TOPOLOGICALLY STATIONARY LOCALLY COMPACT SEMIGROUP AND AMENABILITY

H.P. Masiha¹ and A. Riazi^{2,*}

¹ Faculty of Mathematics, Amir kabir University of Technology, Tehran, Islamic Republic of Iran ² Department of Mathematics, Faculty of Science, K.N. Tossi University of Technology, Shariati Street, Tehran, Islamic Republic of Iran

Abstract

In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values $\mu(f)$ where μ runs over all left invariant means on m(S) coincides with the set of constants in the weak^{*} closed convex hull of right translates of f. The main purpose of this paper is to prove a topological analogue (which is also a generalization) of this theorem for locally compact semigroups.

Keywords: Topological stationary; Topological left invariant mean

1. Introduction

Let S be a locally compact Hausdorff semigroup. Let CB(S) be the algebra of all continuous functions on S and $C_0(S)$ be the subalgebra of CB(S) consisting of functions which vanish at infinity. Let M(S) be the Banach space subalgebra of all bounded regular Borel (Signed) measures on S with total variation norm. Let

 $M_0(S) = \{ \mu \in M(S) : \mu \ge 0, \| \mu \| = 1 \}$

be the set of all probability measures in M(S).

It is known that $M(S) = C_0(S)^*$ via the correspondence $\mu \to \overline{\mu}$ where $\overline{\mu}(f) = \int f d\mu$ for any f in $C_0(S)$, [3, Sec. 14]. Consider the continuous dual $M(S)^*$ of M(S). Denote by 1, the element 1 in $M(S)^*$ such that $1(\mu) = \mu(S)$ for any μ in M(S).

Also if T is a Borel subset of S, we define the *characteristic functional* χ_T of T in $M(S)^*$ by $\chi_T(\mu) = \mu(T)$ for any μ in M(S).

Let X be a linear subspace of $M(S)^*$ containing 1. An element M in X^* is called a *mean* on X if M(1)=1 and $M(F) \ge 0$, whenever $F \ge 0$ as a functional in $M(S)^*$, i.e., $F(\mu) \ge 0$ for all $\mu \ge 0$. An equivalent definition for a mean is that

$$\inf\{F(\mu): \mu \in M_0(S)\} \le M(F)$$
$$\le \sup\{F(\mu): \mu \in M_0(S)\}$$

for any *F* in *X*. Also $M \in X^*$ is a mean if and only if ||M|| = M(1) = 1. The set of all means on *X* is a weak* compact convex subset of X^* . Each probability measure μ in $M_0(S)$ is a mean on *X* if we put $\mu(F) = F(\mu)$, for any *F* in *X*. An application of

^{*} E-mail: riazi@cic.aku.ac.ir

Hahn-Banach separation Theorem shows that $M_0(S)$ is weak* dense in the set of all means on X.

For $F \in M(S)^*$ and $\mu \in M(S)$, define $l_{\mu}F \in M(S)^*$ by

$$(l_{\mu}F)v = (\mu \odot F)v = F(\mu * v), \quad v \in M(S)$$

and define $r_{\mu}F \in M(S)^*$ by

$$(r_{\mu}F)\nu = (F \odot \mu)\nu = F(\nu * \mu), \quad \nu \in M(S)$$

For $M \in M(S)^{**}$ and $F \in M(S)^{*}$ define $M \odot F \in M(S)^{*}$ by

$$(M \odot F) \ \mu = M(F \odot \mu) \ , \ \mu \in M(S)$$

and for M, $N \in M(S)^{**}$ define $M \odot N \in M(S)^{**}$ by

$$(M \odot N)F = M(N \odot F), \quad F \in M(S)^*$$

see [1] for details.

