
Journal of Sciences, Islamic Republic of Iran 16(2): 169-173 (2005) http://jsciences.ut.ac.ir 
University of Tehran, ISSN 1016-1104 

Parallel Generation of t-ary Trees 
 

H. Ahrabian* and A. Nowzari-Dalini 
 

Department of Mathematics and Computer Science, Faculty of Sciences, University  
of Tehran, Tehran, Islamic Republic of Iran 

 
Abstract 

A parallel algorithm for generating t-ary tree sequences in reverse B-order is 
presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 
sequences is generated in constant average time O(1). The algorithm is executed 
on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the 
discussion of the parallel algorithm a new sequential generation with O(1) average 
time complexity, and ranking and unranking algorithms with O(t n) time 
complexity is also given. 
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1. Introduction 

A few parallel algorithms for t-ary trees are presented 
by Stojmonovic and Akl [5], Vajonovszki and Phillips 
[16,17], and Kokosinski [10]. In [5], trees are 
represented by an inversion table and the processor 
model is a linear array multiprocessor. The generated 
integer sequences corresponding to the t-ary trees of n 
nodes in this algorithm are of length n and the parallel 
algorithm is executed with n processor. In [16], trees are 
represented by 0-1 sequences and the algorithm is run 
on a shared memory multiprocessor. Vajonovszki and 
Phillips [17] also presented a parallel generating 
algorithm for t-ary trees represented by generalized P-
sequences on a linear array. The latter two algorithms 
generate sequences of length tn with tn processor. 
Finally, Kokosinski [10] generated t-ary trees of n nodes 
by 0-1 sequences in parallel with an associative model 
with n processor. 

The design of most parallel algorithms is based on 
the sequential versions of them in the literature. There 
exist several sequential algorithms for generating t-ary 
trees [1,3,6,8,12-15,18,19]. 

In this paper we describe a parallel algorithm for 
generating t-ary tree sequences in reverse B-order. This 
algorithm is executed on a CREW SM SIMD model [4] 
and is adaptive and cost-optimal, and the number of 
processors can be much less than the other parallel 
generation algorithms. As it is mentioned, all the 
previous parallel algorithms for t-ary trees generate by 
0-1 sequences are not presented as an adaptive 
algorithm and the number of processors employed in 
their models is of a fixed sized. Prior to the discussion 
of our adaptive parallel algorithm a new sequential 
generation, ranking and unranking algorithms are also 
given. This sequential algorithm generates each 0-1bit 
sequence in constant average O(1) and the time 
complexity of ranking and unranking algorithm is O(tn). 

The paper is organized as follows. Section 2 
introduces the definitions and defines the notions to use 
further. In Section 3, we introduce a new sequential 
generation algorithm with ranking and unranking 
algorithms. The parallel version of the sequential 
generation algorithm is given in Section 4. Finally, 
some concluding remarks are offered in Section 5. 
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2. Definitions 

The t-ary tree is a data structure consisting of a finite 
set of n nodes which either empty (n=0) or consists of a 
root and t disjoint children, and each child is a t-ary 
subtree, recursively defined. A node is the parent of 
another node if the latter is a child of the former. In a t-
ary tree an external node is a node without child and an 
internal node is a node with exactly t children. An n-
node t-ary tree has (t-1)n + 1 leaves, and the total 
number of t-ary trees with n internal nodes is denoted by 
Cn,t and is known to have the value Cn, 

t=
1 ( )

( 1) 1
tn
nt n− +

. 

Let us introduce basic notations used through this 
paper and a definition of t-ary trees by means of choice 
functions of indexed families of sets [7,10,11]. 

Let < Ai > i I∈  denote an indexed family of sets Ai = 
A, where A= {1, …, m}, I= {1, …, l}, and l, m ≥ 1. Any 
mapping f which chooses one element from each set A1, 
..., Al is called a choice function of the family <Ai> i 

