MODULE HOMOMORPHISMS ASSOCIATED WITH
HYPERGROUP ALGEBRAS

A. Ghaffari*

Department of Mathematics, Faculty of Sciences, Tarbiat Modarres University, P.O.Box 14115/175, Tehran, Islamic Republic of Iran

Abstract
Let X be a hypergroup. In this paper, we study the homomorphisms on certain subspaces of L(X)* which are weak*-weak* continuous.

Keywords: Homomorphisms; Hypergroup algebras; Weak*-weak* continuous

1. Introduction and Notations
The theory of hypergroups was initiated by Dunkl [3], Jewett [7] and has received a good deal of attention from harmonic analysts. It is still unknown whether an arbitrary hypergroup admits a left Haar measure (for more information see [2]). The lack of the Haar measure and involution presents many difficulties, however, we succeed to get some interesting results. Let X be a hypergroup (for more information see [3] or [10]) with convolution measure algebra M(X) and probability measures Mp(X). Recall that L(X) denotes the set of all measures μ∈M(X) for which the mapping x→lμlδx is norm-continuous [6,10]. We assume that X is foundation, i.e. U{supp(μ); μ∈L(X)} is dense in X. It is well known that L(X) is an ideal in M(X) and L(X) has a positive bounded approximate identity bounded by 1 ([6], Lemma 1).

The first Arens product on L(X)** is defined in three steps as follows. For μ,ν∈L(X)*, f in L(X)* and F,G in L(X)**, the elements fμ, Ff of L(X)* and GF of L(X)** are defined by <fμ,ν>=<f,μ*ν>, <Gf,μ*>=<G,μf*> and <FG, f>=<F, Gf>.

2. Main Results
Let B=L(X)**L(X), we know that B is a Banach subspace of L(X)*. The formulas which define the first Arens product in L(X)** can also be used to define a Banach algebra structure on B* [10]. Finally, for every μ∈L(X), ν∈M(X) and f∈L(X)*, we define <vf,μ> =<f,μ*ν> and <fv,μ>=<f,v*μ>, so that M(X)⊆B*. Also, we define <mf,ν>=<m,fv> for any m∈B*, f∈L(X)* and ν∈L(X). Most of our notation in this paper coming from [6,10]. In this paper, we will characterize some homomorphisms which are weak*-weak* continuous (see below).

1. Introduction and Notations

The theory of hypergroups was initiated by Dunkl [3], Jewett [7] and has received a good deal of attention from harmonic analysts. It is still unknown whether an arbitrary hypergroup admits a left Haar measure (for more information see [2]). The lack of the Haar measure and involution presents many difficulties, however, we succeed to get some interesting results. Let X be a hypergroup (for more information see [3] or [10]) with convolution measure algebra M(X) and probability measures Mp(X). Recall that L(X) denotes the set of all measures μ∈M(X) for which the mapping x→lμlδx is norm-continuous [6,10]. We assume that X is foundation, i.e. U{supp(μ); μ∈L(X)} is dense in X. It is well known that L(X) is an ideal in M(X) and L(X) has a positive bounded approximate identity bounded by 1 ([6], Lemma 1).

The first Arens product on L(X)** is defined in three steps as follows. For μ,ν∈L(X)*, f in L(X)* and F,G in L(X)**, the elements fμ, Ff of L(X)* and GF of L(X)** are defined by <fμ,ν>=<f,μ*ν>, <Gf,μ*>=<G,μf*> and <FG, f>=<F, Gf>.

2. Main Results

Let B=L(X)**L(X), we know that B is a Banach subspace of L(X)*. The formulas which define the first Arens product in L(X)** can also be used to define a Banach algebra structure on B* [10]. Finally, for every μ∈L(X), ν∈M(X) and f∈L(X)*, we define <vf,μ> =<f,μ*ν> and <fv,μ>=<f,v*μ>, so that M(X)⊆B*. Also, we define <mf,ν>=<m,fv> for any m∈B*, f∈L(X)* and ν∈L(X). Most of our notation in this paper coming from [6,10]. In this paper, we will characterize some homomorphisms which are weak*-weak* continuous (see below).

1. Introduction and Notations

The theory of hypergroups was initiated by Dunkl [3], Jewett [7] and has received a good deal of attention from harmonic analysts. It is still unknown whether an arbitrary hypergroup admits a left Haar measure (for more information see [2]). The lack of the Haar measure and involution presents many difficulties, however, we succeed to get some interesting results. Let X be a hypergroup (for more information see [3] or [10]) with convolution measure algebra M(X) and probability measures Mp(X). Recall that L(X) denotes the set of all measures μ∈M(X) for which the mapping x→lμlδx is norm-continuous [6,10]. We assume that X is foundation, i.e. U{supp(μ); μ∈L(X)} is dense in X. It is well known that L(X) is an ideal in M(X) and L(X) has a positive bounded approximate identity bounded by 1 ([6], Lemma 1).