For $s \in S$, ε_s denotes the Dirac measure at s. The convolutions $\varepsilon_s * \mu$ and $\mu * \varepsilon_s$ are defined for all f in $C_0(S)$ as following

$$\int f d\varepsilon_s * \mu = \iint f(xy) d\varepsilon_s(x) d\mu(y)$$
$$= \int f(sy) d\mu(y) = \int (l_s f)(y) d\mu(y)$$

and

$$\int f d\mu * \varepsilon_s = \iint f(xy) d\mu(x) d\varepsilon_s(y)$$
$$= \int f(xs) d\mu(x) = \int (r_s f)(x) d\mu(x)$$

We denote the natural isometric embedding of M(S) into $M(S)^{**}$ by Q.

 $\mathcal{L}[\mathcal{R}] \text{ is the set of all left [right] translations of } M(S)^* \text{ by elements of } S \text{ (i.e., } l_{\varepsilon_s}F = \varepsilon_s \odot F[r_{\varepsilon_s}F = F \odot \varepsilon_s] \text{ for each } s \in S \text{ and } F \in M(S)^*).$

We denote $\Lambda = \operatorname{Co}(\mathcal{L}) = \operatorname{convex} \operatorname{hull} \operatorname{of} \mathcal{L}$, and $\mathcal{B} = \operatorname{Co}(\mathcal{R})$. For $F \in M(S)^*$, $\mathfrak{Z}_{\mathcal{R}}(F) \subseteq M(S)^*$ $[\mathfrak{Z}_{\mathcal{L}}(F) \subseteq M(S)^*]$ is given by

$$\begin{aligned} \mathfrak{Z}_{\mathcal{R}}(F) &= w^* - cl(Co(\mathcal{R} F)) = w^* - cl(\mathcal{B} F) \\ &= w^* - cl\{r_{\mu}F : \mu \in M_0(S)\} \end{aligned}$$

$$\begin{aligned} \mathfrak{Z}_{\mathfrak{L}}(F) &= w^* - cl(Co(\mathfrak{L} F)) = w^* - cl(\Lambda f) \\ &= w^* - cl\{l_{\mu}F : \mu \in M_0(S)\} \\ \\ \mathfrak{R}_{\mathfrak{R}}(F) &= \{a: a \text{ is real}, a.1 \in \mathfrak{Z}_{\mathfrak{R}}(F)\} \\ \\ \mathfrak{R}_{\mathfrak{L}}(F) &= \{a: a \text{ is real}, a.1 \in \mathfrak{Z}_{\mathfrak{L}}(F)\} \end{aligned}$$

REMARK. If $a \in \mathfrak{R}_{\mathcal{R}}(F)$ then there is a net $\{\mu_{\alpha}\}$ in $M_0(S)$ such that $\{r_{\mu_{\alpha}}F\}$ converges weak* to a.1. Similarly if $a \in \mathfrak{R}_{\mathcal{L}}(F)$ then is a net $\{\mu_{\alpha}\}$ in $M_0(S)$ such that $\{l_{\mu_{\alpha}}F\}$ converges weak* to a.1.

LEMMA 1.1. a) If M, N are means on $M(S)^*$, so is $M \odot N$;

b) If $\mu \in M(S), M, N \in M(S)^{**}$, Then $Q\mu \odot M = r_{\mu}^{*}M$ and $M \odot Q\mu = l_{\mu}^{*}M$;

c) For fixed μ in M(S), $Q\mu \odot M$ is w^*-w^* continuous in the second variable and $M \odot Q\mu$ is w^*-w^* continuous in the first variable, for each $M \in M(S)^{**}$;

d) For fixed $M \in M(S)^{**}$, The map $N \to N \odot M$ is w^*-w^* continuous;

e) $Q: M(S) \to M(S)^{**}$ is an isomorphism of the algebra M(S) into $M(S)^{**}$, i.e., $Q\mu \odot Qv = Q(\mu * v)$, for any μ, v in M(S);

f) If M is topological left invariant (i.e., for each $\mu \in M_0(S)$ and $F \in M(S)^*$, $M(\mu \odot F) = M(F)$) and N is a mean on $M(S)^*$, then $N \odot M = M$.