I∈  [11]. With additional restrictions we can model by 
choice functions various classes of combinatorial 
objects [7,9]. If Ai ={0, 1} and I={1, ..., l}, then any 
choice function χ  = < xi > i I∈ , that belong to the 
indexed family < Ai > i I∈ , is called binary choice 
function of this family. If l ≤ tn for a given t, each binary 
choice function with the number of x1+ ...+ xi ≥ i/t, for 1 
≤ i ≤ tn, is called binary choice function with t-
dominating properties. There exist bijections between 
set of choice functions χ and sets of t-ary trees with n 
internal nodes in widely used representations. All t-
dominating binary choice functions, with l = tn and the 
number of x1+ ...+ xi = n, are bit string representations of 
all t-ary trees of the set A [10]. This bit string 
representation is called x-sequence and also known as 
Zaks' sequence [19]. By t-dominating definition, in each 
subsequence {xj}

i
1  (1 ≤ i ≤ tn) the accumulated numbers 

of 1's is at least . In other words, if this 
subsequence contains m 1's, then it contains at most  
(t-1) m 0's. 

/i t⎡⎢ ⎤⎥

For any given choice functions δ = <d1, ..., dl> and γ= 
<g1, ..., gl>, we say that δ and γ are in decreasing 
lexicographical order, if and only if there exists i ∈{1, 
..., l} satisfying di > gi and dj = gj for every j < i. 

The x-sequence can be obtained directly from t-ary 
trees. Given a regular t-ary tree with n internal nodes, 
we label each internal node with 1 and each external 
node with 0. Reading tree labels in pre-order 
(recursively, visit first root and then all the sub trees 
from left to right), we get a bitstring with n 1's and (t-1) 

n+1 0's. As the last visited node is an external node, we 
omit the corresponding 0. For example, the x-sequence 
corresponding to the tree presented in Figure 1 is 
x=100101000. 

 
Theorem.  The following sets are in a 1-1 
correspondence with each other [19]: 

1) All the t-ary trees with n internal nodes, 
2) All the 0-1 sequences {xi} with n 1's and (t-1) n 

0' s having the t-dominating property. 
1
tn

In order to design an algorithm for generating the set 
of trees, an ordering is to be imposed; one of these 
ordering is B-order. This ordering is defined as follows 
[19]. 

 
Definition.  Given two t-ary trees T and T', we say T < 
T' in B-order if 

1)  T is empty and T' is not empty, or 
2)  T is not empty, and for some i (1 ≤ i ≤ t) 
 a)  Tj =T ′ j  for  j = 1, 2, ..., i-1, and 
 b)  Ti < T ′ i  in B-order. 
Our both generation algorithms in sequential and 

parallel, which are given in the next section, produce the 
0-1 sequences in decreasing lexicographical order such 
that their corresponding t-ary trees are in reverse B-
order. 

3. Sequential Generation 

In this section we give a new sequential generation 
algorithm for t-ary trees in reverse B-order with 0-1 
encoding. The algorithm GenX-Seq given in Figure 2 
generates 0-1 sequences  corresponding to a t-ary tree. 
The algorithm produces the tree sequences by 
interchanging any adjacent 10 by 01, which causes a 
right shift in the corresponding 1. The generation 
sequence starts with the sequence 1n0(t-1)n. By the first 
possible interchange the nth 1 in the sequence is shifted 
one position to the right. By each right shift a new 
sequence is generated. The last generated code by the 
algorithm is (10t-1) n. It is clear that any right shift in this 
sequence (last code) would violate the dominating 
property. With regard to the last code the nth 1 can be 
shifted N = (t – 1) n – t + 1 bits to the right of the initial 
position, and consequently the (n - 1) th 1 shifted (t - 1) 
(n - 1) - t+1 bits and respectively the (n - i) th (0 ≤ i < n) 
1 can be shifted (t - 1) (n - i) - t+1 bits from the initial 
position. Consequently ith 1 can be shifted up to t(i - 1) 
+ 1th bit in the sequence. Clearly the position of the first 
one is always unaltered. 

The algorithm has two underlying recursions and 
initially is called with X = 1n 0 (t-1) n, k= N+1, l= n - 1, 
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and q = 1. The total required time for the generation of 
all the sequences is O(Cn,t), and easily can be proved to 
be in constant average time O(1) per sequence [2]. It 
should be noted that for obtaining a more efficiency the 
parameter X in the algorithm could be deleted and 
assumed to be a global variable. In this case after each 
recursion call in the algorithm, a reverse 0-1 interchange 
should be performed on X. Also we can convert the 
recursive algorithm to an iterative algorithm such that 
the algorithm generates the next sequence 
independently. In this case the time complexity of the 
algorithm in the worst case for generating one sequence 
from another is O(n), and consequently complexity of 
generation all Cn, t sequences would be equal to  
O(n Cn,t). 

