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Abstract 

We propose a wavelet based stochastic regression function estimator for the 
estimation of the regression function for a sequence of pairwise negative quadrant 
dependent random variables with a common one-dimensional probability density 
function. Some asymptotic properties of the proposed estimator are investigated. 
It is found that the estimators have similar properties to their counterparts studied 
earlier in literature. 
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1. Introduction 

A sequence of random variables { ,  is said 
to be pairwise negative quadrant dependent (NQD) if 

1}nX n ≥

( , ) ( ) (i i j j i i j j )P X x X x P X x P X x> > ≤ > >  

for all  and for all . ,i jx x ∈R , 1,i j i j≥ ≠

This definition was introduced by Lehmann (1966). 
Suppose that { ,  is a sequence of pairwise 

NQD random variables with a common one-dimensio-
nal marginal probability density function f. The problem 
of interest is the estimation of Nonparametric regression 
function based on the observations  

. There are many interesting examples where 
applications of regression smoothing methods have 
yielded analysis essentially unobtainable by other 
techniques, for example the monographs by Eubank 
(1988) and Muller (1988) [11,17]. Nonparametric curve 

estimation by wavelets has been treated in numerous 
articles in various setups. These range from the simple 
Gaussian iid error situation to more complicated data 
structures that often call for a specific algorithm tailored 
to the problem at hand. In the fixed design case, and for 
sample size that are a power of 2, wavelet methods offer 
an appealing method for adaptation of nonparametric 
curve estimation [1,2,4,8,12]. The objective of this 
article is to extend above results for a sequence of 
pairwise NQD random variables with a common one-
dimensional marginal probability density function f. The 
organization of the paper is as follows. After 
introducing wavelet density function estimation given in 
section 2, we introduce our proposed estimator in 
section 3 and study its asymptotic properties. 

1nX n ≥ }

}
1 1{( , ),...,X Y

( , )n nX Y

2. Wavelet Linear Density Estimator 

Let  be a sequence of pairwise NQD { , 1}nX n ≥

 255 



Vol. 16  No. 3  Summer 2005 Doosti and Niroumand J. Sci. I. R. Iran 

random variables on the probability space ( , , )PΩ ℵ . 
We suppose that Xi has a bounded and compactly 
supported marginal density f (.), with respect to 
Lebesgue measure, which does not depend on i. We 
estimate this density from n observations Xi , i = 1,…,n. 
For any function 2 ( )f ∈L R , we can write a formal 
expansion [5]: 

0 0 0

0 0

, , , ,j k j k j k j k j j
k Z j j k Z j j

f P f D fα φ δ ψ
∈ ≥ ∈ ≥

= + = +∑ ∑∑ ∑  

where the functions 

0 0

0

/ 2
, ( ) 2 (2 )j j

j k x x kφ φ= −  

and 
/ 2

, ( ) 2 (2 )j j
j k x x kψ ψ= −  

constitute an (inhomogeneous) orthonormal basis of 
 Here 2 ( )L R ( )xφ  and ( )xψ  are the scale function and 

the orthogonal wavelet, respectively. Wavelet 
coefficients are given by the integrals 

0 0, , ,( ) ( ) , ( )j k j k j k j k,f x x dx f x dxα φ δ ψ= =∫ ∫  

We suppose that both φ  and , , have 
compact supports included in [ ,

1rψ +∈C r ∈N
]δ δ− . We construct the 

density estimator 

0 0

0

, ,
ˆ ˆ

j

j k j k
k K

f α φ
∈

= ∑ , 
0 0, ,

1

1ˆ, (
n

)j k j k
i

with X
n

α φ
=

= ∑ i , (2.1) 

where 
0jK  is the set of k such that sup ( )p f ∩  

. The fact that 
0 ,sup 0j kpφ ≠ φ  has a compact support 

implies that 
0jK  is finite and . 