Proof. (a), (b), (c) and (d) are obvious [2, Sec. 2, (B)]. We know that Q is isometry of M(S) into $M(S)^{**}$ and also is linear. For F in $M(S)^*$, we have

$$(Q\mu \odot Q\nu)(F) = (l_{\mu}^{*}Q\nu)(F)$$
$$= Q\nu(l_{\mu}F)$$
$$= Q\nu(\mu \odot F)$$
$$= (\mu \odot F)(\nu)$$
$$= F(\mu * \nu)$$
$$= Q(\mu * \nu)(F)$$

Thus $Q\mu \odot Q\nu = Q(\mu * \nu)$, which (e) is proved. Now, by weak* density of the set $M_0(S)$ in the set of means on $M(S)^*$, there is a net $\{\mu_{\alpha}\}$ in $M_0(S)$ such that $\mu_{\alpha} \rightarrow N$ in weak* topology of $M(S)^{**}$ (we consider μ_{α} as a mean, $\mu_{\alpha}(F) = F(\mu_{\alpha})$ for each $F \in M(S)^*$). Then by (d), $\mu_{\alpha} \odot M \to N \odot M$ weak*. Now

$$\mu_{\alpha} \odot M = l_{\mu_{\alpha}}^* M = M$$

Since M is topological left invariant, hence $N \odot M = M$ which (f) is proved.

2. Topological Stationary Semigroups

T. Mitchell [4] proved that a semigroup S is right stationary if and only if m(S) has a left invariant mean. In this section we investigate the concept of topological stationary for locally compact semigroups and we present topological analogue of results of T. Mitchell.

DEFINITION 2.1. Let *S* be a locally compact semigroup. *S* is called *topological right stationary* [*topological left stationary*] whenever $\Re_{\mathcal{R}}(F)$ [$\Re_{\mathcal{X}}(F)$] is nonempty, for all *F* in $M(S)^*$.

REMARKS. a) If $\mathfrak{R}_{\mathcal{R}}(F)$ is nonempty, then there exists a net $\{\mu_{\alpha}\}$ in $M_0(S)$ such that $\{r_{\mu_{\alpha}}F\}$ converges weak* to a constant functional in $M(S)^*$ for each $F \in M(S)^*$. Similarly if $\mathfrak{R}_{\mathcal{L}}(F)$ is nonempty, then there is a net $\{\mu_{\alpha}\}$ in $M_0(S)$ such that $\{l_{\mu_{\alpha}}F\}$ converges weak* to a constant functional in $M(S)^*$ for each $F \in M(S)^*$.

b) Definition 2.1 is a topological analogue as well as an extension of the definition of T. Mitchell [4] for discrete semigroups.

DEFINITION 2.2. For each M in $M(S)^{**}$, define a mapping $M_R: M(S)^* \to M(S)^*$ by $(M_R(F))(\mu)$ $= M(F \odot \mu)$ for any $F \in M(S)^*$ and $\mu \in M(S)$. The operator M_R is called the *topological right introversion* of M. Similarly the *topological left introversion* $M_L: M(S)^* \to M(S)^*$ is defined by $(M_L(F))(\mu)$ $= M(\mu \odot F)$ for any $F \in M(S)^*$ and $\mu \in M(S)$.

LEMMA 2.3. a) $M_R: M(S)^* \to M(S)^*$ is bounded and linear. Moreover $||M_R(F)|| \le ||M|||F||$ and $M_R(F) = M \odot F$ for any $F \in M(S)^*$.

b) If $M \in M(S)^{**}$, $F \in M(S)^*$, μ , $\nu \in M(S)$, then $M_I(\mu \odot F) = \mu \odot M_L(F)$.

c) For M, $N \in M(S)^{**}$, $M \odot N$ is topological left invariant if M is topological left invariant.

d) If $M_{\alpha} \to M$ in norm topology of $M(S)^{**}$, then $(M_{\alpha})_R \to M_R$ in uniform operator topology.