We now show a ranking algorithm, i.e. an algorithm, 
which gives the position of, a tree presented as 0-1 
sequences in the reverse B-order list of sequences 
corresponding to a t-ary tree. For ranking algorithm we 
need to define the doubly indexed sequences G  (1 ≤ l 
≤ k ≤ n) for a fixed value t as follows: 

k
l

1
1

-10 1
-1

G 1 1 0,

G G otherwise.

k
l

k k
l l

kl
t

−
−

⎧ ⎢ ⎥> +⎪ ⎢ ⎥⎣ ⎦⎪
⎪= =⎨
⎪

+⎪
⎪
⎩

,

 

Where G  is the number of 0-1 sequences with k
l

1
1

k t
t
+ −⎢

⎢ −⎣ ⎦
⎥
⎥  ones that hold the dominating property and 

beginning with at least 1
1

k t
t
+ −⎢

⎢ −⎣ ⎦
⎥
⎥  - l ones. 

 
Lemma.  The coefficients G l verify the following 
relations [2]: 

k

a)   G  = Cn,t , 1
1

N
n
+
−

b)   G l =∑ ,  j < k  &  j <  k 1

0

l
k
j

j
G −

−

1
1

k
t
−⎢

⎢ −⎣ ⎦
⎥
⎥  + 1. 

With regard to the above Lemma and definitions of 
G l , the ranking algorithm is given in Figure 3. The 
required time for the above algorithm depends on the 
length of sequence which is O(tn). 

k

The unranking algorithm essentially reverses the 
steps carried out in computing the rank. According to 
the rank of a tree, the position of its sequence in the 
reverse B-order list is specified. Therefore, this position 

is obtained by using G 's (1 ≤ k ≤ N + 1, 1 ≤ l ≤ n). The 
unranking algorithm is given in Figure 4. Clearly the 
time complexity of the unranking algorithm is O(tn). 

k
l

 
 

1

 
Figure 1.  A 3-node 3-ary tree T, with encoding x={1, 0, 0, 1, 
0, 1, 0, 0, 0}. 
 
 
Procedure GenX-Seq (X:  Xseq; k, l, q:  Integer); 
Begin 
 If (k < N+1) Then Begin 
  xN +n-k-l+1 := 0 ; 
  xN +n-k-l +2 := 1 ; 
 End; 
 WriteXseq (X); 
 If (k > 1) Then Begin 
  GenX-Seq (X, k-1, 1, l); 

  If ( l < k )  And ( l < q )  And (l <
1
1

k
t
−

−
⎢
⎢⎣ ⎦

⎥
⎥  +1 ) Then 

   GenX-Seq (X, k, l+1, q); 
 End; 
End; 

Figure 2.  X-sequences generation algorithm in the reverse 
order of B-order. 

 
 

Function Rank (X:  Xseq):  Integer; 
Var  r, k, l, i:  Integer; 
Begin 
 k := N+1 ; l := n - 1 ; 
 i: = 1 ; r := 0 ; 
 While (i ≤ t × n) and (l ≥ 0) Do Begin 
  If (xi = 0) Then Begin 
   r := r + G l ; k

   k := k - 1 ; 
  End 
  Else 
   l := l - 1 ; 
  i := i + 1 ; 
 End; 
 Rank: = r + 1; 
End; 

Figure 3.  Rank algorithm. 

0 0 1 

0 0 1 

0 0 0 
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4. Parallel Generation Algorithm 

In this section we present a parallel algorithm that 
generates 0-1 sequences of the form {x1, x2, ..., xtn} as 
defined in Section 2. The algorithm generates tree 
sequences in reverse B-order. Our algorithm is cost-
optimal and adaptive and is executed on CREW SM 
SIMD model with d processors. As it is mentioned in 
the Section 2 the generation sequence starts with the 
sequence 1n 0 (t-1) n and the last generated sequence is  
(1 0t-1) n. The algorithm produces the next possible 
generated codes by the right interchanging of the 1's in 
the initial string. Each 1 can be shifted up to a specific 
position. 