The first Arens product on L(X)** is defined in three steps as follows. For μ,ν∈L(X)*, f in L(X)* and F,G in L(X)**, the elements fμ, Ff of L(X)* and GF of L(X)** are defined by <fμ,ν>=<f,μ*ν>, <Gf,μ*>=<G,μf*> and <FG, f>=<F, Gf>.

2. Main Results

Let B=L(X)**L(X), we know that B is a Banach subspace of L(X)*. The formulas which define the first Arens product in L(X)** can also be used to define a Banach algebra structure on B* [10]. Finally, for every μ∈L(X), ν∈M(X) and f∈L(X)*, we define <vf,μ> =<f,μ*ν> and <fv,μ>=<f,v*μ>, so that M(X)⊆B*. Also, we define <mf,ν>=<m,fv> for any m∈B*, f∈L(X)* and ν∈L(X). Most of our notation in this paper coming from [6,10]. In this paper, we will characterize some homomorphisms which are weak*-weak* continuous (see below).
Let A be a Banach algebra with a bounded approximate identity. It is well known that A^* and $(A^*)^*$ with the first Arens product are Banach algebras [1]. In addition, we define $\langle n, x \rangle = n\langle x \rangle$ for $n \in (A^*)^*$, $\epsilon \in A^*$ and $\epsilon \in A$.

We recall that multiplication in a locally convex algebra A is said to be hypcontinuous, if for every neighbourhood U of zero in A and a bounded subset C of A, there exists a neighbourhood V of zero such that $CV \subset UC \subset U$. The following Lemma shows that if multiplication in a Banach algebra A with a bounded approximate identity, is hypcontinuous in the weak-topology, then A^\ast factors on the left, i.e. $A^\ast A = A^\ast$ [9].

Lemma 2.5. Let A be a Banach algebra with a bounded approximate identity, and let the multiplication with weak-topology on A be hypcontinuous. Then A^\ast factors on the left.

Proof. Let $h \in A^\ast$ and B_i be unit ball in A. By assumption, weak-topology on A is hypcontinuous. Therefore there exists a finite subset $\{f_1, f_2, ..., f_n\}$ in A^\ast and $\epsilon_0 > 0$ such that B_i is ϵ-open in A^\ast and $\epsilon_0 < \epsilon$ for any $\epsilon \in \{1, 2, ..., n\}$, $a \in A$, $\langle x, a \rangle > 0$ and $a \in A$. Now, let $a \in A$ and $\langle x, a \rangle > 0$ for all $i \in \{1, 2, ..., n\}$. For $b \in B_i$, we have $\langle b, a \rangle = 0$, and so $hA \cap \{f_1, f_2, ..., f_n\} = \emptyset$. By ([11], Theorem 1.2), hA is a closed subspace of A^\ast. On the other hand, if e_\ast is a bounded approximate identity in A, then $e_\ast h = h$ is well defined and $hA = hA$.

Theorem 2.6. Assume X is such that weak-topology on $L(X)$ is hypcontinuous. Let $T : L(X) \to L(X)$ be a bounded linear map such that $T(f \delta) = T(f) \delta$ for all $f \in L(X)$ and $\|x\| = \|x\|_1$. Then $T \in \text{Hom}_{\text{hyp}}(L(X), L(X))$.

Proof. Let $h \in A^\ast$ and B_i be unit ball in A. By assumption, weak-topology on A is hypcontinuous. Therefore there exists a finite subset $\{f_1, f_2, ..., f_n\}$ in A^\ast and $\epsilon_0 > 0$ such that B_i is ϵ-open in A^\ast and $\epsilon_0 < \epsilon$ for any $\epsilon \in \{1, 2, ..., n\}$, $a \in A$, $\langle x, a \rangle > 0$ and $a \in A$. Now, let $a \in A$ and $\langle x, a \rangle = 0$ for all $i \in \{1, 2, ..., n\}$. For $b \in B_i$, we have $\langle b, a \rangle = 0$, and so $hA \cap \{f_1, f_2, ..., f_n\} = \emptyset$. By ([11], Theorem 1.2), hA is a closed subspace of A^\ast. On the other hand, if e_\ast is a bounded approximate identity in A, then $e_\ast h = h$ is well defined and $hA = hA$.
Theorem 2.7. Let A be a Banach algebra with a bounded approximate identity bounded by 1, and T ∈ Homₐₐ(ₐₐ,ₐₐ). The following statements are equivalent:

1) There exists a n ∈ (ₐₐ) such that an ∈ A for all a ∈ A, and T = Tₙ.
2) T is weak⁎-weak* continuous.