Proof. a) Clearly M_R is linear. For any $F \in M(S)^*$, μ , $\nu \in M(S)$, we have

$$|(M_{R}(F))(\mu)| = |M(F) \odot \mu|$$

$$\leq ||M||||F \odot \mu||$$

$$|(F \odot \mu)(v)| = |F(\mu * v)|$$

$$\leq ||F||||\mu * v||$$

$$\leq ||F||||\mu||||v||$$

Thus $||F \odot \mu|| \leq ||F||| \mu||$, and so

 $|(M_{R}(F))(\mu)| \leq ||M||||F|||||\mu||$

Hence $|| M_R(F) || \le || M |||| F ||$. Also

$$(M_R(F))(\mu) = M(F \odot \mu)$$
$$= (M \odot F)(\mu)$$

thus $M_R(F) = M \odot F$. b) If $\mu \in M(S)$, and $F \in M(S)^*$, we have

 $(M_{L}(\mu \odot F))(v) = M(v \odot (\mu \odot F))$ $= M((\mu * v) \odot F)$ $= (M_{L}(F))(\mu * v)$ $= (\mu \odot M_{L}(F))(v)$

So $M_L(\mu \odot F) = \mu \odot M_L(F)$. c) Let M be topological left invariant, then for each $\mu \in M_0(S)$ and $F \in M(S)^*$ we have

$$l_{\mu}^{*}(M \odot N)(F) = ((M \odot N) \odot \mu)(F)$$
$$= ((M \odot N)(\mu \odot F)$$
$$= M(N_{L}(\mu \odot F))$$
$$= M(\mu \odot N_{L}(F))$$
$$= M(N_{L}(F))$$
$$= (M \odot N)(F)$$

d) First note that

 $\left[((M_{\alpha})_{R} - M_{R})(F) \right] (\mu)$

$$= ((M_{\alpha})_{R}(F))(\mu) - (M_{R}(F))(\mu)$$
$$= M_{\alpha}(F \odot \mu) - M(F \odot \mu)$$
$$= (M_{\alpha} - M)(F \odot \mu)$$
$$= ((M_{\alpha} - M)_{R}(F))(\mu)$$

So $(M_{\alpha})_R - M_R = (M_{\alpha} - M)_R$ and by (a) we have,

$$\begin{split} \| ((M_{\alpha})_{R} - M_{R})(F) \| &= \| (M_{\alpha} - M)_{R}(F) \| \\ &\leq \| M_{\alpha} - M \| \| F \| \end{split}$$

now if $M_{\alpha} \to M$ in norm topology of $M(S)^{**}$ then $(M_{\alpha})_R \to M_R$ in uniform operator topology.

LEMMA 2.4. a) $M_L: M(S)^* \to M(S)^*$ is bounded and linear. Moreover $||M_L(F)|| \le ||M||||F||$ and $M_L(F) = F \odot M$ for any $F \in M(S)^*$;

b) If $M \in M(S)^{**}$, $F \in M(S)^{*}$, μ , $\nu \in M(S)$, then $M_R(F \odot \mu) = M_R(F) \odot \mu$;

c) For $M, N \in M(S)^{**}$, $M \odot N$ is topological right invariant if N is topological right invariant;

d) If $M_{\alpha} \to M$ in norm topology of $M(S)^{**}$, then $(M_{\alpha})_{L} \to M_{L}$ in uniform operator topology.

Proof. Similar to the proof of Lemma 2.3.

DEFINITION 2.5. A linear subspace X of $M(S)^*$ is said to be *topological left* [*right*] *introverted*, if for any mean M on $M(S)^*$, $M_L(X) \subseteq X[M_R(X) \subseteq X]$.

THEOREM 2.6. Let X be a topological left intorverted and topological left invariant linear subspace of $M(S)^*$ containing the constants. Then the following statements are equivalent:

a) X has a topological left invariant mean.

b) For any $F \in X$, there is a mean M on X such that

$$M(\mu \odot F) = M(F)$$
 for every $\mu \in M_0(S)$

Proof. (a) \Rightarrow (b), is clear.