The algorithm uses four arrays Y, Z, W of length n 
and X of length tn, in shared memory. The ith elements 
of these arrays are denoted by yi, zi, wi and xi, 
respectively. Array X is simply an output buffer where 
any new sequence generated is placed, and initial value 
of it is 1n 0(t-1) n. The other three arrays are used to store 
intermediate results, and are defined in the below. 

1)  Array Y holds the limit position for shifting of 
each 1, and is set to 

yi = t (i - 1) + 2 ,   1 ≤ i ≤ n. 

2)  Array Z hold the position of 1's in the generated 
code, and initially is set to 

zi = i ,   1 ≤ i ≤ n. 

3)  Array W keeps track of those 1's that have 
reached their limiting position. 

if ,

otherwise,

i i

i

True z y
w

False

=⎧⎪= ⎨
⎪⎩

 

and initially wi (1 ≤ i ≤ n) is false. 
The algorithm given in Figure 5. It uses the 

processors p1, … , pd. The arrays Y, Z, W are subdivided 
to d subsequences of length and assigned to each 
processor. As it is mentioned, the algorithm produce the 
next possible generated code by the interchanging a 1 
that the position is kept in array Z. This position is equal 
to any i such that wi-1 = False and wi = True. For any 
sequences unique position will have this property, 
therefore only one of the processor can obtain this 
position and keeps the index of this position in variable 
k. Employing the array Z and variable k, the 
corresponding 1 is right interchanged and the next 
sequence is generated, and then array W and Z are 
updated. Because of concurrent access of processors to 
k and zk, therefore our computational model should be 
CREW. 

/n d⎡⎢

Function Unrank (r:  Integer):  Xseq; 
Var X:  Xseq; i, j:  Integer; 
Begin 
 For i: = 1   To t × n Do 
  xi := 0 ; 
 i := 1 ; l := n - 1 ; k:=N + 1 ; 
 While (i ≤ t×n) And (l ≥ 0) Do Begin 
  If (r > S k

l ) Then Begin 
   xi:= 0 ; 
   r := r - S ; k

l

   k := k - 1 ; 
  End 
  Else Begin 
   xi:= 1 ; 
   l := l - 1 ; 
  End; 
  i := i + 1 ; 
 End; 
 Unrank: = X; 
End; 
Figure 4.  Unrank algorithm. 

 
Procedure Parallel-GenX-Seq; 
Var i, j, k:  Integer; Flag:  Boolean; 
Begin 
 WriteXseq (X); 
 While (w1 = False) Do Begin 
  k: = n ; 
  For i: = 1   To d Do In Parallel 
   For j: = (i-1) × /n d⎡ ⎤⎢ ⎥ + 1 To i ×  Do /n d⎡⎢ ⎤⎥

If (wj-1 = False) And (wj = True) And (j > 1) And  
(j ≤ n) Then 

     k := j-1 ; 
  End; 
  

kzx : = 0 ;  zk := zk + 1 ; 
kzx : = 1 ; 

  For i: = 1   To d Do In Parallel 
   For j: = (i-1) × /n d⎡ ⎤⎢ ⎥  + 1    To i ×  Do /n d⎡⎢ ⎤⎥
    If (j ≥ k) And (j ≤ n) Then Begin 
     

jzx := 0 ; 

     zj := zk + ( j – k ) ; 
     

jzx := 1 ; 
⎤⎥     End; 

  End; 
  If (zk < yk) Then 
   WriteXseq (X); 
  For i: = 1   To d Do In Parallel 
   For j: = (i – 1) × /n d⎡ ⎤⎢ ⎥  + 1 To i ×  Do /n d⎡⎢ ⎤⎥
    If (j ≤ n) Then 
     If (zj = yj) Then 
      wj: = True 
     Else 
      wj := False ; 
  End; 
 End; 
End; 
Figure 5.  Parallel version of GenX-Seq algorithm. 
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The time complexity of the algorithm depends on the 
existing loops. All the parallel loops in the algorithm 
performed in O(n/d). The main loop for generating all 
the t-ary trees with n nodes is performed Cn,t times. 
Thus, the overall time complexity of algorithm is T(n) = 
O(nCn,t / d). Since the algorithm is employed d 
processors, therefore its cost is C(n) = O(nCn,t), and with 
regard to the time complexity of discussed  sequential 
algorithm Next, it is cost-optimal. 