Wavelet density estimators arouse much interest in the 
recent literature [7,10]. In the case of independent 
samples the properties of the linear estimator (2.1) have 
been studied for a variety of error measures and density 
classes [14,16,19]. Doosti et al. [9] obtained upper 
bounds on Lp-losses for the linear estimators (2.1) for 
negative associated random variables. The estimator in 
Equation (2.1) is a special case of a kernel density 
estimator with kernel . In 

terms of this kernel, this can be expressed as 

0

0
(2 )j

jK O=card

0 0, ,( , ) ( ) ( )k j k j kK x y x yφ φ= ∑

0
1

1ˆ( ) ( , )
n

j i
i

f x K x X
n =

= ∑  

where the orthogonal projection kernels are 
0 0 0

0
( , ) 2 (2 ,2 )j j j

jK x y K x y= . Huang (1999) studied 

asymptotic bias and variance of linear wavelet density 
estimator [13]. Define 

( ) ( , )m m
mb x x K x y y dy

∞

−∞
= − ∫ . 

The functions bm(x) are important in expressing the 
asymptotic bias of linear estimators and finding their 
efficiencies with respect to the standard kernel density 
estimators. Theorem 2.1 gives the bias for the density 
function estimator (2.1). 
 
Theorem 2.1.  [13] Assume that the density f belongs to 
the Holder space m α+C , 0 1α≤ ≤ , and the wavelet-
kernel K(x,y) satisfies the localization property: 

( , )( )mK x y y x dy Cα∞ +
−∞ − ≤∫ , for some positive C. Let 

 and , as n . Then, for x fixed, j →∞ 2 jn − → ∞ →∞

( )

( )

1ˆ( ) ( ) ( ) (2 )2
!

(2 ).

m j
m

j m

f x f x f x b x
m

O α

−

− +

− = −

+

E mj

 

The asymptotic variance of ˆf  is given in following 
Theorem 2.2. This theorem is a generalization of a 
theorem proved by Huang [13]. In the following 
theorem we suppose scale function be a monotone 
function. 
 
Theorem 2.2.  Let 1f ∈C , f ′  is the first derivative of f 
and f and f ′  be uniformly bounded. Then, for x fixed, 

12ˆ( ) ( ) (2 ) ( )
j

jVarf x f x V x O n
n

−= + , 

where . 2( ) ( , ) ( , )V x K x y dy K x x∞
−∞= =∫

 
Proof. 

1

2
1

1

2
1 1

1ˆ( ) { ( , )}

1 { ( , )}

2 ( ( , ), ( , ))

{ ( , )} .

n

h i
i

n

h i
i

n n

h i h j
i j i

h i

Varf x Var K x X
n

Var K x X
n

Cov K x X K x X
n

Var K x X
n

=

=

−

= = +

=

=

+

≤

∑

∑

∑∑
 

Because of pairwise NQD property and monotonicity 
of scale function, we know that { (  
remains a sequence of pairwise NQD random variables, 

, ), 1}h iK x X i ≥
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therefore . Now, we 
have 

( ( , ), ( , )) 0h i h jCov K x X K x X ≤

2

2

2

2

2

2

2

1ˆ( ) ( , ) ( )

1 ( ( , ) ( ) )

1 ( ) ( , )

1 ( , )( ( ) ( ))

1 ( ( , ) ( ) )

1 ( ) ( / )

1 ( , )( ( ) ( ))

1 ( ( , ) ( ) ) .

h

h

h

h

h

h

h

Varf x K x y f y dy
n

K x y f y dy
n

f x K x y dy
n

K x y f y f x dy
n

K x y f y dy
n

f x V x h
nh

K x y f y f x dy
n

K x y f y dy
n

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

≤

−

=

+ −

−

=

+ −

−

∫

∫

∫

∫

∫

∫

∫

 

Below, we show that the second and the third terms 
in last equality are of order  1( )O n −

2

2
2

,

1

1| ( , )( ( ) ( )) |

1 1sup | ( ) | ( / , / ) | |

1 sup | ( ) | sup | ( , ) |

| ( / , )( / ) |

( ).

h

x

x s t

K x y f y f x dy
n

f x K x h y h y x dy
n h

f x K s t
n

K x h t t x h dt

O n

∞

−∞

∞

−∞

∈

∞

−∞

−

−

≤ −

≤

−

=

∫

∫

∫

R  

By the uniform boundedness of f (x), it is easy to 
conclude that 

21 1( ( , ) ( ) ) (hK x y f y dy O
n n

∞

−∞
=∫ )

( ) ( | )r x Y X x

. 