(b) \Rightarrow (a), For each $F \in X$, define $\Re_F = \{ M : M \text{ is } a \text{ mean on } M(S)^*, M(\mu \odot F) = M(F) \text{ for any } \mu \in M_0(S) \}$

By assumption \mathfrak{R}_F is nonempty. (BY Hahn-Banach Theorem any mean on X can be extended to a mean on $M(S)^*$. We show that the family { $\mathfrak{R}_F : F \in X$ } has the finite intersection property. When n=1, by assumption \mathfrak{R}_{F_1} is nonempty. Assume $\bigcap_{i=1}^{n-1} \mathfrak{R}_{F_i}$ is nonempty. And let $M \in \bigcap_{i=1}^{n-1} \mathfrak{R}_{F_i}$. Let $F_1, \dots, F_n \in X$, since X is topological left introverted, $M_L(F_n) \in X$. Put $F = M_L(F_n)$. For this $F \in X$ there is a mean $N \in \mathfrak{R}_F$ on X such that $N(\mu \odot F) = N(F)$ for each $\mu \in M_0(S)$. By Lemma 1.1 (a), $N \odot M$ is a mean on X. We show that $N \odot M \in \bigcap_{i=1}^n \mathfrak{R}_F$.

For $1 \le i \le n-1$ and for each $\mu \in M_0(S)$, we have

$$(M_L(F_i))(\mu) = M(\mu \odot F_i) = M(F_i), \quad (M \in \mathfrak{R}_{F_i})$$

therefore for each $\mu \in M_0(S)$

$$(M_L(F_i))(\mu) = (M(F_i).1)(\mu)$$

Hence

$$M_L(F_i) = M(F_i).1$$

and it follows that for $\mu \in M_0(S)$,

$$(N \odot M)(\mu \odot F_i) = N(M_L(\mu \odot F_i))$$

= $N(\mu \odot M_L(F_i))$ (Lemma 2.3 (b))
= $N(\mu \odot (M(F_i).1))$
= $N(M(F_i).1)$
= $N(M_L(F_i))$
= $(N \odot M)(F_i)$

Now, if $\mu \in M_0(S)$, then

$$(N \odot M)(\mu \odot F_n) = N(M_L(\mu \odot F_n))$$
$$= N(\mu \odot M_L(F_n))$$
$$= N(\mu \odot F)$$
$$= N(F)$$
$$= N(M_L(F_n))$$
$$= (N \odot M)(F_n)$$

consequently $N \odot M \in \bigcap_{i=1}^{n} \mathfrak{R}_{F_i}$. By weak* compactness of the unit ball in $M(S)^{**}$ and the fact that \mathfrak{R}_F is

weak* closed subset of the unit ball of $M(S)^{**}$, it follows that $\cap \{\mathfrak{R}_F \colon F \in X\}$ is nonempty. Since X is topological left invariant linear subspace of $M(S)^*$, any mean in this intersection is a topological left invariant mean on X.

Remark. There is a different proof for the above theorem, when $X = M(S)^*$ as following [6].

Necessity: It is enough to show that the existence of such M_F , for each $F \in M(S)^*$ implies that for any μ , $\mu_2 \in M_0(S)$, $d((\mu_1 - \mu_2 * M_0(S)), 0) = 0$, where $d(\mu_1 - \mu_2 * M_0(S))$,

Sufficiency: Obvious.

REMARK. For discrete groups, this Theorem is due to E. Granirer and A.T.M. Lau [5] and the first proof follows the idea in [5].

THEOREM 2.7. Let X be a topological left introverted topological left invariant linear subspace of $M(S)^*$ containing the constants. The following statements are equivalent:

a) X has a topological left invariant mean,

b) X is topologically right stationary,

c) For any $F \in X$ and $a \in \mathfrak{R}_{\mathcal{R}}(F)$, there is a topological left invariant mean M on X such that M(F) = a.

Proof. By Definition 2.1, (c) is equivalent to (b).

