3( )1 ( . )S

x i

Spin S i j
i jS

H B e s s
=−

Λ

<

⎛ ⎞
= ⎜ ⎟

⎜ ⎟Λ⎝ ⎠
∑ r r

 (28) 

where  and  are respectively the spin and isospin 
operators of the 

is it
thi − quark and x = rij is the relative 

quark pair coordinate. The fitted parameters in Equation 
30 again, can be fitted with the  mass difference 
[2] 

NΔ −
251.7IA fm= , 3.45I fmσ = , 2106.2SIA fm= −  

2.31SI fmσ = . If the nucleon mass M  and the 
phenomenological quark mass  
are used as input then the Equation 27 contain unknown 
parameter a only. In order to find this parameter a for 
different values of γ (γ = 0, 1, 2,…), another constraint 

is introduced 

(100 350) MeVqm≤ ≤

1.26A

V

g
g

=  which was performed by 

Golowich [26] for the first time. 

where si is the spin operator of the i-th quark and x = rij 
is the relative quark pair coordinate. The strength of the 
hyperfine interaction is determined by the  mass 
difference. The fitted parameters are [2] 

NΔ −

5 5(1 2 ) 1 2
3 3

A
z

V

g
l

g γ γδ ψ ψ⎡ ⎤= − = − < >⎣ ⎦  (31) 
Bs = 196.4 fm2, Λs = 1.6 fm 

To introduce the isospin nonconfining potential we 
have the chiral Constituent Quark Model (CQM) 
[22,23]. The nonconfining part of the potential is 
provided by the interaction with the Goldstone bosons, 
giving rise to a spin- and isospin dependent part, which 
is crucial for the description of the spectrum for 
energies lower than 1.7 GeV. It has been also pointed 
out quite recently that an isospin dependence of the 
quark potential can be obtained by means of quark 
exchange [24]. More generally, one can expect that the 
quark-antiquark pair production can lead to an effective 
quark interaction containing an isospin (or flavour)-
dependent term. On the other hand, the fact that the 
constituent quark model does not contain explicitly this 
mechanism, may account for the low Q2 behaviour of 
the electromagnetic transition in which form factors are 
not reproduced [24,25].With these motivations in mind, 
we have introduced isospin-dependent terms in the 
hCQM Hamiltonian. To this end we have added two 
terms in the three-quark Hamiltonian with the hyperfine 
interaction. The first one depends on the isospin only 
and has the form: 

where γψ  is the perturbed wave function and we write 
it as 

0 0

0 0
inH

E E

0
γ γ γ

γ γ
γ γ γ γ

ψ ψ ψ
ψ ψ

′
′ ′

′± ′

′〈 〉
′= +

−∑  (32) 

in which 0 0
s Iγ γψ ψ χ χ′ =  and in s I SIH H H H= + + . 

By using the wavefunction (32) and Equation 31 the 
parameter a can be found. 

We first assume 0γ = . The potential parameters can 
be extracted from Equations 31 and 15 for proton with 

938M =  MeV and  MeV as follows: 100qm =
30.511 ma f −= ,  and . 22.294 mb f −= 0.885c =

Calculations for different values of γ = 1, 2,… in the 
mentioned range for the quark can be done in the same 
way and are tabulated in Table 1. For proton and other 
hadrons such as Λ, N,… the calculations are similar. 
Taking Λ as another example, the quark masses of s and 
u in Λ  can be calculated from 2 u sM ε εΛ′ = + . 

2

2( )1 ( . )
( )

ij

I

r

I I
i j I

i jH A e σ

πσ

−

<

= ∑ t t  (29) 

Parameters for quarks in  that were obtained using 
the above method, are shown in Table 2. For calculating 
the difference between u-quark and s-quark masses one 

must use the ratio 

Λ

46.1=
u

s

m
m  of Chiral symmetry [21]. 
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Table 1.  Static properties of proton for different quark masses a, b, and c are the strength parameters of potential. This table shows 
that as the quark mass increases the potential parameters a, b, and c decrease and for mq = M/3 the results are close to the naïve quark 
model (NQM) 

mq (MeV) 2 1 / 2( )em pr< > (fm) (μp) (n.m) (a)(fm−3) (b)(fm−2) (c) 

100 0.782 2.732 0.511 2.294 0.885 
125 0.789 2.786 0.431 1.190 0.791 
150 0.794 2.794 0.392 1.177 0.762 
175 0.803 2.801 0.271 1.121 0.618 
200 0.812 2.808 0.183 0.810 0.501 
225 0.835 2.812 0.136 0.616 0.442 
250 0.849 2.814 0.102 0.482 0.403 
275 0.869 2.818 0.077 0.389 0.379 
300 0.885 2.821 0.048 0.266 0.335 
312 0.894 2.824 0.015 0.089 0.205 

 
 

Table 2.  The static properties of Λ for different quark masses. a, b, and c are the strength parameters of potential. This table shows 
that the quark mass increases the potentials parameters a, b, and c decrease for mq = M/3 the results are close to the naïve quark 
model (NQM) 

mu (MeV) ms (MeV) 2 1 / 2( )emr Λ< > (fm) (μΛ) (n.m) (a)(fm−3) (b)(fm−2) (c) 