Proof. Let T = Tₙ and an ∈ A for any a ∈ A. Let (fₙ) be a net in A such that fₙ → f (f ∈ A') in the weak*-topology. For a ∈ A, we have <an,fₙ> → <an,f> and so <Tₙ(fₙ),a> → <Tₙ(f),a> which shows that T is weak⁎-weak* continuous.

To prove the converse, let T ∈ Homₐₐ(ₐₐ,ₐₐ). By ([1], Theorem 1.1), there exists a n ∈ (ₐₐ) such that T = Tₙ. Now, let a ∈ A. By assumption, T is weak⁎-weak* continuous and so Tₙ(a) ∈ A is weak⁎-continuous. It follows that Tₙ(ₐ) ∈ A ([11], Chapter 3). On the other hand, <Tₙ(a),f> = <ca,Tₙ(f)> = <an,f> where f ∈ A', i.e. Tₙ(a) = an. Consequently an ∈ A for any a ∈ A.

This completes our proof.

Corollary 2.8. Let A be a Banach algebra with a bounded approximate identity bounded by 1. If all operators T in Homₐₐ(ₐₐ,ₐₐ) are weak⁎-weak* continuous, then (ₐₐ) = Z where Zₙ = {n ∈ (ₐₐ)}; the mapping m → nm is weak⁎-weak* continuous.

Proof. Suppose all operators T in Homₐₐ(ₐₐ,ₐₐ) are weak⁎-weak* continuous, and let n ∈ (ₐₐ). Then Tₙ ∈ Homₐₐ(ₐₐ,ₐₐ) is weak⁎-weak* continuous. By Theorem 2.7, an ∈ A for any a ∈ A. A standard argument using the Cohen-Hewitt factorization Theorem shows that AA = A. Now, let m → m in the weak⁎-topology, and let f → B. There exist g ∈ B and a ∈ A such that f = ga. Therefore <nmₙ,f> = <nmₙ,g> = <mₙ,g> and <nmₙ,f> = <m,gan>. This shows that <nmₙ,f> → <m,gan>, i.e. n ∈ Zₙ. Consequently Zₙ = (ₐₐ).

Corollary 2.9. Let G be a locally compact group. Then all operators T in Homₐₐ(L¹(G), L¹(G)) are weak⁎-weak* continuous if and only if G is compact.

Proof. By ([8], Theorem 1), we have Zₙ(LUC(G)) = M(G). On the other hand, LUC(G) = M(G) ⊕ C(G) (5), Lemma 1.1. The results follows from Corollary 2.8.

For some Banach algebras A, the subspace {n ∈ (ₐₐ)} of B has been studied by Lau and Ulger in [9]. In the following Theorem we will study {n ∈ B, L(X)n⊂L(X)} = M(X).

Theorem 2.10. Let X be a hypergroup. Then {n ∈ B, L(X)n⊂L(X)} = M(X).

Proof. Since L(X) is an ideal in M(X), we have M(X)n⊂M(X) = M(X). For the reverse inclusion, let n ∈ B; L(X)n⊂L(X). So the mapping v → vn from L(X) into L(X) is a right multiplier. By ([6], Proposition 1), there exists a measure μ in M(X) such that vμ = vn for any v ∈ L(X). Now, let (eₙ) be a bounded approximate identity in L(X) and eB. Then <eₙμ,f> = n,f> (for all α) implies <μ,f> = <eₙ,f>, i.e. μ = n. This completes our proof.

Corollary 2.11. Assume X is such that Zₙ(B) = M(X). Then L(X) is an ideal in B' if and only if X is compact.

Proof. Let L(X) be an ideal in B', and let n ∈ B'. It is easy to see that the operator Tₙ is weak⁎-weak* continuous. Consequently by Corollary 2.8, B' = Zₙ(B) = M(X). But B' = M(X) ⊕ C(X) (11), Theorem 4), and so C(X) = {0}, i.e. X is compact.

To prove the converse, let X be compact. Then B' = M(X), and so the operator Tₙ(n ∊ B') is weak⁎-weak* continuous. Theorem 2.7 shows that L(X) is a right ideal in B'. On the other hand, by definition X is commutative [3,6,10], so that L(X) is an ideal in B'.

Acknowledgements

This work was done while the author was visiting the Department of Mathematical Sciences at the University of Alberta. The Author would like to thank both Professor A.T. Lau and University of Alberta for their hospitality.

References