(a) \Rightarrow (b). Assume that X has a topological left invariant mean M. Then there is a net $\{\mu_{\alpha}\}$ in $M_0(S)$ such that $\mu_{\alpha} \rightarrow M$ in weak* topology of X^* . Let $F \in X$, then

$$(F \odot \mu_{\alpha})(\mu) = (\mu \odot F)(\mu_{\alpha}) = \mu_{\alpha}(\mu \odot F)$$

$$\rightarrow M(\mu \odot F) = (M_{L}(F))(\mu) = (M(F).1)(\mu)$$

for any $\mu \in M_0(S)$, Hence { $F \odot \mu_{\alpha}$ } converges to the constant functional M(F). 1 in $M(S)^*$. That is M(F). $1 \in \mathfrak{Z}_{\mathfrak{R}}(F)$ and so $M(F) \in \mathfrak{R}_{\mathcal{R}}(F)$. Hence $\mathfrak{R}_{\mathcal{R}}(F)$ is nonempty, so X is topological right stationary, (b) \Rightarrow (a), For $F \in X$, by definition of $\mathfrak{R}_{\mathcal{R}}(F)$, there is a net { μ_{α} } in $M_0(S)$ such that { $F \odot \mu_{\alpha}$ } converges weak* to *a*.1 in $M(S)^*$. Without loss of generality, we can assume that { μ_{α} } converges weak* to some M in $M(S)^{**}$ by weak* compactness of the set of means in $M(S)^{**}$. Consider the mean $M \odot M$ on $M(S)^*$. We show that

$$M \odot M \in \mathfrak{R}_F.$$

For any
$$\mu \in M(S)$$

$$(M_{L}(F))(\mu) = M(\mu \odot F)$$
$$= \lim_{\alpha} \mu_{\alpha}(\mu \odot F)$$
$$= \lim_{\alpha} (F \odot \mu_{\alpha}) (\mu)$$
$$= (a.1) (\mu).$$

Hence $M_L(F) = a.1$. For each $\mu \in M_0(S)$

$$(M \odot M)(\mu \odot F) = M(M_L(\mu \odot F))$$
$$= M(\mu \odot M_L(F))$$
$$= M(\mu \odot (a.1))$$
$$= M(M_L(F))$$
$$= (M \odot M)(F)$$

thus $M \odot M \in \mathfrak{R}_{F}$. So we have proved that for each $F \in X$, \mathfrak{R}_{F} is nonempty. By Theorem 2.6, X has a topological left invariant mean N in $\cap {\mathfrak{R}_{F} : F \in X}$. Consider $N \odot M$, then

$$(N \odot M)(F) = N(M_L(F))$$

= $N(a.1)$

= a

Since N is a topological left invariant mean, so by Lemma 2.3 (c), $N \odot M$ is topological left invariant mean on X.

COROLLARY 2.8. If *S* is topological right stationary then *S* is topological left amenable (i.e., $M(S)^*$ has a TLIM).

Proof. Assume *S* is topological right stationary, so for each $F \in M(S)^*$, $\mathfrak{R}_{\mathcal{R}}(F)$ is nonempty, say $a \in \mathfrak{R}_{\mathcal{R}}(F)$ Hence there is a topological left invariant mean *M* on $M(S)^*$ such that M(F) = a. By Theorem 2.7, (c) \Rightarrow (a), $M(S)^*$ has a topological left invariant mean.

THEOREM 2.9. Let *S* be a locally compact semigroup, F_0 an arbitrary element of $M(S)^*$, $a \in \mathbb{R}$ and *M* a topological right invariant mean on $M(S)^*$. If $M(F_0) = a$ then there exists a net { μ_{α} } of elements of $M_0(S)$ such that:

(a) For any $F \in M(S)^*$, the net $\{r_{\mu_a}F\}$ converges pointwise to a constant functional,

(b) The net $\{r_{\mu_{\alpha}}F_0\}$ converges pointwise to a.1.