100 146 0.453 −0.632 0.831 2.324 0.987 
125 182.5 0.453 −0.630 0.721 1.993 0.892 
150 219 0.453 −0.624 0.511 1.714 0.831 
175 255.5 0.453 −0.620 0.428 1.382 0.718 
200 292 0.453 −0.617 0.393 0.931 0.602 
250 328.5 0.482 −0.614 0.427 0.780 0.512 
250 365 0.494 −0.612 0.258 0731 0438 
275 401.5 0.508 −0.611 0.175 0.634 0.394 
300 438 0.519 −0.610 0.131 0.321 0.249 
320 467.2 0.527 −0.609 0.069 0.181 0.201 

 
 
 
Based on the Table 2 for Λ  quarks it follows that 

. 110.1)(112.0 ≤≤ usα

Baryon Charge Radius 
Let’s take proton and Λ  charge-radius. The charge-

radius < rem p
2 1

2>  is defined as 

qqpem rer ><=>< ∑ 22  (33) 

where 

2 2

0
( ) ( )qr x x x d

γγψ ψ
∞

〈 〉 = ∫

Here )(
)(

r
r

γ
ψ  is the quark wave function given by 

(32). Charge radius for different quark masses were 
calculated and tabulated in Tables 1 and 2. Using the 
potential parameters in these tables, the results fall in 
the expected ranges for the charge radius of proton and 
Λ . That is 

1
220.782 ( ) 0.894em pfm r fm≤ > ≤   for   (35) P

1
220.436 ( ) 0.527b

e mfm r fmΛ≤ < > ≤   for  Λ  (36) 

3x  (34) 
The charge radius proton surprisingly agrees with 

experiment 
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Table 3.  Magnetic moment of several baryons of 1
2

pJ
+

=  

octed and decupled 3
2

pJ
+

=  for different quark masses as 

derived in our model. The quark masses are in the range 100 
MeV ≤ mq = md = mu ≤ 350 MeV and the strange quark mass 
is ms = 1.46 mu 

Baryons 
 

Magnetic momentum  
our model (n.m) 

Magnetic Momentum 
Observed (n.m) 

1
2( )P +  2.732 2.824pμ≤ ≤  2.793 

1
2( )N +  1.993 1.849Nμ− ≤ ≤ −  −1.913 

1
2( )+Λ  0.632 0.609μΛ− ≤ ≤ −  −0.614±0.005 

1
2( )++Σ  2.256 2.427μ +Σ

≤ ≤  2.38±0.02 

1
2( )+−Σ  1.048 0.942μ −Σ

− ≤ ≤ −  −100±0.12 

0 1
2( )+Ξ  1.291 1.215μ −Ξ

− ≤ ≤ −  −1.25±0.014 

1
2( )+++Δ  3.753 4.165μ ++Δ

≤ ≤  ? 

1
2( )++Δ  3.869 4.282μ +Δ

≤ ≤  ? 

3
2( )++Σ  2.131 2.373μ +Σ

− ≤ ≤  ? 

3
2( )+−Σ  1.179 0.974μ −Σ

− ≤ ≤ −  ? 

The agreement for the magnetic moments are obvious 
according to the above results which is a consequence of using 
the (hCQM) and isospin dependent potentials for the baryon 
magnetic moment for P, N, Λ, ∑+, ∑−,… 

 

Baryon Magnetic Moments 

Taking proton and  as examples and using the 
standard definitions of magnetic moment, it can be 
shown that the general expression for the magnetic 
moment of a quark in its ground state is [10]: 

Λ

2 3

0

2 ( ) ( )
3q qe N x f x g x dxγ γμ

∞
= − ∫  (37) 

Using the upper and lower components of the spinor 
(32) and the potential parameters a1, b1, and c1 from 
Table 1 and 2, the magnetic moment for different quark 
masses can be calculated. These are also tabulated in 
Tables 1 and 2. Based on these tables, proton and Λ 
magnetic moment vary as: 

2.712 n.m ( ) 2.872n.mpμ≤ ≤  (38) 

0.632 n.m ( ) 0.609n.mμΛ− ≤ ≤ −  (39) 

respectively (n.m. = nuclear magnetons), which are well 

consistent and comparable with the measured value 
 n.m.,  n.m. exp 2.792pμ = exp 0.614 0.005μΛ = − ±

In addition based on our method the magnetic 

moment of other hadrons 1 1( ( ) ( )
2 2

N
+ +

+∑ , 

1( ), )
2

+
+∑ K  are in good agreement with the 

experimental results (Table 3). 

Conclusion 

A considerable improvement in the description of the 
static properties of nucleon is obtained with an isospin-
dependent potential. As quoted in the previous section, a 
possible motivation of the isospin-dependent terms of 
the quark interaction is given by quark-antiquark pair 
production mechanisms would improve theoretical 
results. In this article we have shown the complete 
interaction including spin and isospin terms reproduces 
the position of the quark. The hypercentral potential is a 
good starting point for construction of an unperturbed 
states and leads to realistic quark states, which shows 
the static properties of nucleon which are sensitive to 
the corrected wave functions. The higer-order correction 
will give better results. 

Since this model gives reasonable results, it would 
lead us to determine the kind of modification which 
yields the observable static properties of a nucleon that 
is super singly close to the experiment. In Table 1 we 
have shown the relative modification of the axial charge 

26.1=
V

A

g
g , magnetic moment (μ) and root mean square 

radius (RMS) which are comparable well to the 
experimental results . The consistency for the magnetic 
moments is surprisingly good for p, N, Λ,… The 
deviations are very small and probably undetectable and 
give uncertainties. The results are applied to all of the 
baryons as well. 
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