= =E . An alternative way to write the 
regression model is the following: 

3. Wavelet Regression Estimators 

Consider the nonparametric regression model which 
is given as the following. Let (Xi,Yi), i = 1,…n be 
identically distributed as a two-dimensional random 
vector (X,Y) with . The propose here is to 
estimate the regression function of Y on X, denoted by 

2( )Y < ∞E

( ) , 1,...,i i iY r X i nε= + =  (3.1) 

where the error iε , conditionally on iX , are assumed 
to be independent with zero expectation and a bounded 
(conditional) variance. The above setup corresponds to 
the random design, but we shall also consider the fixed 
design model. In this case, the Xi are deterministic and 
the Yi follow the same relation (3.1), with iε  being 
independent random variables with zero mean and 
bounded variance. Note that, in both cases, the variance 
of noise is not assumed to be constant, allowing 
therefore the analysis of data with heteroscedastic noise. 
When the Xi are random, it is assumed that their 
common distribution admits a density f . Otherwise, it is 
assumed that their empirical distribution converges as 

 to a distribution admitting a density f . Similar 
to the set up in earlier literature [3,4,6], our estimator of 
r will be obtained by taking the ratio of wavelet 
estimators of g = r f and f. The estimator proposed in the 
above papers is given by, 

n →∞

, ,
1

1

1ˆ ( ) [ ( )] ( )

1 ( , ).

n

i j k j k
k i

n

i h i
i

g x Y Xi
n

Y K x X
n

φ φ
∞

=−∞ =

=

=

=

∑ ∑

∑

x

 (3.2) 

We want to extend their result for sequence of 
pairwise NQD random variables with a common one-
dimensional probability density function. The following 
theorems give the bias and variance of above estimator. 
 
Theorem 3.1.  Assume that the g(x) belongs to the 
Holder space m α+C , 0 1α≤ ≤ , and the wavelet-kernel 
K(x,y) satisfies the localization property: 

( , )( ) ,mK x y y x dy Cα∞ +
−∞ − ≤∫  for some positive C. Let 

 and , as n . Then, for x fixed, j →∞ 2 jn − → ∞ →∞

( )

( )

1ˆ ( ) ( ) ( ) (2 )2
!

(2 ).

m j
m

j m

g x g x g x b x
m

O α

−

− +

− = −

+

E mj

 

Proof.  We have 

1

1ˆ ( ) ( ) { ( , ) ( )}
n

i h i
i

g x g x Y K x X g x
n =

− = −∑E E  

( , ) ( ) ( )hK x y g y dy g x
∞

−∞
= −∫  

( , ){ ( ) ( )}hK x y g y g x dy
∞

−∞
= −∫  
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( )1

1

( )
,

( )
,

( )

( ) ( )
,

( )( , )( ( )
!

( )
( ) )

!

( )
( , ) ( )

!

1 ( ) ( )
!

( )
( , ) ( )

!

im
i

h
i

m
x y m

m
x y m

h

m m
m

m m
x y m

h

g xK x y y x
i

g
y x dy

m

g
K x y y x dy

m

xg x b h
m h

g g
K x y y x dy

m

ξ

ξ

ξ

−∞

−∞
=

∞

−∞

∞

−∞

= −

+ −

= −

−
=

−
+

∑∫

∫

∫ −

 

where 

( ) ( , )m m
mb x x K x y y dy

∞

−∞
= − ∫  

and ,x yξ  is some number lying between x and y. It will 
be shown below that the term in the last equality is 

( mO h )α+ . By the localization assumption of , 
we have 

( , )K x y

( ) ( )
,( )

| ( , ) ( )
!

| ( , )( ) |
!

| ( / , )( / ) |
!