Proof. $M_0(S)$ is weak* dense in the set of means on $M(S)^*$. So there exists a net { μ_{α} } in $M_0(S)$ such that { μ_{α} } is weak* convergent to M. For any $F \in M(S)^*$

$$\lim_{\alpha} ((\mu_{\alpha})_{F}(F))(\mu) = \lim_{\alpha} \mu_{\alpha}(F \odot \mu)$$
$$= M(F \odot \mu)$$
$$= M(F)$$

Hence $\{(\mu_{\alpha})_r(F)\}$ converges pointwise to the constant functional N.1 where N = M(F). On the other hand,

$$((\mu_{\alpha})_{r}(F))(\mu) = \mu_{\alpha}(F \odot \mu)$$
$$= (F \odot \mu_{\alpha})(\mu)$$
$$= (r_{\mu_{\alpha}}F)(\mu)$$

hence $\{r_{\mu_{\alpha}}F\}$ converges pointwise to constant functional N.1, this proves (a). Now since $M(F_0) = a$, then $\{r_{\mu_{\alpha}}F_0\}$ is the required net in (b).

THEOREM 2.10. Let *S* be a locally compact semigroup, then the following are equivalent:

a) For every $F \in M(S)^*$, there exists a net { μ_{α} } in $M_0(S)$ such that $\{r_{\mu_{\alpha}}F_0\}$ converges pointwise to a constant functional.

b) S is topological left amenable.

c) there exists a net $\{v_a\}$ in $M_0(S)$, such that $\{r_{v_a}F\}$ converges pointwise to a constant functional for each $F \in M(S)^*$.

Proof. (a) \Rightarrow (b). By [4, Lemma 3], $\{r_{\mu_{\alpha}}F\}$ converges weak* to a constant functional. Thus $\mathfrak{R}_{\mathcal{R}}(F)$ is nonempty. Hence *S* is topological right stationary. Since $M(S)^*$ is left introverted (topological) linear subspace of itself, so by Theorem 2.7, $M(S)^*$ has a topological left invariant mean.

(b) \Rightarrow (c). Follows from Theorem 2.9 (a)

(c) \Rightarrow (a). Condition (c) is formally stronger than (a). **THEOREM 2.11.** Let *S* be a locally compact semigroup, which is topological left amenable. Let F_0

be an arbitrary element of $M(S)^*$ and *a* be an arbitrary real number then the following conditions are equivalent:

(a) there exists a net $\{\mu_{\alpha}\}$ in $M_0(S)$ such that $\{r_{\mu_{\alpha}}F_0\}$ converges pointwise to a.1.

(b) there exists a topological left invariant mean M on $M(S)^*$ such that $M(F_0) = a$.

Proof. (a) \Rightarrow (b). By Theorem 2.10, (a) implies (b), $M(S)^*$ has a topological left invariant mean. Also by Theorem 2.7, there exists a topological left invariant mean M on $M(S)^*$ such that $M(F_0) = a$.

(b) \Rightarrow (a). By Theorem 2.7, (c) implies (a), S is topological left amenable, and by Theorem 2.9 (b), there exists a net { μ_{α} } in $M_0(S)$ such that { $r_{\mu_{\alpha}}F_0$ } converges pointwise to a.1.

References

- 1. Arens R.F. The adjoint of a bilinear operator. *Proc. Amer. Math. Soc.*, **2**: 839-848 (1951).
- 2. Day M.M. Amenable semigroups. *Illinions J. Math.*, 1: 509-544 (1957).
- 3. Hewitt E. and Ross K.A. *Abstract Harmonic Analysis I*. Springer-Verlag, Berlin (1963).
- 4. Mitchell T. Constant functions and left invariant means on semigroups. *Trans. Amer. Math. Soc.*, **119**: 244-261 (1965).
- 5. Wong J.C.S. Topologically stationary locally compact groups and amenability. *Ibid.*, **144**: 351-363 (1969).
- Wong J.C.S. and Riazi A. Characterisations of amenable locally compact semigroups. *Pacific J. Math.* 108:(2):

479-496 (1983).