Our algorithm can be also implied to an EREW 
model without violating the cost-optimality. If our 
model alters to EREW, concurrent read can be 
simulated by broadcasting the values of k and zk on 
O(log d). Therefore, the complexity of the algorithm 
would be equal to T(n) =O( (n / d + log  d) Cn,t, and the 
cost is C(n) = O((n  + d  log  d) Cn,t), which for d ≤ n / 
log  n is cost-optimal. 

5. Conclusion 

A Parallel generation algorithm for t-ary trees is 
presented. This algorithm is the second parallel 
algorithm for generation of t-ary trees in reverse B-order 
with 0-1 sequences. The algorithm is executed on a SM 
SIMD model. Both CREW and EREW model can 
support the cost-optimality of the algorithm with 
different number of processors. The algorithm is 
adaptive and the number of processors is variable and 
can be less than the number of internal nodes in a  
t-ary tree. 

The authors have implemented and tested the 
algorithm in MPI on a 8 nodes Linux cluster system, 
and for different values of n the cost-optimality is 
obtained experimentally. 

References 
1. Ahrabian H. and Nowzari-Dalini A. Generation of t-ary 

trees with Ballot sequences. Intern. J. Comput. Math., 80: 

1243-1249 (2003). 
2. Ahrabian H. and Nowzari-Dalini A. On the generation of 

binary trees, from (0-1) codes. Ibid., 69: 243-251 (1998). 
3. Ahrabian H. and Nowzari-Dalini A. On the generation of 

P-sequences. Adv. Modeling Optim., 5: 27-38 (2003). 
4. Akl S.G. The Design and Analysis of Parallel Algorithms. 

Prentice Hall, Englewood Cliffs (1989). 
5. Akl S.G. and Stojmenovic I. Generating t-ary trees in 

parallel. Nordic J. Comput., 3: 63-71 (1996). 
6. Er M.C. Efficient generation of k-ary trees in natural 

order. Comput. J., 35(3): 306-308 (1992). 
7. Kaprlski A. New methods for the generation of 

permutations, combinations and other combinatorial 
objects in parallel. J. Parallel Distrib. Comput., 17: 315-
329 (1993). 

8. Korsh J.F. A-order generation of k-ary trees with 4k-4 
letter alphabet. J. Infom. Optim. Sci., 16(3): 557-567 
(1995). 

9. Kokosinski Z. On the generation of permutations through 
decomposition of symmetric group into osets. Bit, 30: 
583-591 (1990). 

10. Kokosinski Z. On parallel generation of t-ary trees in an 
associative model. Lecture Notes in Computer Science, 
2328: 228-235 (2002). 

11. Mirsky L. Transversal Theory. Academic Press, 
Washington (1971). 

12. Pallo J. Generating trees with n nodes and m leaves. 
Intern. J. Comput. Math., 21: 133-144 (1987). 

13. Roelants Van Baronaigien D. and Ruskey F.Generating t-
ary trees in A-order. Inform. Process. Lett., 27(4): 205-
213 (1988). 

14. Ruskey F. Generating t-ary trees lexicographically. SIAM 
J. Comput., 7(4): 424-439 (1978). 

15. Trojanowski E. Ranking and listing algorithm for k-ary 
trees. SIAM J. Comput., 7(4): 492-509 (1978). 

16. Vajnovszki V. and Phillips C. Optimal parallel algorithm 
for generating k-ary trees. In: Woodfill M.C. (Ed.), Proc. 
12th International Conference on Computer and 
Applications, ISCA, Raleigh, 201-204 (1997). 

17. Vajnovszki V. and Phillips C. Systolic generation of k-ary 
trees, Parallel Process. Lett., 9(1): 93-101 (1999). 

18. Yongjin Z. and Jianfang W. Generating k-ary trees in 
lexicographic order. Sci. Sin., 23: 1219-1225 (1980). 

19. Zaks S. Lexicographic generation of ordered tree. Theoret. 
Comput. Sci., 10: 63-82 (1980). 

 173 


	1. Introduction
	2. Definitions
	3. Sequential Generation
	4. Parallel Generation Algorithm
	5. Conclusion
	References