( )

m m
x y m

h

m
h

m
m

h

m

g g
|K x y y x dy

m

A K x y y x dy
m

Ah K x h y y x h dy
m

O h

α

α
α

α

ξ∞

−∞

∞ +

−∞

+ ∞ +

−∞

+

−
−

≤ −

= −

=

∫

∫

∫

 

Theorem 3.2.  Assume that density function f and the 
regression function r(x) are locally bounded and scale 
function be a monotone function, Then 

02{ ( )} ( )
j

Var g x O
n

= . 

Proof. 

1

2
1

1

2
1 1

1 2

1ĝ( ) { ( , )}

1 { ( , )}

2 ( ( , ), ( ,

.

n

i h i
i

n

i h i
i

n n

i h i j h j
i j i

Var x Var Y K x X
n

Var Y K x X
n

Cov Y K x X Y K x X
n

T T

=

=

−

= = +

=

=

+

= +

∑

∑

∑∑ ))

 (3.3) 

Now, we want to find upper bounds for T1 and T2. 

Now, by [3] 

0

1
2 j

T K
n

≤  (3.4) 

Next, we have 

2

( ( , ), ( , ))

( ( , ) ( ,

( ( , ))

i h i j h j

i h i j h j

i h i

Cov Y K x X Y K x X

Y K x X Y K x X

Y K x X

=

−

E

E

))  (3.5) 

which will be locally bounded by assumptions and 
because of pairwise NQD property and monotonicity of 
scale function, we know that { (  remains 
a sequence of pairwise NQD random variables, 
therefore  so we have 

, ), 1}h iK x X i ≥

( ( , ), ( , )) 0h i h jCov K x X K x X ≤

0

2
2( )

j

T O
n

=  

These results allow one to control the convergence 
rate of estimators ˆ

ˆˆ g
f

r = . Using [18, p. 13] expansion 

(2.6), we have 

2

2 2

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )ˆ( ) ˆ ˆ ˆ( ) [ ( )]

ˆ ˆˆ ˆ([ ( ) ( )] ) ([ ( ) ( )] ).p p

g g x g x f x f xr x
f f x f x

O g x g x O f x f x

− −
= + −

+ − + −

E E E
E E E

E E

 

Then, it follows by using Theorems 2.2 and 3.2 that 

0

ˆ ˆˆ ˆ( ) ( arg( )) ( ( ))ˆ

ˆ 2( )ˆ

j

gr x O V x O Varf x
f

g O
nf

= + +

≤ +

EE
E

E
E

 (3.6) 

Now, by using Equation (2.7) of [18], we have 

2 2

ˆˆ ˆ ( ) ( ) ( ) ( )( ) ( )ˆ ( ) ( )

ˆˆ([ ( ) ( )] ) ([ ( ) ( )] ).p p

g g x g x f x f xr x r x
f x f xf

O g x g x O f x f x

− −
= + −

+ − + −

E E E
E

E E

 

By the above results, it follows that 

0
ˆ

( ) (2 )ˆ
j mg r x O

f
−≤ +

E
E

, 

hence, from Equation (3.6), order of the bias of the 
estimators , is given by r̂
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0
0

2ˆ( ( )) (2 ) ( )
j

j mbias r x O O
n

−= + . 

For variance of r(x), we have 

2

2 4

4

4

ˆ ˆarg( ) [ ( )] ˆˆ( ( )) ( )ˆ ˆ[ ( )] [ ( )]

ˆ( [ ( ) ( )] )

ˆ( [ ( ) ( )] )

p

p

V x g xVar r x Varf x
f x f x

O g x g x

O f x f x

≤ +

+ −

+ −

E
E E

E E

E E

 

Assuming that f (x) > 0 for all x, and using the results 
on the asymptotic bias and variance of ˆ ( )g x  and 
ˆ( )f x , we conclude that 

02ˆ( ( )) ( )
j

Var r x O
n

≤ . 

As we see, the convergence rate for bias and variance 
of our proposed estimator is similar to that of [3]. 
Numerical studies are required in order to judge the 
merits of one over the other, which will be pursued 
further. 
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